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Abstract— Sophisticated fault detection (FD) algorithms often
include nonlinear mappings of observed data to fault decisions,
and simulation studies are used to support the methods.
Objective statistically supported performance analysis of FD
algorithms is only possible for some special cases, including
linear Gaussian models. The goal here is to derive general
statistical performance bounds for any FD algorithm, given a
non-linear non-Gaussian model of the system. Recent advances
in numerical algorithms for nonlinear filtering indicate that
such bounds in many practical cases are attainable. This paper
focuses on linear non-Gaussian models. A couple of different
fault detection setups based on parity space and Kalman filter
approaches are considered, where the fault enters a computable
residual linearly. For this class of systems, fault detection can
be based on the best linear unbiased estimate (BLUE) of the
fault vector. Alternatively, a nonlinear filter can potentially
compute the maximum likelihood (ML) state estimate, whose
performance is bounded by the Cramér-Rao lower bound
(CRLB). The contribution in this paper is general expressions
for the CRLB for this class of systems, interpreted in terms of
fault detectability. The analysis is exemplified for a case with
measurements affected by outliers.

I. INTRODUCTION

In many practical applications it is vital to monitor a

parameter which can undergo rapid changes. This is often

referred to as change detection or fault detection. The fault

detection problems considered in this contribution can be

restated as detecting a nonzero parameter vector in the linear

regression model

Rt = Hθθ + HvVt, (1)

where Rt is a residual computed by the fault detection

algorithm, Vt is a stochastic noise term with known proba-
bility density function (PDF), noise coloring Hv , and Hθ is

a regression matrix that depends on the signal model. The

hypothesis test for fault detection is stated as{
H0 : θ = 0
H1 : θ �= 0

, (2)

where H0 represent a fault free situation, and H1 that a fault

(change) is present. Section II describes how fault detection

in general linear state-space models with additive faults can

be reformulated according to (1). The derivation covers both

parity space approaches, where state and disturbance are

eliminated by projection, as well as Kalman and nonlinear

filtering approaches, where the state is estimated.

The general principle for hypothesis testing [1, 2] involves,

explicitly or implicitly, estimation of θ. One simple fault de-

tection approach not necessarily based on stochastic theory,

is to compute the least squares estimate (LSE) of θ and check

if it significantly differs from 0. The weighted LSE provides

the best linear unbiased estimate (BLUE) of θ, which enables

a test that is more efficient compared to the non-weighted
LSE in case of colored noise or changing variance. The BLUE

compensates fully for second order properties of the noise,

but no higher order moments. The minimum variance esti-
mator (MVE) and maximum likelihood estimator (MLE) are

generally nonlinear functions of data, and usually no closed

form solution exists. However, recent advances in numerical

methods for nonlinear filtering such as the particle filter (PF)

[3–5] enable on-line MVE and MLE, if sufficient computation

time and memory are available. Asymptotically, the MLE

attains the Cramér-Rao lower bound (CRLB) [6, 7], and the

PF obtains, or comes close to, the limit. The performance

bound for fault detection discussed in this contribution is

based on the CRLB, which is analytically computable for the

considered class of systems.

The fundamental question is how much better fault de-

tection performance can be obtained by using a nonlinear

MVE or MLE compared to the BLUE. A first answer to this

question was presented in [8], and later elaborated on in

[9], where estimation and detection in colored non-Gaussian

autoregressive (AR) processes are treated. As part of this

the intrinsic accuracy (IA, see Section II-A for a formal

definition) of the PDF of Vt was used. The basic result is

that for a given probability of false alarm, the upper bound

in detection performance increases monotonously with IA.

The worst case performance is achieved for a Gaussian

PDF, in which case the BLUE coincides with MLE and no

better performance can be obtained. For all other PDF’s the

asymptotic MLE outperforms the BLUE.

For linear state-space models, the Kalman filter (KF) is the

BLUE and in case of non-Gaussian noise the PF may perform

better. It is shown in [10] that if the relative accuracy (RA,

see Section II-A) of either the state noise or the measurement

noise is larger than one (i.e., non-Gaussian), then the CRLB

decreases and the PF has a potential to outperform the KF.

These results are here extended to fault detection, where the

actual RA of all involved stochastic terms is found to be

explicit terms in fault detection performance measures.
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After this introduction, Section II defines information,

accuracy, and the models used, and corresponding detection

statistics are defined in Section III. Section IV present an ap-

plication of the theory for data with outliers. Conclusions are

found in Section V. The Appendices supplement Section II.

II. FUNDAMENTALS

This section introduces Fisher information (FI), intrinsic
accuracy (IA), and relative accuracy (RA). Furthermore, this

section studies different ways to handle measurements over

a time window for linear systems, and gives a common

description of the measurements.

A. Information and Accuracy

The Fisher information (FI) and relative accuracy (RA)

described in this section are important for the derivations of

detection statistics in Section III.

Definition 1. The Fisher information (FI) is defined [6],

under mild regularity conditions on the distribution of ξ, as

Iξ(θ) := −Eξ

(
∆θ

θ log p(ξ|θ))
= Eξ

((∇θ log p(ξ|θ))(∇θ log p(ξ|θ))T
)

(3)

evaluated for the true parameter θ = θ0, with ∇ and ∆
defined to be the Jacobian and the Hessian, respectively,

both defined in Appendix I.

The FI is related to any unbiased estimate of θ̂(ξ) of θ
based on measurements of ξ through

cov
(
θ̂(ξ)

) � I−1
ξ (θ) = P CRLB

θ ,

where P CRLB

θ is the well known Cramér-Rao lower bound
(CRLB) for the covariance of the estimate θ̂, [1, 6], and A � 0
denotes that A is a positive semidefinite matrix.

When nothing else is explicitly stated in this paper, the

information is taken to be with respect to the mean, µ
assumed to be zero, of the distribution in question, and

therefore the notation Ie = Ie(µ), with e a stochastic

variable, will be used. This quantity is in [1, 8, 11] referred

to as the intrinsic accuracy (IA) of the PDF for e. It follows

that

Ie = −Ee

(
∆µ

µ log pe(e − µ)
∣∣
µ=0

)
= −Ee

(
∆e−µ

e−µ log pe(e − µ)
∣∣
µ=0

)
= −Ee

(
∆e

e log pe(e)
)
.

Theorem 1. For the intrinsic accuracy and covariance of
the stochastic variable e the semidefinite inequality

cov(e) � I−1
e ,

holds with equality if and only if e has a Gaussian distribu-
tion.

Proof. See [12].

In this respect the Gaussian distribution is a worst case

distribution. Of all distributions with the same covariance

the Gaussian is the one with the least information about its

mean. All other distributions have larger IA.

Definition 2. If a scalar Ψe exists such that cov(e) =
Ψe I−1

e , then denote Ψe relative accuracy (RA) for the

distribution.

It follows from Theorem 1 that, when RA is defined, Ψe ≥
1, with equality if and only if e is Gaussian. The RA is thus

a relative measure of how much useful information there

is in the distribution, compared to a Gaussian distribution

with the same covariance. Other relevant properties of IA

are presented in Appendix II.

B. Models

A general structure for stacked residuals is given by

Rt = Hθθ + HvVt, (4)

where θ is a structured, low dimensional, fault parameter,

e.g., constructed as in Section II-B.2. The matrices Φ, and Hv

are system dependent, and Vt a noise. In the sequel, Hθ and

Hv are assumed thick and with full row rank, and cov(Vt) �
0. It is always possible to choose a parameterization such that

the nominal parameter is 0. Furthermore, in the next section

only (4) will be considered for detection.

The sequel of this section shows how linear regressions,

and two variations of detection formulations of dynamic

linear systems all can be made to fit in the general linear

residual formulation (4).

1) Linear Regression Model: Consider the linear regres-

sions,

yt = ϕT
t θ + et,

where ϕt is a regression matrix, θ the system parameter with

nominal value θ0, and measurement yt. Assuming a nominal

model θ0, the residual becomes

rt = yt − ϕT
t θ0 = ϕT

t θ̃ + et,

where θ̃ := θ−θ0 should be interpreted as the model change

(fault). Gathering L measurements over a window in time,

the regression can be described as

Rt = ΦT θ̃ + Et, (5)

where Rt =
(
rT
t−L+1 . . . rT

t

)T
, Φ stacked regression

matrices, and Et stacked measurement noise.

2) State-Space Model: In the more general dynamic linear

state-space model the measurements are described by the

relations:

xt+1 = Atxt + Bu,tut + Bw,twt + Bf,tft, (6a)

yt = Ctxt + Du,tut + et + Df,tft, (6b)

where ut is considered a known deterministic input signal, wt

process noise, et measurement noise, and ft a deterministic,

but unknown fault input.

Gathering L measurements over time yields:

Yt = Oxt−L+1 + HwWt + Et + HuUt + HfFt, (7)

339



with Yt, Ut, Wt, and Ft stacked version of yt, ut, wt and ft,

respectively. Furthermore, O is the extended observabibilty

matrix,

O =
(
CT (CA)T . . . (CAL−1)T

)T
,

Hw, Hu, and Hf are Toeplitz matrices describing how w, u,

and f , respectively, enter the measurements,

H� =

⎛
⎜⎜⎜⎜⎝

D� 0 . . . 0

CB� D�
. . .

...
...

. . .
. . . 0

CAL−2B� CAL−3B� . . . D�

⎞
⎟⎟⎟⎟⎠ ,

for � ∈ {w, u, f}. All these may be time dependent, but

this is left out for notational clarity. Finally, xt−L+1 is the

initial state of the measurement window. For a more complete

description of this way to view the system see e.g., [13, 14].

In order to get a low order parameterization of the fault

profile, and a non-ambiguous distinction between fault and

noise, assume that the fault profile is a smooth function

(rather than noise). That is, let ft = F imt, where F i defines

a certain fault direction, and where mt is the scalar time-

varying magnitude. To further structure the fault, choose

basis functions ϕt of smooth functions (i.e., polynomials),

to model incipient variations of the magnitude mt = ϕT
t θ,

where θ has relatively low dimension (dim(θ) � L).

For simplicity, assume an orthonormal basis, (e.g., discrete

Chebyshev polynomials), such that
∑t

k=t−L+1 ϕkϕT
k = I .

In that case, the fault energy is preserved so ‖mt‖2
2 =∑t

k=t−L+1 m2
k = ‖θ‖2

2. Using this notation,

ft = F iϕT
t θ (8)

and B̄f,t := Bf,tF
iϕT

t , D̄f,t := Df,tF
iϕT

t , and θ replace

Bf,t, Df,t, and ft, respectively, in (6). Similarly, H̄f , derived

from B̄f,t and D̄f,t, and θ should replace Hf,t and Ft,

respectively, in (7). Note that θ is time invariant even though

ft is not, and due to the lower dimension detection is easier.

a) Prior knowledge about xt−L+1: If an estimate of the

initial state in (7) is available from data outside the studied

window, then the effect of x̂t−L+1 and the known input Ut

can then be removed from the measurements,

Rt = Yt − HuUt −Ox̂t−L+1

= Ox̃t−L+1 + HwWt + Et + HfFt

=
(O Hw I

)︸ ︷︷ ︸
Hv

(
x̃T

t−L+1 W
T
t E

T
t

)T︸ ︷︷ ︸
V

+ H̄f︸︷︷︸
Hθ

θ, (9)

where x̃t−L+1 := xt−L+1 − x̂t−L+1 is the error in the

estimate, that can be considered to be noise. Any unbiased

estimate x̂t−L+1 will suffice, but as will be shown, detection

performance depends on the quality of the estimate.

b) Parity Space: If no estimate of xt−L+1 is available,

or if it is unfavorable to use such an estimate, the signal space

can be completely removed from the measurements instead.

In this way, only changes with effects outside the nominal

system are detectable. This is referred to as parity space or

analytical redundancy [15, 16]. To achieve this, construct a

projection, P⊥
O , from the measurement space into a lower

dimensional residual space such that P⊥
O is perpendicular

to O, i.e., P⊥
OO = 0, and the covariance of the resulting

residual is non-singular. This yields the residuals

Rt = P⊥
O (Yt − HuUt) = P⊥

O (HwWt + Et + HfFt)

= P⊥
O

(
Hw I

)︸ ︷︷ ︸
Hv

(
W

T
t E

T
t

)T︸ ︷︷ ︸
V

+P⊥
OH̄f︸ ︷︷ ︸
Hθ

θ, (10)

where by construction cov(Rt) � 0, i.e., P⊥
O

(
Hw I

)
has

full row rank. Methods to construct P⊥
O can be found in [17].

III. FAULT DETECTION

In this section, a method to detect changes (faults) is

derived, and its explicit asymptotic statistics computed for

the different models in Section II. The test derived is the Wald
test. The approach is then motivated by the optimality of

generalized likelihood ratio test (GLR test) before detection

performance is calculated.

A. Wald Test

A natural approach to fault detection in a system such

as (4) is to estimate the fault θ and from the estimate decide

if it significantly differs from 0 or not. If θ̂ is a MLE of θ it

will asymptotically fulfill

θ̂
a∼ N

(
θ,

(
ΦT S−1(Ψ)Φ

)−1
)
, (11)

where S(Ψ) = I−1
HvV

, for Ψ containing all involved RA and
a∼ denotes asymptotically distributed. The same result for a

BLUE is

θ̂
a∼ N

(
θ,

(
ΦT S−1(1)Φ

)−1
)
, (12)

where S−1(1) = cov(HvV). That is, S(Ψ) is the IA of HvV.

For the different models discussed in Section II-B, explicit

expressions can be derived and the effect of non-Gaussian

noise becomes apparent.

1) Linear Regression: For the linear regression described

in Section II-B.1 there is only one noise involved, e, hence

S(Ψ) = S(Ψe) = Ψ−1
e cov(Et). (13)

In this case the inverse of the RA factors out, S(Ψe) =
Ψ−1

e S(1), i.e., the effect of a non-Gaussian noise is a scaling

of S(Ψ) with Ψ−1
e for linear regressions.

2) State-Space Model:
a) Estimated xt−L+1: For a state-space model with

estimated xt−L+1 there are three stochastic components

involved: the estimation error x̃t−L+1, w, and e. In terms

of the RA for those,

S(Ψ) = S(Ψx̃0 , Ψw, Ψe) = Ψ−1
x̃0

O cov(x̃BLUE

t−L+1)OT

+ Ψ−1
w Hw cov(Wt)HT

w + Ψ−1
e cov(Et). (14)

It is shown in [10], that if Ψ = Ψe = Ψw then Ψx̃t−L+1 = Ψ.

Hence, for the special case that the RA is the same for process

noise and measurement noise, the inverse of RA factors out

as S(Ψ, Ψ, Ψ) = Ψ−1S(1, 1, 1).
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b) Parity Space: In the parity space setting the signal

part of the model is removed using a projection leaving only

Ψw and Ψe as interesting quantities, hence

S(Ψ) = S(Ψw, Ψe) = Ψ−1
w P⊥

OHw cov(Wt)HT
wP⊥T

O
+ Ψ−1

e P⊥
O cov(Et)P⊥T

O . (15)

The inverse RA factors out if Ψ = Ψw = Ψe, S(Ψ, Ψ) =
Ψ−1S(1, 1).

Note that a sufficient condition for S(Ψ) in (13)–(15) to

be nonsingular is that the covariance of the measurement

noise is positive definite, which in most cases is a natural

assumption about the underlying system.

If the estimate θ̂ is normalized, to get unit covariance, an

estimate denoted, θ̂N, is produced with the statistics

θ̂N = T− 1
2 (Ψ)θ̂ a∼ N

(
T− 1

2 (Ψ)θ, I
)
,

where T−1(Ψ) := ΦT S−1(Ψ)Φ and T− 1
2 (Ψ) are symmet-

ric matrices such that T−1 = T− 1
2 T−T

2 . Denote the dimen-

sion of the estimated parameter nθ. Since θ̂N is Gaussian

(at least asymptotically) a χ2-test can be constructed to test

between H0 and H1 using

‖θ̂N‖2
2

H1

≷
H0

γ′. (16a)

For this test, called the Wald test [1], the asymptotic statistics

becomes:

‖θ̂N‖2
2

a∼
{

χ2
nθ

, under H0

χ′2
nθ

(λ), under H1

, (16b)

where χ′2
nθ

(λ) is the non-central χ2-distribution with the non-

centrality parameter

λ = θT
1 T−1(Ψ)θ1 = θT

1 ΦT S−1(Ψ)Φθ1, (16c)

where θ1 is the true parameter under H1.

B. Asymptotic GLR Test

It is possible to use the generalized likelihood ratio (GLR)

test for faults (changes). If the PDF p(Y|θ) is known, except

for θ under H1 for hypotheses defined as in (2), then a

detector can be constructed using the decision rule

LG(Y) =
p(Y|θ̂1)

p(Y|θ = 0)

H1

≷
H0

γ,

where θ̂1 is the MLE estimate of θ under H1. This is the GLR

test.

A reason to use GLR is that it is known to be an

asymptotically uniformly most powerful (UMP) test amongst

all invariant tests, according to the theorem below. The GLR

test is also known to be optimal for many special cases [15].

Theorem 2. The GLR test is asymptotically UMP, i.e., most
powerful for all θ under H1, amongst all tests that are

invariant. Furthermore, the asymptotic statistics are given
by

L′
G(Y) := 2 log LG(Y) a∼

{
χ2

nθ
, under H0

χ′2
nθ

(λ), under H1

,

where

λ = θT
1 I(θ = 0)θ1.

The dimension of I(θ = 0) is nθ × nθ and θ1 is the true
value of θ under the hypothesis H1.

Proof. See [1, Ch. 6].

It is shown in [1] that the Wald test has the same

asymptotic properties as the generalized likelihood ratio test,

and hence that it is asymptotically UMP amongst all invari-

ant tests. For anything but theoretical argumentation, the

assumption of infinitely many measurements is unrealistic.

However, the asymptotic behavior constitutes a fundamental

upper performance limit and as such it indicates how much

better performance could be hoped for utilizing available

information about non-Gaussian noise. Furthermore, in prac-

tice the GLR test usually performs quite well for moderately

sized series of measurements [1]. Hence, the asymptotic

behavior indicates what kind of performance to expect.

C. Detection Performance

Using one of the tests described above for a fixed thresh-

old γ′, the probability of a false alarm, PFA, can be calculated

as

PFA = Qχ2
nθ

(γ′), (17)

where Q� denotes the complementary cumulative density

function of the distribution �. Note that, PFA depends only

on the choice of threshold, γ′, hence any change in noise

distributions will only affect the probability of detection,

PD = Qχ′2
nθ

(λ)(γ′), (18)

where λ is defined by (16c). The Qχ′2
nθ

(λ)(γ′) is

monotonously increasing in λ (moving the mean to the left

lessens the risk that a detection is missed) thus any increase

in λ will improve PD. It follows immediately from (16c)

that if the magnitude of θ1 increases it is easier to detect the

change. Further, if S is increased PD increases, too. From

the expressions for S in (11) it is clear that any increase in

RA increases λ, and since Ψ > 1 for non-Gaussian noise it

follows that any non-Gaussian noise improves PD compared

to the same system with Gaussian noise.

Example. Consider measurements from

yt = θ + et, t = 1, . . . , L, (19)

where et is any noise with var(e) = 1 and Ψe quantifying

any non-Gaussian noise properties. It then follows that

θ̂N a∼ N
(√

ΨLθ, I
)
,

that subsequently leads to λ = ΨeLθ2
1 = ΨeL assuming

θ1 = 1. The improved detection performance is illustrated in
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Fig. 1 by the receiver operating characteristics (ROC). From

the figure it is clear that there is potentially much to be gained

from utilizing information about non-Gaussian noise in this

simple model, especially for small PFA where the relative

increase in PD is quite substantial. �
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Fig. 1. ROC diagram for (19) with nθ = 1, L = 5 measurements, and θ1 =
1 for noise with different Ψe values. Guessing denotes what happens if all
available information is discarded and a change is signaled randomly with
probability PFA, it is always possible to construct a test at least this good.

IV. APPLICATION: FAULT DETECTION WITH OUTLIERS

Consider again measurements from (19) where this time et

is Gaussian measurement noise affected by outliers. The

outliers result in heavier tails in the PDF than in a Gaussian

PDF. The noise can be modeled as a Gaussian mixture,

e ∼ (1 − ω)N (0, R) + ωN (0, kR), (20)

where 0 ≤ ω ≤ 1 is the probability of outliers, k indicates

how many times larger the variance of the outliers is, and R
is the variance of measurements unaffected by outliers. Fig. 2

shows the PDF of noise with var(e) = 1 (R = 0.277), ω =
0.1, and k = 10. This distribution has Ψe = 1.5.

−6 −4 −2 0 2 4 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

e

p(
e)

Fig. 2. Solid line, PDF for measurement noise with outliers, parameterized
as in (20), for ω = 0.1, k = 10, var(e) = 1, and Ψe = 1.5. Dashed line
shows the Gaussian approximation.

Trying to detect a change in θ the performance limits

derived above apply. First assuming Gaussian noise with

correct variance (hence a linear approximation) yields for

PFA = 1% a probability of detection PD = 37%, assuming

θ1 = 1 and L = 5.

The probability of detection can be increased by utilizing

information about outliers in the measurements since

PFA = Qχ2
1
(γ′)

k

ω

1.07

1.17

1.38

1.62

1.9
2.24

2.63
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0.7
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1

Fig. 3. Normalized probability of detection PD in noise with outliers (20),
var(e) = 1, and PFA = 0.01. The level curves are normalized so that 1
denotes PD = 0.37, i.e., what is achieved for Gaussian noise, 1.62 denotes
PD = 1.62 · 0.37 = 0.60 etc.

is independent of Ψe but

PD = Qχ′2
1 (λ)(γ

′) = Qχ′2
1 (ΨeL)(γ

′)

is not. The improvement that comes from the Ψe dependency

is shown in Fig. 3. As can be seen, most detectability is

gained with moderately many outliers, ω ≈ 30%, with large

variance, k � 1, since this results in a large relative increase

in PD. The situation with 10% outliers (ω = 0.1) of 10 times

the variance (k = 10) mentioned above, denoted with ×
in Fig. 3, results in a relative PD = 157%. The chance of

detection is improved with more than 55%.

For the same system, (19) with the same measurement

noise (20) (ω = 0.1, k = 10, and var(e) = 1 denoted

with × in Fig. 3), Monte Carlo (MC) simulations have been

carried out to show how close the ROC diagram comes to the

optimal curve. With a GLR test based on 5 measurements

from (19), numerically computed MLE of θ̂, and 10 000
MC simulations, Fig. 4 is achieved. The result is promising

since the simulations seem to come close to the performance

bound. Note that Fig. 1 and Fig. 4 show the same relation

derived analytically and from simulations, respectively.
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Bound Ψ
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GLR performance

Fig. 4. ROC diagram for (19) with measurements (20) (ω = 0.1, k =
10, var(e) = 1, and Ψe = 1.5) for 10 000 MC simulations. Optimal
performance, also found in Fig. 1, is included as reference for Ψe = 1 and
Ψe = 1.5.
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V. CONCLUSION

Optimal detection performance in Gaussian and non-

Gaussian noise has been studied for linear regression resid-

uals; explicit calculations have been performed for linear

regression, and dynamic linear systems with estimated ini-

tial state as well as a parity space formulation. Detection

performance in terms of probability of detection, PD, for a

given probability of false alarm, PFA, is expressed in terms

of intrinsic accuracy (IA) and relative accuracy (RA). Using

these results, it is possible to decide if more advanced,

computationally expensive, methods for detection should be

evaluated. Monte Carlo simulations show that for a moder-

ately sized window of measurements it is possible to come

close to optimal performance in a situation with outliers in

the measurements.

APPENDIX I

DEFINITION OF DERIVATIVES

The derivative of f : R
n �→ R

m, often denoted the

gradient or the Jacobian, used is

∇x f =

⎛
⎜⎜⎜⎜⎝

∂f1
∂x1

∂f2
∂x1

. . . ∂fm

∂x1
∂f1
∂x2

∂f2
∂x2

. . . ∂fm

∂x2
...

...
. . .

...
∂f1
∂xn

∂f2
∂xn

. . . ∂fm

∂xn

⎞
⎟⎟⎟⎟⎠ .

With this definition the second derivative of a scalar function

f : R
n �→ R, also called Hessian when x = y, becomes

∆y
x f = ∇x∇y f =

⎛
⎜⎜⎝

∂2f
∂x1∂y1

. . . ∂2f
∂x1∂ym

...
. . .

...
∂2f

∂xn∂y1
. . . ∂2f

∂xn∂ym

⎞
⎟⎟⎠ .

APPENDIX II

PROPERTIES OF INTRINSIC ACCURACY

Lemma 1. For a vector E of independently and identically

distributed (IID) random variables E = (eT
1 , . . . , eT

n )T each
with cov(ei) = R and Iei

= Ie,

cov(E) = I ⊗ R and IE = I ⊗ Ie,

where ⊗ denotes the Kronecker product. If R Ie = Ψe · I ,
with Ψe ≥ 1 a scalar, then

cov(E) = Ψe I−1
E

= ΨeI ⊗ I−1
e .

Proof. For E = (eT
1 , eT

2 , . . . , eT
n )T , ei IID,

IE = −E ∆E

E
log p(E)

= −E ∆E

E
log

n∏
i=1

p(ei) =
n∑

i=1

−E ∆E

E
log p(ei).

For this the derivatives becomes, for k = l = i

−E∇ek
∇el

log p(ei) = −E ∆ei
ei

log p(ei) = Ie,

and otherwise −E∇ek
∇el

log p(ei) = 0. Combining these

to get back to matrix notation yields

IE = diag(Iei
) = I ⊗ Ie .

This concludes the proof of Lemma 1.

Using [18], the following theorem can be shown.

Theorem 3. For Z = BE, where E = (eT
1 , . . . , eT

n )T is a
stochastic variable with IID components such that cov(ei) =
R and Iei = Ie then

cov(Z) = B
(
I ⊗ R

)
BT ,

I−1
Z

= B
(
I ⊗ I−1

e

)
BT .

Furthermore, if Ψe is relative accuracy for ei then

cov(Z) = Ψe I−1
Z

= ΨeB
(
I ⊗ I−1

e

)
BT .

Proof. Combine the result found as Theorem 4.3 in [18] with

Lemma 1. For the last property use Definition 2.
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