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Abstract— This paper addresses the problem of the squaring
down of LTI systems with the tools of the geometric control
theory. More precisely, it is shown how a generic system can
be turned into a square and invertible system by means of a
state-feedback and an output-injection, and of two static units
cascaded at the input and at the output of the given system. In
this way, key system properties like phase-minimality, relative
degree and infinite zero structure are preserved after the
squaring down, and the additional invariant zeros introduced
can be arbitrarily assigned in the complex plane.

I. INTRODUCTION

It is a very well-known fact that several design and
synthesis procedures in control theory require that the system
or process has an equal number of inputs and outputs and its
transfer function matrix is invertible, [7]. Hence, the squaring
down problem, consisting of a procedure to turn the system
with an unequal number of inputs and outputs into a square
and invertible system, has always received a great deal of
attention.
The first papers that appeared in the literature on this issue
presented a very simple technique for the squaring down,
which was based on the introduction of two static units
at the input and at the output of the given system, so
that the overall system was square and invertible, [8]. It
was then noticed, however, that these solutions, led to the
inevitable introduction of non assignable additional invariant
zeros in the resulting system, [6]. Hence, in the case when
any of these new invariant zeros was non minimum-phase,
the performance of the closed-loop behaviour was heavily
affected.
For this reason, in more recent literature, new solutions
based on dynamic compensators cascaded at the input and
at the output of the given system have been introduced,
with the purpose of ensuring the phase-minimality of the
resulting system if the original system was such, [2], [10],
[9], [11], [5]. In particular, in [10], [9], the design procedure
was carried out for strictly and non strictly proper systems,
respectively, by the exploitation of the so-called special
coordinate basis for the representation of the plant. In this
way, it was proven that these compensators enabled the
introduction of additional non minimum phase zeros to be
avoided. In the last decade, alternative solutions relying on
the use of dynamic pre and post-compensators, have been
proposed, all characterized by the property of preserving the
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phase-minimality of the plant, but presenting different kinds
of advantages, see e.g., [7] [11], [5], and references therein.
The procedure proposed in this paper provides a geometric
solution to this problem, which is based on the introduction
of static compensators at the input and at the output of
the given system, working jointly with an algebraic state-
feedback and output-injection units, whose purpose is that of
arbitrarily assigning all the additional invariant zeros intro-
duced in the squared-down system. As a result, the compen-
sation scheme herein proposed preserves the simplicity of the
static compensators, but avoids the introduction of possibly
non minimum-phase zeros. First, the design of a left-inverter
will be presented, based on a static pre-compensator and
an algebraic state-feedback term such that the system thus
obtained is left-invertible and the additional invariant zeros
are all assignable in the complex plane; moreover, if the
given system is right-invertible, so is the resulting system,
and the relative degree does not change after the squaring
down: hence, the functional controllability properties of
the original system are preserved. Furthermore, the infinite
zero structure is also preserved. Clearly, a straightforward
dualization of the aforementioned procedure yields a right-
inverter which is based on a static post-compensator and
an algebraic output-injection, thus preserving the functional
observability of the plant and the additional invariant zeros
of the resulting system can be arbitrarily assigned in the
complex plane.
The advantages of the proposed approach are manifold.
On the one hand, the geometric setting herein employed is
coordinate-free in nature, and leads to intuitive results with-
out the need of resorting to changes of basis which, as shown
in [5], are not computationally robust. On the other side,
this method yields a new insight into the geometric structure
of LTI systems, generalizing the properties presented in [3]
for non strictly proper systems. As a consequence, several
ancillary results of independent interest on the geometric
structure of LTI systems will be derived. Furthermore, the
possibility of deriving separately a left and a right-inverter
furnishes useful tools in many optimization problems. For
instance, the infinite-horizon LQ problem will be investigated
in the discrete-time case: when the underlying system is
non left-invertible, the discrete algebraic Riccati equation
does not admit a stabilizing solution. On the other hand,
by performing the left-inversion of the system by means of
the procedure herein described, a new system is obtained
such that the discrete ARE has a stabilizing solution, which
yields the set of all optimal feedback gains parametrized in
terms of the eigenvalues that can be assigned in the output-
nulling reachability subspace. Furthermore, this method also
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provides a non-iterative algorithm for the solution of the
generalized discrete ARE.

Notation. Throughout this paper, we denote by N the positive
integers including zero, and by N∗ the strictly positive
integers. The symbol 0n denotes the origin of the vector
space R

n. The image and the kernel of matrix A∈R
n×m

are denoted by imA and ker A. Given a subspace Y of
Rn, the symbol A−1 Y stands for the inverse image of Y
with respect to the linear map A, while Y ⊥ represents the
orthogonal complement of Y . Denote by A� and by A‡

the transpose and the Moore-Penrose pseudo-inverse of A,
respectively. The symbol σ(A) denotes the spectrum of A.
The restriction of a linear map A to the A-invariant subspace
J is written A|J ; the eigenvalues of A restricted to J
are denoted by σ (A)|J . If J1 and J2 are A-invariant
subspaces and J1 ⊆J2, the mapping induced by A on the
quotient space J2/J1 is denoted by A|J2/J1

.

II. PROBLEM STATEMENT

Consider a LTI continuous-time system Σ described by

ẋ(t) = Ax(t)+ Bu(t),

y(t) = C x(t)+ Du(t),
(1)

where, for all t≥0, x(t)∈Rn is the state, u(t)∈Rm is the
control input, y(t)∈R

p is the output, A, B, C and D are real
constant matrices of suitable sizes. With no loss of generality
it is assumed that

[
B� D�

]�
has linearly independent

columns and
[

C D
]

has linearly independent rows. We
concisely identify Σ with the quadruple (A,B,C,D).

The aim of this paper is that of presenting a design procedure
based on geometric techniques for the squaring down of
the given system Σ, i.e., a transformation involving Σ, so
as to obtain a new system Σsq having the same number of
inputs and outputs and such that its transfer function matrix
is invertible over the set of rational matrices.

III. GEOMETRIC PRELIMINARIES

For the readers’ convenience, in this section some fun-
damental definitions and results of the geometric approach
which will be used in the sequel are recalled (for a detailed
discussion on the topics herein introduced we refer to [4],
[12], [13]). First, we define an output-nulling subspace VΣ
of Σ as a subspace of Rn satisfying[

A
C

]
VΣ ⊆ (VΣ ×0p)+ im

[
B
D

]
. (2)

The set of output-nulling subspaces of Σ is closed with
respect to subspace addition. Thus, the sum of all the output-
nulling subspaces of Σ is the largest output-nulling subspace
of Σ, and will be herein denoted by V ∗

Σ . Clearly, in the
case when D is zero, V ∗

Σ coincides with the maximal (A,B)-
controlled invariant subspace contained in the null-space of
matrix C, [4]. In the following lemmas, the most important
properties of the output-nulling subspaces are presented.

Lemma 1: The subspace VΣ is output-nulling for Σ iff a
matrix F ∈Rm×n exists such that

(A+BF)VΣ ⊆ VΣ,
VΣ ⊆ ker (C+DF).

(3)

Moreover, the subspace V ∗
Σ is the largest subspace for which

a matrix F ∈Rm×n exists such that (3) hold.
Lemma 2: The sequence of subspaces (V i

Σ )i∈N described
by the recurrence

V 0
Σ = Rn,

V i
Σ =

[
A
C

]−1(
(V i−1

Σ ×0p)+ im

[
B
D

])
, i ∈ N∗ (4)

is monotonically non-increasing. Moreover, there exists
k≤n−1 such that V k+1

Σ =V k
Σ . For this k there holds

V ∗
Σ =V k

Σ .
A matrix F satisfying (3) is generally referred to as a friend
of VΣ. The dual concept is the input-containing subspace: a
subspace SΣ is said to be input-containing if it satisfies[

A B
] (

(SΣ ×R
m)∩ ker

[
C D

])
⊆ SΣ. (5)

The set of all input-containing subspaces of Σ is a closed with
respect to the subspace intersection. Thus, the intersection
of all input-containing subspaces of Σ is the smallest input-
containing subspace of Σ, and will be denoted by S ∗

Σ .
Lemma 3: The subspace SΣ is input-containing for Σ iff

a matrix G∈Rn× p exists such that

(A+GC)SΣ ⊆ SΣ,
SΣ ⊇ im(B+GD).

(6)

Moreover, the subspace S ∗
Σ is the smallest subspace for

which a matrix G∈Rn× p exists such that (6) hold.
Lemma 4: The sequence of subspaces (S i

Σ)i∈N described
by the recurrence

S 0
Σ = 0n

S i
Σ =

[
A B

](
(S i−1

Σ ×Rm)∩ker
[

C D
])

, i ∈ N∗ (7)

is monotonically non-decreasing. Moreover, there exists
k≤n−1 such that S k+1

Σ =S k
Σ . For this k there holds

S ∗
Σ =S k

Σ .
Let F ∈R

m×n be a friend of the output-nulling subspace
VΣ. The output-nulling reachability subspace RΣ on VΣ is
the smallest (A+BF)-invariant subspace of Rn containing
VΣ∩Bker D. We denote by R∗

Σ the output-nulling reachabil-
ity subspace on V ∗

Σ . The following relation holds:

R∗
Σ = V ∗

Σ ∩S ∗
Σ . (8)

A proof of this fact for systems with direct feedthrough
can be found in [12], Theorem 8.22. The subspace R∗

Σ can
be thought as the locus of all the initial states that are
reachable in finite time from the origin while mantaining
the corresponding output equal to zero.
It is a well-known and easily established fact that, for any
friend F of V ∗

Σ , F is also a friend of R∗
Σ. Given a friend

F of V ∗
Σ , the eigenvalues of (A + BF) restricted to V ∗

Σ , i.e.
σ(A + BF)|V ∗

Σ
, are split into two sets: the eigenvalues of
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(A+BF)|R∗
Σ

are all freely assignable by a suitable choice of
the friend F of V ∗

Σ . The eigenvalues of (A + BF)|V ∗
Σ /R∗

Σ
do

not depend on the choice of the friend F of V ∗
Σ . Its elements

are the invariant zeros of Σ, [1]. In symbols

Z (Σ) = σ(A + BF)|V ∗
Σ /R∗

Σ
.

Given a friend G of S ∗
Σ , the eigenvalues of (A +

GC)|Rn/V ∗
Σ +S ∗

Σ
are all freely assignable by a suitable choice

of G, while the eigenvalues of (A+GC)|V ∗
Σ +S ∗

Σ /S ∗
Σ

are fixed,
and are the invariant zeros of Σ.

Definition 1: The system Σ is said to be left-invertible if
the matrix

[
B� D�

]�
is monic and V ∗

Σ ∩S ∗
Σ =0n.

Stated differently, we may say that Σ is left-invertible if
no pair of distinct input functions give rise to the same
output function with zero initial condition. The following
theorem provides necessary and sufficient conditions for left-
invertibility.

Lemma 5: System Σ is left-invertible iff any of the fol-
lowing statements hold true:

1) the map
[

B� D�
]�

is monic and V ∗
Σ ∩BkerD = 0n;

2) the map
[

B� D�
]�

is monic and B−1V ∗
Σ ∩kerD= 0m.

Definition 2: The system Σ is said to be right-invertible if
the matrix

[
C D

]
is epic and V ∗

Σ +S ∗
Σ =Rn.

Stated differently, we may say that Σ is right-invertible
if for any arbitrarily assigned impulsive-smooth output, an
impulsive-smooth input exists which yields that output with
zero initial condition.

Lemma 6: System Σ is right-invertible iff any of the
following statements hold true:

1) the map
[

C D
]

is epic and S ∗
Σ +C−1 imD = R

n;
2) the map

[
C D

]
is epic and CS ∗

Σ + imD = Rp.
Consider the sequence (S i

Σ)i∈N described by (7). We define
the relative degree of the right-invertible system Σ as the
least integer k ∈ N such that V ∗

Σ +S k+1 =Rn. Finally, let
νi := dim(V ∗

Σ +S i)−dim(V ∗
Σ +S i−1), for i ∈ N. Let ρi :=

card{ j ∈ N |ν j ≥ i}. The ρi are the orders of the zeros at
infinity of Σ, see [1, Theorem 4].

IV. DESIGN OF A LEFT-INVERTER

Consider a non left-invertible system Σ. The first step in
the construction of a squaring down procedure consists of a
transformation on Σ, involving an algebraic state-feedback
and an input static unit, so that the system thus obtained,
say Σ̂, is left-invertible, see Fig. 1. By performing a

Σ

Σ̂
x(t)

y(t)u(t)

F

Us
++

Fig. 1. Block diagram of a left-inverter

state-feedback with a friend F of V ∗
Σ assigning arbitrarily

all the eigenvalues of (A + BF)|R∗
Σ
, and by eliminating all

the input functions yielding motions on R∗
Σ, we obtain a

new system Σ̂ whose output-nulling reachable subspace
R∗

Σ̂
is the origin, and its invariant zeros are those of the

original system, plus those assigned through F . It follows in
particular that if Σ is minimum-phase, the modified system
Σ̂ remains such with a suitable choice of F .

These results are presented and proved in the following
theorem.

Theorem 1: Let F be a friend of V ∗
Σ . Let Us be a basis

matrix of the subspace Us :=(B−1 V ∗
Σ ∩ker D)⊥, whose di-

mension is denoted by s. Consider the quadruple Σ̂ :=(A +
BF,BUs,C + DF,DUs). The following results hold:

1) V ∗
Σ =V ∗

Σ̂
;

2) Σ̂ is left-invertible;
3) Z (Σ̂)=Z (Σ)
σ(A + BF)|R∗

Σ
.

Proof: First, we denote by ΣF the quadruple
(A+BF,B,C+DF,D). A straightforward computation
show that an output-nulling subspace of Σ is also output-
nulling for ΣF (and viceversa), i.e., V ∗

Σ =V ∗
ΣF

, [12, p.169].
Now, we prove that any output-nulling subspace VΣF of ΣF

is output-nulling for Σ̂ and viceversa. We start by proving
the following two identities:

V ∗
ΣF

+ imB = V ∗
ΣF

+ imBUs, (9)

imD= imDUs. (10)

Apply the linear map B to both sides of the trivial identity
Rm =(B−1 V ∗

Σ ∩ker D)⊕Us to obtain

imB = (V ∗
Σ ∩Bker D)+ imBUs

= (V ∗
ΣF

∩Bker D)+ imBUs

By adding VΣF to both sides of the former, we get (9), since
VΣF ⊇R∗

ΣF
⊇V ∗

ΣF
∩Bker D. In order to prove (10), note that

imDUs = imD
(
(B−1V ∗

Σ )⊥ +(ker D)⊥
)

= imD(B−1V ∗
Σ )⊥ + imDD� = imD.

Equations (9) and (10) yield the identity

(VΣF ×0p)+ im

[
B
D

]
= (VΣF ×0p)+ im(

[
B
D

]
Us),

which leads to the following inclusion:[
A + BF
C + DF

]
VΣF ⊆ (VΣF ×0p)+ im(

[
B
D

]
Us).

Hence, any output-nulling subspace of ΣF is output-nulling
for Σ̂, as well. Conversely, if VΣ is output-nulling for Σ̂, it
follows that it is output-nulling for ΣF . In fact, in general

im(

[
B
D

]
Us) ⊆ im

[
B
D

]
.

We may therefore conclude that any output-nulling subspace
of Σ is also output-nulling of Σ̂. As a result, V ∗

Σ =V ∗
Σ̂

.

Now, by taking Lemma 5 into account, we show that Σ̂ is
left-invertible by proving that (BUs)

−1 V ∗
Σ̂
∩ker(DUs)=0s.

Let ω ∈(BUs)
−1 V ∗

Σ̂
∩ker(DUs). Thus, BUs ω ∈V ∗

Σ̂
and DUs ω =0p. Define ω̃ :=Us ω . The former yields
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ω̃ ∈B−1 V ∗
Σ̂
∩ker D=U ⊥

s , since V ∗
Σ =V ∗

Σ̂
. However, by

definition ω̃ lies in the range of Us, hence it belongs
to (B−1 V ∗

Σ ∩kerD)⊥. It follows that ω̃ =0m. From the
injectivity of Us, we may conclude that ω =0s. As a result,
Σ̂ is left-invertible.
Finally, by definition of invariant zeros there holds
Z (Σ̂)=σ(A + BF)|V ∗

Σ̂
/R∗

Σ̂
, which equals σ(A + BF)|V ∗

Σ̂
since Σ̂ is left-invertible. However, since V ∗

Σ =V ∗
Σ̂

, we get

Z (Σ̂) = σ(A + BF)|V ∗
Σ /R∗

Σ

σ(A + BF)|R∗

Σ

= Z (Σ)
σ(A + BF)|R∗
Σ
.

The transformation described in Theorem 1 enjoys an-
other important property: it does not reduce the functional
controllability properties of the original system, i.e., if Σ is
right-invertible, so is the resulting system Σ̂ (and viceversa).
Even more is true: the subspace V ∗

Σ +S ∗
Σ is invariant under

the transformation presented in Theorem 1. As already
noted, this subspace is dual to R∗

Σ =V ∗
Σ ∩S ∗

Σ . This result
is presented and proved in the following proposition.

Proposition 1: Let F be a friend of V ∗
Σ . Let Us be a basis

matrix of the subspace Us :=(B−1 V ∗
Σ ∩ker D)⊥, whose di-

mension is denoted by s. Consider the sequence of subspaces
(S i

Σ)i∈N. The following equality holds

V ∗
Σ +S i

Σ =V ∗
Σ̂ +S i

Σ̂, i ∈ N.

Hence, in particular, Σ is right-invertible iff Σ̂ is such. If this
is the case, the relative degree of Σ̂ and that of Σ are equal.
Moreover, Σ̂ and Σ have the same zero structure at infinity.
Proof: Denote by Σ̄ the quadruple (A,BUs,C,DUs). We
prove that V ∗

Σ +S i
Σ =V ∗

Σ̄ +S i
Σ̄ . To this aim, consider the

two sequences of subspaces (V i
Σ )i∈N and (V i

Σ̄ )i∈N described
in (4), which respectively converge to V ∗

Σ and V ∗
Σ̄ in at most

n−1 steps. We first verify by induction that for any i∈N we
have V i

Σ =V i
Σ̄ . This fact is clearly true when i=0. Let us now

suppose that it holds for a given i−1, i.e., V i−1
Σ =V i−1

Σ̄ , and
let us prove the same fact for i, i.e., V i

Σ =V i
Σ̄ . The following

inclusion, that will be useful in the sequel, holds:[
B
D

]
U ⊥

s ⊆ (V ∗
Σ ∩Bker D)×0p ⊆ V i−1

Σ ×0p. (11)

In fact, since sequence (4) is monotonically non-increasing,
V i−1

Σ ⊇V ∗
Σ ⊇V ∗

Σ ∩Bker D. Now, from (4) we find

V i
Σ =

[
A
C

]−1(
(V i−1

Σ ×0p)+ im

[
B
D

]
(U ⊥

s ⊕Us)
)

=

[
A
C

]−1(
(V i−1

Σ̄ ×0p)+

[
B
D

]
Us

)
where the last equality is a consequence of (11).
Hence, indeed V i

Σ =V i
Σ̄ . Now, we prove by induction

that for any i∈N, S i
Σ ⊇S i

Σ̄ . Clearly, S 0
Σ =S 0

Σ̄ . Let
us suppose that S i−1

Σ ⊇S i−1
Σ̄ for a given i, and let

us prove that S i
Σ ⊇S i

Σ̄ . Let ξ ∈S i
Σ̄ . By (5), it fol-

lows that ξ1∈S i−1
Σ̄ ⊆S i−1

Σ and ξ2∈Rs exist such that
C ξ1 +DUs ξ2 =0p and Aξ1 +BUs ξ2 =ξ . Define ξ ′

2 :=Us ξ2.

It follows that ξ1∈S i−1
Σ , C ξ1 +Dξ ′

2 =0, and Aξ1+Bξ ′
2 =ξ .

The latter three relations imply that ξ ∈S i
Σ . Hence, we have

shown that for any i∈N we have S i
Σ ⊇S i

Σ̄ and V i
Σ =V i

Σ̄ .
A direct consequence of this result is that for any i∈N,
V i

Σ +S i
Σ ⊇V i

Σ̄ +S i
Σ̄ . In order to show that the converse in-

clusion is true, i.e., that V i
Σ +S i

Σ ⊆V i
Σ̄ +S i

Σ̄ , we proceed by
induction again. The inclusion holds for i=0. Let us suppose
that V i−1

Σ +S i−1
Σ ⊆V i−1

Σ̄ +S i−1
Σ̄ for some defined i, and

let us prove that V i
Σ +S i

Σ ⊆V i
Σ̄ +S i

Σ̄ . Consider an arbitrary
ξ ∈V i

Σ +S i
Σ . It follows that ξ1∈S i−1

Σ , ξ2∈Rm and ξ3∈V i
Σ

exist such that C ξ1 +Dξ2 =0p and Aξ1 +Bξ2 +ξ3 =ξ . Two
vectors ξ ′

2∈Us and ξ ′′
2 ∈U ⊥

s exist such that ξ2 =ξ ′
2 +ξ ′′

2 .
Hence, Bξ ′′

2 ∈V ∗
Σ and Dξ ′′

2 =0p. By linearity there holds

ξ =
[

A B
][

ξ1

ξ ′
2 + ξ ′′

2

]
+ ξ3 =

[
A B

][
ξ1

ξ ′
2

]
+ ξ̃ + ξ3,

where ξ̃ :=
[

A B
][

0n

ξ ′′
2

]
. On the other hand,

as already observed, Dξ ′′
2 =0p. It follows that

C ξ1 +Dξ2 =C ξ1 +Dξ ′
2 =0p. Moreover, since ξ ′

2∈Us,
a vector ξ̄2∈Rs exists such that ξ ′

2 =Us ξ̄2. Hence
C ξ1 +DUs ξ̄2 =0p and, since S i−1

Σ =S i−1
Σ̄ , we find[

ξ1

ξ̄2

]
∈ (S i−1

Σ̄ ×R
s)∩ ker

[
C DUs

]
.

Finally, ξ ∗ := ξ̃ +ξ3 =Bξ ′′
2 +ξ3∈V ∗

Σ +V i
Σ =V i

Σ . We
have shown that ξ1∈S i−1

Σ̄ , ξ̄2∈Rs and ξ3∈V i
Σ̄ exist

such that Aξ1 +BUs ξ̄2 +ξ3 =ξ and C ξ1 +DUs ξ̄2 =0p.
This implies that ξ ∈V i

Σ̄ +S i
Σ̄ . Hence, we have indeed

V ∗
Σ +S ∗

Σ =V ∗
Σ̄ +S ∗

Σ̄ . Since V ∗
Σ and S ∗

Σ are invariant
under state feedback, [12, p.169, p.183], it follows that
V ∗

Σ +S ∗
Σ =V ∗

ΣF
+S ∗

ΣF
, where ΣF is defined as in the proof

of Theorem 1. Hence, the procedure outlined above can be
applied to ΣF , yielding V ∗

Σ +S ∗
Σ =V ∗

ΣF
+S ∗

ΣF
=V ∗

Σ̂
+S ∗

Σ̂
.

V. RIGHT-INVERSION

All the results presented so far can be easily dualized, so
as to turn a generic system Σ into a right-invertible system
Σ̂, without affecting its functional observability properties.
Clearly, this transformation involves an output injection via a
matrix G such that (6) hold, and assigning all the eigenvalues
of (A+GC)|Rn/V ∗

Σ +S ∗
Σ

, and an output algebraic unit Y�
s ,

which is a basis matrix of the subspace CS ∗
Σ + imD, see

Fig. 2.

Σ

Σ̂

Y�
s

y(t)

G

y(t)u(t)

Fig. 2. Block diagram of a right-inverter

The following Corollary is the counterpart of Theorem 1
and Proposition 1 in the dual setting.
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Corollary 1: Let G be a friend of S ∗
Σ . Let Ys be a basis

matrix of the subspace CS ∗
Σ + imD. The quadruple Σ̂ :=(A+

GC,B+GD,Y�
s C,Y�

s D) is such that

1) S ∗
Σ =S ∗

Σ̂
;

2) Σ̂ is right-invertible;
3) Z (Σ̂) = Z (Σ)
σ (A + GC)|Rn/V ∗

Σ +S ∗
Σ

;

4) V i
Σ +S ∗

Σ =V i
Σ̂

+S ∗
Σ̂
, i ∈ N. Hence, in particular, Σ̂ is

left-invertible iff Σ is such. Moreover, Σ̂ and Σ have
the same zero structure at infinity.

Hence, the set of invariant zeros of the resulting system Σ̂ is
enlarged, so as to include the set of eigenvalues of A+GC
that are freely assignable through a suitable choice of G.
Furthermore, since the first transformation preserves the
right-invertibility of the original system, while the second
preserves the left-invertibility, these two procedures can
be applied together to a generic system, possibly degen-
erate, so as to obtain a square and invertible system, de-
scribed by the quadruple Σsq :=

(
A+BF +GC+GDF,(B+

GD)Us,Y�
s (CDF),Y�

s DUs

)
. Its set of invariant zeros in-

cludes the invariant zeros of the original system Σ. The
matrices F and G can be chosen so as to place the additional
invariant zeros introduced in the system Σsq thus obtained at
arbitrary locations of the left half-plane C−, as pointed out
in Theorem 1 and Proposition 1.

A. A numerical example

The proposed approach turns out to be easily imple-
mentable as a software routine for the squaring down of a
generic LTI system. Consider the example described by the
following matrices,

A =

⎡
⎢⎢⎣

−5 0 20 0
0 −5 0 20
0 0 −8 0
0 0 0 −8

⎤
⎥⎥⎦ , B =

⎡
⎢⎢⎣

0 0
0 0
1 0
0 1

⎤
⎥⎥⎦ ,

C =

[
1 0 0 0
0 0 1 0

]
, D =

[
0 0
0 0

]
.

System Σ=(A,B,C,D) is non left-invertible and non right-
invertible, since

V ∗
Σ ∩S ∗

Σ = im

⎡
⎢⎢⎣

0 0
1 0
0 0
0 1

⎤
⎥⎥⎦, V ∗

Σ +S ∗
Σ = im

⎡
⎢⎢⎣

0 0 0
1 0 0
0 0 1
0 1 0

⎤
⎥⎥⎦ .

In the present case R∗
Σ =V ∗

Σ ∩S ∗
Σ =V ∗

Σ , so that Σ has no
invariant zeros. The first step consists of finding a friend
F ∈R2×4 of V ∗

Σ assigning the eigenvalues of (A+BF)
restricted to R∗

Σ. The matrix

F =

[
−0.1 0 6 0

0 −0.6 0 10

]
assigns the eigenvalues σ(A + BF)|R∗

Σ
= {−1,−2}, and

σ(A + BF)|Rn/V ∗
Σ +R ={−3,−4}, where R is the reach-

able subspace from the origin, i.e., the smallest A-
invariant subspace containing the range of B. The matrix

Us =
[
−1 0

]�
is a basis matrix of (B−1 V ∗

Σ ∩ker D)⊥.
The new system Σ1 described by the matrices A1 =A+BF ,
B1 =BUs, C1 =C, D1 =DUs =0 is left-invertible, but not
right-invertible, since V ∗

Σ1
+S ∗

Σ1
=V ∗

Σ +S ∗
Σ ⊂R

n. The set of
its invariant zeros is exactly {−1,−2}. Now, we derive a
friend G∈R4×2 of S ∗

Σ such that σ(A1 +GC1)|Rn/V ∗
Σ +S ∗

Σ
=

{−4} and σ(A1 +GC1)|S ∗
Σ /S ∗

Σ ∩Q = {−2}:

G =

⎡
⎢⎢⎣

3 −20
0 0
0 −2
0 0

⎤
⎥⎥⎦ .

The matrix Ys =
[

0 −1
]�

is a basis matrix of
C1 S ∗

Σ1
+ imD. The system Σ2 described by the matrices

A2 := A1 + GC1, B2 := B1, C2 := Y�
s C1, D2 := Y�

s D1:

A2 =

⎡
⎢⎢⎣

−2 0 0 0
0 −5 0 20

−0.1 0 −4 0
0 −0.6 0 2

⎤
⎥⎥⎦ , B2 =

⎡
⎢⎢⎣

0
0
−1
0

⎤
⎥⎥⎦ ,

C2 =
[

0 0 −1 0
]
, D2 = 0,

is therefore left and right-invertible, since R∗
Σ2

=0n and
V ∗

Σ2
+S ∗

Σ2
=Rn, and is minimum-phase, since its invariant

zeros are {−1,−2,−2}.

VI. THE INFINITE-HORIZON LQ REGULATOR AND THE

GENERALIZED DISCRETE ARE

An interesting application of the results presented so far is
the possibility of parametrizing the solutions of the infinite-
horizon LQ problem for non left-invertible systems. Consider
the discrete-time non left-invertible system Σ described by

x(k + 1) = Ax(k)+ Bu(k), x(0) = x0 ∈ Rn,

y(k) = C x(k)+ Du(k).
(12)

The problem is that of finding a stabilizing state feedback
u(k)= −Kx(k) minimizing the performance index

J(x0,u) =
∞

∑
k=0

y�(k)y(k).

In this case, the optimal solution is not unique. In fact, since
in this case R∗

Σ differs from zero, there exist control functions
yielding state trajectories corresponding to identically zero
output functions. In other words, given an optimal control
law uo(k), the set of optimal control functions is parametrized
modulo the controls driving the state of Σ on R∗

Σ. Let Q :=
C�C, S :=C�D and R := D�D. Since Σ is not left-invertible,
the discrete ARE

P = A�PA− (A�PB + S)(R + B�PB)−1

·(B� PA + S�)+ Q,
(13)

does not admit a stabilizing solution. Now, consider the
system Σ̂=(Â, B̂,Ĉ,D̂) :=(A+BF,BUs,C+DF,DUs), where
F is a friend of V ∗

Σ and Us is a basis matrix of the subspace
(B−1 V ∗

Σ ∩ker D)⊥. System Σ̂ is now left-invertible by virtue
of Theorem 1. Hence, the infinite-horizon LQ problem can
be solved with respect to the auxiliary system Σ̂: in particular,
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the stabilizing solution P̂ of the discrete ARE (13) referred to
Σ̂ yields the optimal gain K̂ := (R̂+ B̂� P̂ B̂)−1(B̂� P̂ Â+ Ŝ�),
where Q̂ := Ĉ�Ĉ, Ŝ := Ĉ�D̂ and R̂ := D̂�D̂. Then, the matrix
K =Us K̂−F is a gain leading to an optimal control function.
Different choices of the matrix F yield different solutions of
the LQ problem, corresponding to the possibility of assigning
arbitrarily the eigenvalues of (A + BF) on R∗

Σ.
Thus, P̂ is not a solution of the discrete ARE since R+B� P̂B
is singular, but it a stabilizing solution of the so-called
generalized discrete ARE

P = A�PA− (A�PB + S)(R + B�PB)‡

·(B� PA + S�)+ Q,
(14)

Hence, the proposed method yields a non-iterative algorithm
for the computation of the stabilizing solution of the gener-
alized discrete ARE, as the following example will illustrate.

A. An illustrative example

Consider a discrete-time system Σ described by

A =

[
1 1
0 1

]
, B =

[
2 0
1 1

]
, x(0) =

[
1
−1

]
,

C =
[

0 1
]
, D =

[
0 0

]
,

This system is non left-invertible, since R∗
Σ = im

[
1 0

]�
,

but it is right-invertible since S ∗
Σ = Rn. Let Q := C�C,

S := C�D and R := D�D. Since Σ is not left-invertible, the
discrete ARE does not admit a stabilizing solution. Consider
the matrices

F =

[
− 3

4 − 1
4

3
4 − 1

4

]
Us =

[
1
1

]

where F is a friend of V ∗
Σ , assigning σ(A+BF)|R∗

Σ
= {− 1

2}

and σ(A + BF)|Rn/V ∗
Σ +R ={ 1

2}, while Us is a basis matrix
for (B−1 V ∗

Σ )⊥. The new system described by

Â = A + BF =

[
− 1

2
1
2

0 1
2

]
, B̂ = BUs =

[
2
2

]
,

Ĉ = C + DF =
[

0 1
]
, D̂ = DUs =

[
0

]
is now left-invertible. The discrete ARE written with respect
to Â, B̂,Q̂ := Ĉ�Ĉ, Ŝ := Ĉ�D̂ and R̂ := D̂�D̂, admits a stabi-
lizing solution and an optimal infinite-horizon gain, which
are respectively

P̂ =

[
0 0
0 1

]
, K̂ =

[
0 1

4

]
.

The optimal gain referred to the original system is

K = Us K̂ −F =

[ 3
4

1
2

− 3
4

1
2

]
.

The overall optimal cost is Jo = x�0 P̂x0 = 1. As we could
expect, if we change F in order to choose another eigenvalue
of A+BF restricted to R∗

Σ (for example − 1
5 as internal and

− 1
2 as external assignable eigenvalues of V ∗

Σ , respectively),
we find the same solution P̂ of (13) applied to Σ̂, leading to

the same cost, with a different solution K̂. Hence, the optimal
gain referred to the original system is, in this case,

K′ = Us K̂ −F =

[ 3
5 1

− 3
5 1

]
.

Finally, notice that P̂ is a stabilizing solution of the general-
ized discrete ARE.

VII. CONCLUDING REMARKS

A geometric setting has been established for the solution of
the left and right-inversion of non strictly proper LTI systems,
leading to a simple and computationally attractive procedure
for the squaring down problem. It has been proved that the
squared-down system is minimum-phase if so is the original
system, and the invariant zeros induced by the pre and post-
compensators are all freely assignable in the complex plane.
These new techniques are not merely oriented to the solution
of the aforementioned problems, but highlight important
geometric properties of LTI systems that can be exploited for
the solution of different control problems; as an example we
have considered the infinite-horizon LQ problem for discrete-
time non left-invertible systems, and the problem of finding
a non iterative algorithm for the solution of the generalized
discrete ARE.
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