
A modular control design method for a flexible manufacturing cell
including error handling

Seungjoo Lee and Dawn M. Tilbury

Abstract— This paper introduces a modular design method
for a flexible manufacturing cell. First, we provide a definition
for a flexible manufacturing cell, and then we propose a design
method for its cell controller. We divide the controller into two
parts: the resource allocation control and the operation control.
Based on this structure, we develop operation blocks integrated
with error handling and recovery, and prove some properties
about their behaviors. Finally, we introduce a case study and
apply the proposed method to this example.

I. INTRODUCTION

A large-volume manufacturing system is normally divided

into multiple stages each with manageable size. Each stage

is often called a ‘cell’ in industry and is independently con-

trolled by a cell controller. This cell controller coordinates

several process machines and material handlers to bring raw

materials closer to the final product through sequences of

operations. At the same time, this controller should detect

and handle errors.

However, the traditional development time of such a cell

controller is too slow to cope with the quick changeover for

new products because the traditional development procedure

relies heavily on the experience of experts and is very time

intensive [6].

To reduce the development time and to remove feasi-

ble design mistakes in advance, some integrated software

tools [10] have been introduced to design the cell controller.

These software tools can generate the executable control

code by combining the given specification with designers’

knowledge. The correctness of the generated control code

can be verified by 3D graphic simulation. However, this type

of verification is not complete, and well-disciplined experts

are required to generate the control code.

On the other hand, most research efforts in academia have

focused only on analysis of control behaviors (mathematical

verification) [3,4,9,12] such as sequence deadlock problems.

Moreover, error handling and recovery for flexible manufac-

turing cell controllers have not been investigated rigorously.

One effort to investigate a modular design method with

error handling was limited to dedicated systems (e.g., transfer

lines) with a fixed product path, and cannot be directly

applied to more flexible systems [8]. In this paper, we

generalize that method and propose a new cell controller

design method applicable to flexible systems. In this new

This work was supported by NSF under grant EEC95-29125
S. Lee is with the Department of Mechanical Engineering, University of

Michigan, Ann Arbor, MI 48109-2125, USA seungjoo@umich.edu
D. M. Tilbury is with the Department of Mechanical Engineer-

ing, University of Michigan, Ann Arbor, MI 48109-2125, USA
tilbury@umich.com

design method, we divide the control functions into two

parts: resource allocation control and operation control. To

allow communication among two control parts and other

system components, we define the required interfaces and

develop operation blocks.

This paper is organized as follows. In Section II, we define

the flexible manufacturing cell. In Section III, we propose

its control framework and discuss the issues with current

industrial practice. In Section IV, we develop the modular

design method, including operation blocks, and show how

this new design method addresses the main problems found

in industrial control design. In Section V, we present a case

study where the method is applied. Finally, we conclude and

discuss future work.

II. DEFINITION OF A FLEXIBLE MANUFACTURING CELL

Consider an automated manufacturing system consisting

of several cells connected by inter-cell material handlers

that move parts from one cell to another. The system level

controller controls the inter-cell material handlers and starts

sequences of operations by communicating with the cell con-

trollers. We assume that each cell controller is independent of

the other cell controllers. A cell controller interacts only with

the system level controller when a part enters or exits the cell

through an entry or an exit buffer. Under this assumption, we

define a Flexible Manufacturing Cell (FMC) as follows:

Definition 1: [FMC] A flexible manufacturing cell

(FMC) consists of an independent cell controller and several

resources (R). This cell can move and process multiple

different parts simultaneously. Resources in the FMC can

be grouped into three categories: process machines (M1, M2,

· · ·, Mn), material handlers (H1, H2, · · ·, Hm), and internal

single capacity buffers (B1, B2, · · ·, B�).

In the FMC, operations can be performed sequentially

or concurrently to change the part closer to the final form.

Operations in the FMC are defined as follows:

Definition 2: [Operations] An operation (Oi) performed

in the FMC is any one of a process operation (OM
i ),

a material handling operation (OH
i ), or a communication

operation (OC
i ).

• A process operation (OM
i ) is performed by a process

machine (M ) to change the part closer to the final form;

it requires a process machine resource.

• A material handling operation (OH
i ) moves a part from

one location to another. In addition to the material

handling resource which performs the operation, two

more resources are required: the location that the part

leaves (RL(OH
i )) and the location that the part arrives

Proceedings of the
44th IEEE Conference on Decision and Control, and
the European Control Conference 2005
Seville, Spain, December 12-15, 2005

ThIC19.2

0-7803-9568-9/05/$20.00 ©2005 IEEE 8355



(RA(OH
i )). These two resources can be process ma-

chines (M ), internal buffers (B), or entry/exit buffers

(Bentry/Bexit). These two resources can be the same

(RL(OH
i ) = RA(OH

i )) when a material handling oper-

ation reorients a part and then puts it back.

• A communication operation (OC
i ) communicates with

the system level controller (SLC); it does not require

any resources.

A process or a material handling operation (OM or OH )

executes the corresponding job program in a process machine

(M ) or a material handling (H) controller. This job program

is written in the language of each piece of equipment (e.g.,

robot language or NC code). The operation start event signals

the job program to start, and the operation finish event is

generated when the job program completes sucessfully.

When a part enters the cell, the cell controller needs to

know which process operations are required in which order,

and what buffers the part will be stored in between process

operations. Recognizing that each buffer resource can only

hold one part, but that there may be several buffers located

near each other, we define a buffer group (BG) as a set of

internal buffers, such as a partitioned shelf or box that can

store multiple parts.

Definition 3: [A part flow path] A part flow path (Pi)

is a sequentially-ordered set consisting of process oper-

ations (OM ), buffer groups (BG), and entry/exit buffers

(Bentry/Bexit) that indicates how a part is processed in a

cell and when a part is stored in a buffer. This part flow path

starts with a specific entry buffer (Bentry
j ), passes through

process operations or buffer groups, and ends with a specific

exit buffer (Bexit
k ). In the middle of a path, only process

operations or buffer groups are allowed.

If two parts have the same part flow path, we say that they

belong to the same part group (P G).

III. CONTROL FRAMEWORK AND PROBLEM STATEMENTS

A. Control Framework

To make the complexity of the FMC controller manage-

able, we divide its important functions into two parts: the

resource allocation control and the operation control. The

resource allocation control allocates resources to requesting

operations, and then generates operation start events. To ac-

complish these tasks, the resource allocation control consists

of three different categories of rules: part acceptance rules,

operation starting rules, and conflict resolution rules. These

rules are sequentially executed by considering the current

resource states, safety interlock conditions, and sequences

of operations.

On the other hand, the operation control interacts with the

equipment controllers to execute operations, keeps track of

operational control states, and handles errors to resume the

production. Once an operation start event is generated by

the resource allocation control, the corresponding operation

starts the job program residing in an equipment controller. In

addition, the operation control manages operational states in

both auto and manual modes. Therefore, even during error

handling in manual mode, the operational states that are

changed by manual recovery steps can be traced. In this

paper, we discuss the operation control in detail.

B. Problems with Current Industrial Practice

Cell controllers developed in industrial practice have many

potential problems which are difficult to identify without

running the system. Among such control problems, five

important ones are listed as follows: part flow deadlocks,

repeated execution of on-going operations, non-recoverable

states, discrepancies between the control states and the

current plant states, and non-deterministic behaviors. These

undesirable control problems may result in errors, which

require unproductive downtime to debug the control code.

Therefore, the cell controller developed by the proposed

modular design method should avoid such control problems.

These problems are described in more detail below.

A part flow deadlock is a permanent blocking of a set

of operations, each of which competes for resources. This

part flow deadlock can occur when a resource is improperly

allocated to one of several simultaneously requesting opera-

tions. If no proper recovery action is taken, the system will

be blocked permanently. For complex routings, this part flow

deadlock cannot easily be detected by intuition.

A repeated execution of an on-going operation can occur

when a current working resource is preemptively allocated

to another operation by the cell controller.

A non-recoverable state is a state from which the control

cannot return to the initial state. Once the control reaches this

state, the controller cannot be initialized except by rebooting.

Discrepancies between the control states and the current

plant states can occur when the system is manually recovered

from an error, but its controller fails to trace the current state

correctly [11]. If such a discrepancy occurs; the next behavior

of the controller may be unpredictable.

Non-deterministic behaviors can occur when two or more

conflicting transition conditions are simultaneously satisfied.

In this case, it is unpredictable which transition is fired.

To address these problems, we propose a formal modular

control design method.

IV. PROPOSED SOLUTION

A. Interactions between controllers

Before discussing the control design method, we define

the interactions between the two parts of the cell controller

(resource allocation control and operation control) and the

system level controller. The interactions necessary to process

a part in a FMC are defined as follows:

Definition 4: [Interactions among the controllers] Nec-

essary interactions between the operation control and the

resource allocation control are as follows:

• The resource allocation control chooses the next opera-

tion while avoiding deadlocks and conflicts, and gener-

ates an operation start event. When the operation control

receives this start event, the corresponding operation in

the operation control starts the job program.

8356



• The resource allocation control monitors the operation

control states to update the resource states for resource

allocation-purposes (Busy, Idle, or Error).

Necessary interactions between the operation control and

the system level controller are as follows:

• Communication operations in the operation control gen-

erate events to inform the system level controller of the

necessary operational states: OC
1 for a part loaded into

the cell, OC
2 for exit buffer request, and OC

3 for the part

exited from the cell.

Finally, interactions between the resource allocation con-

trol and the system level controller are as follows:

• The resource allocation control can generate a part reject

event when the part cannot be processed in the cell.

When the system level controller receives this reject

event, the system level controller handles this rejected

part by either re-routing or scrapping it.

• The system level controller generates three events se-

quentially for each part: a part arrival event (SC
1 ), the

exit buffer availability event (SC
2 ), and a part leave event

(SC
3 ).

• The process information a part arriving in the cell (e.g.,

a part flow path) is sent together with the part arrival

event (SC
1 ) by the system level controller.

For a normal automatic sequence, these interactions are

illustrated by a UML activity diagram in Fig. 1. In the

normal automatic sequence, the events generated by the

system level controller and the operation control are ordered

as follows: SC
1 · · ·OC

1 · · ·OC
2 · · · SC

2 · · ·OC
3 SC

3 .

Resource Allocation
Control

System Level ControllerOperation Control

Part Arrival

Tracing operational
control states

Monitoring states and
generating operation

start events

Reject a part

Accept a part
Part loaded
into the cell O1

C

O2
C

O3
C

Exit buffer
available

S3
C

Request an
exit buffer

S2
C

S1
C

Part unloaded
out of the cell

The part leave from
the exit buffer

Operations

Operations

Loading
operation

Unloading
operation

Dispatching
the exit buffer

Fig. 1. An activity diagram of UML (Unified Modeling Languages) [2]
divided by three swimlanes: the operation control, the resource allocation
control, and the system level controller. This activity diagram shows a work
flow that is comprised of important activities during a normal automatic
sequence for a part. The communication operations (OC

1 , OC
2 , OC

3 ) generate
events to inform the system level controller of the states in the FMC. The
resource allocation control monitors operational states from the operation
control and generates operation start events. The system level controller
generates three events: a part arrival event (SC

1 ) with the process information

of a part, the exit buffer availability event (SC
2 ), and a part leave event (SC

3 ).
The resource allocation control can generate a part reject event to inform
the system level controller that this part cannot be processed in this cell

B. Operation Blocks

In addition to interacting with the system level controller,

the flexible manufacturing cell controller must interact with

equipment controllers and human operators. During manual

error handling, the FMC must keep track of its control

state. To illustrate such interactions, an activity diagram is

prepared for a process operation as shown in Fig. 2. This

diagram shows the interactions between a process operation

defined in the operation control and a process machine

equipment controller. When an operation start event signal is

generated, the current state is changed from the ‘IDLE’ state

to the ‘RUN’ state. While the corresponding job program

is running in the equipment controller, the current state in

the operation control remains in the ‘RUN’ state. If an error

occurs during this operation, the current state will be changed

to the ‘ERROR’ state. In the ‘ERROR’ state, the cause of

error is fixed by the operator through manual manipulation.

If the job program is finished without any error, the current

state will move to the ‘DONE’ state. After a part is taken out

of the process machine, this machine is available for other

operations, and the current state is changed from ‘DONE’ to

‘IDLE’. In addition, the ‘WAIT’ state (reachable only from

the ‘ERROR’ state) represents waiting for a material handler

to remove the part from the machine by performing the part

scrap operation. Until the part is removed from the machine,

this machine cannot be used for other operations.

In the ‘ERROR’ state, manual error recovery steps are

taken after the cause of error is fixed. In this paper, we restrict

the number of manual error recovery steps to three: Reset,

Scrap, and Retry. The operator pushes a button on the HMI

to select the appropriate event (‘reset’, ‘scrap’, or ‘retry’) so

that the control state is synchronized with the physical state.

The ‘reset’ event moves the control state from ‘ERROR’

to ‘IDLE’, indicating that the machine is now ready for other

operations. The ‘scrap’ event requests that the part should be

scrapped by a material handler. This event moves the control

state from ‘ERROR’ to ‘WAIT’, and the control state remains

in ‘WAIT’ until the part is removed from the machine by a

part scrap operation. The ‘retry’ event causes the job program

to be restarted (although if the true cause of the error has not

been fixed, it may stop again). In addition, the ‘error’ event

is generated when either the equipment controller or the cell

controller detects an error.

The control states and events in the interaction are influ-

enced by the control mode of the equipment devices. We

assume two control modes: auto mode and manual mode. In

the auto mode, a normal sequence is executed, while in the

manual mode, manual error recovery steps can be taken.

Based on the interactions in Fig. 2 and the control mode,

the basic process operation block is developed as in Fig. 3

and Table I. The process operation block is written in SFC
(Sequential Function Chart), one of the IEC61131-3 PLC
languages [5], and has four steps and eight transitions.

Table I shows the allowable events and conditions for each

control mode. The material handling operation block and the

communication operation block are defined similarly.

8357



Operation control in FMC controller Equipment controller for a process machine

<start an operation>

‘RUN’
Program
running

<error>

Program
stopped

‘DONE’ ‘ERROR’

<scrap> or <reset>

‘WAIT’

<scrap>

<reset>

‘IDLE’

Manual Error
Recovery

<program done> <error>

<manual mode>

<program done>

Program
finished

<part removal><part removal>

<retry> <retry>

<error>

Fig. 2. An activity diagram for a process operation divided by two
swimlanes: the operation control in the FMC controller and the equip-
ment controller. This diagram shows the interactions between the operation
control in FMC controller and a machine equipment controller during
a process operation. A process operation can have four states: ‘RUN’,
‘DONE’, ‘ERROR’, and ‘WAIT’. Three error recovery steps are allowed
and their corresponding events (‘reset’, ‘scrap’, and ‘retry’) are generated
by operators. The ‘reset’ event moves the control state from ‘ERROR’
to ‘IDLE’. The ‘scrap’ event moves the control state from ‘ERROR’ to
‘WAIT’, and the control state remains in ‘WAIT’ until the part is removed
from the machine by a part scrap operation. The ‘retry’ event causes the
job program to be restarted.

IDLE

RUNERROR

DONEWAIT

t1
t4t5

t2t6 t7

t8

A process
operation block

t3

Fig. 3. An ‘IDLE’ step and a process operation block written in SFC.

Because there are multiple transitions coming out of some

places, conflicting transitions can exist in an operation block.

When two or more firing conditions of conflicting transitions

are satisfied simultaneously, it is not clear which one should

be fired. To avoid such non-deterministic behaviors in the

operation blocks, we define event priorities as follows:

Assumption 1 (Event priority): The error event has prior-

ity over the operation finish event in the ‘RUN’ step. The

manual error recovery events are priority ordered as: ‘reset’

> ‘retry’ > ‘scrap’. Therefore, in every control execution

cycle, only one transition can be fired even if two or more

transition conditions are satisfied simultaneously.

Safety interlock conditions protect parts, resources, and/or

human operators, but sometimes they are too restrictive and

may generate unnecessary blocking situations [11]. In this

paper, we assume that no safety interlock conditions cause

blocking.

Assumption 2 (Safety Interlock Conditions): We assume

that the safety interlock conditions protecting parts, re-

sources, and human operators from damage are proper and

do not cause unnecessary blocking situations.

When operational states in a basic operation block need

TABLE I

TRANSITIONS AND STEPS OF A PROCESS OPERATION BLOCK (SIn:

SAFETY INTERLOCK n)

Trans. Auto Mode Manual Mode
t1 operation start ↑
t2 operation finish ↑ operation finish ↑
t3 part removal ↑ ∧ SI1 part removal ↑ ∧ SI1
t4 error ↑ ∨ timer out ↑ error ↑
t5 retry ↑ ∧ SI2
t6 reset ↑ ∧ SI1
t7 scrap ↑ ∧ SI3
t8 part removal ↑ ∧ SI1 part removal ↑ ∧ SI1

Steps Description Actions
IDLE Idle State ‘IDLE’ state on
RUN Program Run Send the program number

‘RUN’ state on
DONE Program Finished ‘DONE’ state on
ERROR Error State ‘ERROR’ state on
WAIT An error recovery operation ‘WAIT’ state on

to be further refined, the following restrictions should be

imposed to preserve the control properties, as explained in

section IV-C.

Restriction 1 (Restrictions on the refinement): An opera-

tion block can be refined as long as the following restrictions

are satisfied.

1) Every transition should have a single input step and a

single output step (finite state machine).

2) When a refined operation block is connected to the

‘IDLE’ state, there should exist at least one path from

every step in the block to the ‘IDLE’ state.

Well-developed refined operation blocks can be stored in

the library of control design tools and be reused for other

applications. Using basic or refined blocks and part flow

paths, we can automatically generate the operation control by

applying a simple algorithm to instantiate and group related

operation blocks. Finally, by combining the operation control

with the resource allocation control, we can complete the

development of a cell controller for FMC.

C. Proof of control behaviors

In this section, we investigate the behaviors of the cell

controller developed by the proposed method. In the opera-

tion control, the operation blocks were described by SFC
(the sequential function chart). However, since SFC is not

a formal language, it does not allow direct mathematical

analysis. For analysis purposes, the operation blocks in SFC
need to be converted into a formal language such as Petri

nets [1]. SFC was developed from Petri nets and is very

similar in terms of its appearance and dynamic evolution

rules. The mathematical properties of Petri nets can be used

to verify and analyze the behaviors of discrete event dynamic

systems, and are used here to verify the behaviors of the

proposed FMC controller.

For Petri net models of controllers, three important be-

haviors are typically considered: liveness, safeness, and re-

versibility. The physical meaning of these control behaviors

can be phrased as follows [1]:

8358



• Liveness means the absence of deadlocks. This guaran-

tees that all transitions can eventually be fired.

• Safeness guarantees that there is no attempt to request

the execution of any on-going operation.

• Reversibility characterizes the recoverability to the ini-

tial state from any state of the system.

The operation control part of the FMC controller is built

from operation groups. Each material handler or process

machine resource in the cell has an associated operation

group that includes the operation blocks for all of the

operations that the resource can perform. An initial step

(‘IDLE’) has an outgoing transition to the run state of each

operation block; transitions from the operation blocks back

to IDLE are as shown in Fig. 3.

To study the behavior of the operation controller, we

convert the SFC operation groups to Petri net models. Al-

though the explicit transition conditions cannot be included

in the Petri net, they will be considered later. The following

proposition shows that each operation group is a strongly

connected finite state machine as defined in [1].

Proposition 4.1: The converted Petri net model of each

operation group is structurally a strongly connected finite

state machine.

Proof: Each operation block converted into a Petri net is a

finite state machine since each transition has one input place

and one output place (by definition of finite state machine).

In addition, from any place in the converted model, there

exists a transition firing sequence returning to the initial place

(‘IDLE’). Therefore, the converted model for each operation

group is strongly connected. �
Since a Petri net model for an operation group is a finite

state machine and starts with a single token in the initial

state (‘IDLE’), only one place can hold a token at a time

in the group. In addition, each operation group satisfies the

following behavioral properties.

Proposition 4.2: Each group is live, safe, and reversible if

the resource allocation control behaves correctly as follows:

• Do not attempt the execution of an on-going operation.

• Do not allow the preemption of a resource (A resource

in use remains in use.).

• Avoid part flow deadlocks in sequences of operations.

Proof: Suppose the resource allocation control behaves as

mentioned. The safeness of each group of operation blocks

is guaranteed by the first two behaviors and Proposition 4.1.

Any operation in the sequence can start eventually since the

resource allocation control doesn’t cause any part flow dead-

lock in sequences of operations. Once an operation starts, this

operation is exclusively controlled by operation blocks in the

operation control. By assumptions 1 and 2, all the events

in an operation block are asynchronously triggered, and

no safety interlock conditions cause unnecessary blocking

situations. From these two assumptions and proposition 4.1,

all transitions can be eventually fired, therefore each group is

live. By proposition 4.1, the liveness property is equivalent

to the reversibility property [8]. �
Based on these two propositions, the following theorem

can be derived for the control behaviors of the FMC

Fig. 4. The Reconfigurable Factory Testbed at the University of Michigan
includes two flexible manufacturing cells and a conveyor for inter-cell
material handling [7].

controller.

Theorem 4.3: The flexible manufacturing cell (FMC)

controller is live, safe, and reversible if and only if the

resource allocation control behaves as in Proposition 4.2.

Proof: (only if) Suppose the flexible manufacturing cell

controller is live, safe, and reversible. It is clear that any

violation of the behaviors in Proposition 4.2 leads to the

contradiction of this supposition. (if) Each group of operation

blocks is live, safe, and reversible by Proposition 4.2. Since

each group is safe, the FMC controller is safe. In auto mode,

interactions with other groups can occur only through the

resource allocation control. While an operation in a group

is being performed in auto mode, this group is independent

of others until the operation is finished. In manual mode,

the operation block may interact with other groups only

through safety interlock conditions. By assumption 2, there is

no blocking situation caused by safety interlock conditions.

Therefore, the FMC controller is live. Also, there’s at least

one transition firing sequence by which each group can return

to its initial place (‘IDLE’) because each group is reversible

and live. Therefore, the FMC controller is safe, live, and

reversible. �
V. CASE STUDY

To validate the proposed control design method, a flexible

manufacturing cell controller was developed for one of cells

in the reconfigurable manufacturing test-bed in the University

of Michigan, see Figure 4. Each cell is comprised of two 3-

axis CNC horizontal milling machines and a 6-axis robot

with a gripper. The cell has a PC-based Siemens PLC and

is networked over Profibus. The cell controller not only

communicates with an in-house system level controller to

exchange events and part information, but also communicates

with a Web HMI over OPC standard. Since the automatic

program generation software has not been fully developed

yet, some control design steps were manually taken.

In an example production scenario, two part flow paths

were specified to produce two different part groups: one

part flow path was BentryOM
1 Bexit, and the other was

8359



BentryOM
2 Bexit. Two part scrap operations were specified

by OH
5 and OH

6 to remove damaged parts from the machines

to a trash can. Both CNC machines (M1 and M2) could

perform both operations OM
1 and OM

2 .

The resource allocation control was somewhat trivial in

this case because neither the production scenario nor the

cell were complex. A newly arrived part was rejected when

both machines were out of service or when the robot was

out of service. If a part arrived at the entry buffer while

both machines were working, this newly arrived part was

also rejected because there was no location holding the part

temporarily. When both CNC machines were idle, the least-

recently-used machine was chosen.

Three operation groups were created for the two CNC
machines and the robot. The group of operation blocks for

the robot is shown in Fig. 5. This robot could perform six

different operations: two loading operations (OH
1 , OH

3 ), two

unloading operations (OH
2 , OH

4 ), and two part scrapping

operations (OH
5 , OH

6 ). For each operation, a refined operation

block was developed and used. In addition, two communica-

tion operations (OC
1 and OC

3 ) were inserted after loading or

unloading operations by following the interactions explained

in Section IV-A.

IDLE

STATE 1ERROR

STATE 2

STATE 3

STATE 1 ERROR

STATE 2

STATE 3

STATE 1ERROR

STATE 2

STATE 3

STATE 1 ERROR

STATE 2

STATE 3

STATE 1ERROR

STATE 2

STATE 3

STATE 1 ERROR

STATE 2

STATE 3

C1ERROR C3 ERRORC1ERROR C
3

ERROR

Loading operation to M
1

Loading operation to M
2

Unloading operation to M
1

Unloading operation to M
2

Error recovery operation for M
2

Error recovery operation to M
1

Fig. 5. The robot (H1) operation group. This robot can perform six
different operations for loading, unloading, and error recovery. The com-
munication operation OC

1 immediately follows a loading operation (OH
1

or OH
3 ), and the communication operation OC

3 immediately follows an

unloading operation (OH
2 or OH

4 ). Two part scrapping operations (OH
5 and

OH
6 ) removed damaged parts from the CNC machines to a trash can.

The operation groups for two CNC machine resources

were similarly made. Each operation group consists of two

process (machining) operation blocks (OM
1 and OM

2 ), with

a communication block (OC
2 ) after each process operation

block.

VI. CONCLUSION AND FUTURE WORK

The main contribution of this paper was to propose a new

modular control design method for a flexible manufacturing

cell, and to guarantee the correctness of the control under

some assumptions. In this new design method, modular op-

eration blocks integrated with error handling were developed.

We proved that the resulting FMC controller is live, safe,

and reversible if and only if the resource allocation control

does not have part flow deadlocks, repeated execution of

on-going operations, or preemption. The proposed design

method was applied to develop the FMC controller of a

test cell.

As our future work, we will extend this design method

to cover more complex resource allocation control and to

include the integrated HMI control and RFID for part

tracking. In addition, we will develop a design and verifi-

cation method for the safety interlock conditions. Finally,

we will propose an automated error recovery framework

interacting with human operators.

REFERENCES

[1] A. A. Desrochers and R. Y. Al-Jaar. Applications of Petri Nets
in Manufacturing Systems : Modeling, Control, and Performance
Analysis. IEEE Press, 1995.

[2] M. Fowler and K. Scott. UML Distrilled. Addison-Wesley, 2000.
[3] M. D. Jeng and F. Dicesare. Synthesis using resource control nets for

modeling shared-resource systems. IEEE Transactions on Robotics
and Automation, 11(3):317–327, 1995.

[4] F. L. Lewis, A. Gurel, S. Bogdan, A. Doganalp, and O. Pastravanu.
Analysis of deadlock and circular waits using matrix model for flexible
manufacturing systems. Automatica, 34(9):1083–1100, 1998.

[5] R. W. Lewis. Programming Industrial Control System using IEC1131-
3. IEE Publication, 1995.

[6] M. R. Lucas and D. M. Tilbury. A study of current logic design
practices in the automotive manufacturing industry. International
Journal of Human-Computer Studies, 59(5):725–753, 2003.

[7] J. Moyne, J. Korsakas, and D. M. Tilbury. Reconfigurable factory
testbed (RFT): A distributed testbed for reconfigurable manufacturing
systems. In Proceedings of the Japan–U.S.A. Symposium on Flexible
Automation, Denver, CO, July 2004. American Society of Mechanical
Engineers (ASME).

[8] E. Park, D. M. Tilbury, and P. P. Khargonekar. A modeling and analysis
methodology for modular logic controller of machining systems using
Petri net formalism. IEEE Transactions on Systems, Man, and
Cybernetics, 31(2):168–188, 2001.

[9] J. Park and S. A. Reveliotis. Deadlock avoidance in sequential resource
allocation systems with multiple resource acquisition and flexible
routings. IEEE Transactions on Automatic Control, 46(10):1572–1583,
2001.

[10] J. Richardsson. A survey of tools and methods for design of automated
production plants. In Proceedings of the 33rd International Symposium
on Robotics, 2002.

[11] J. Richardsson, K. Danielsson, and M. Fabian. Design of control
programs for efficient handling of errors in flexible manufacturing
cells. In Proceedings of the 2004 IEEE International Conference on
Robotics and Automation, pages 2273 – 2278, 2004.

[12] M. C. Zhou, F. Dicesare, and A. A. Desrochers. A hybrid methodology
for synthesis of Petri net models for manufacturing systems. IEEE
Transactions on Robotics and Automation, 8(3):350–361, 1992.

8360


	MAIN MENU
	PREVIOUS MENU
	---------------------------------
	Search CD-ROM
	Search Results
	Print


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (None)
  /CalCMYKProfile (None)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveEPSInfo false
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 2.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 2.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
    /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice




