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Abstract— Identification of a nonlinear additive system is
considered. An input signal is designed in such a way that
the problem of identification of nonlinear additive systems
is reduced to a problem of identification of static nonlinear
functions. Then, three approaches are established to estimate
the order of the system. The methods exploit the structure of
the nonlinear additive model so that their implementations are
easy.

I. INTRODUCTION

In this paper, we consider identification of a nonlinear FIR

additive model,

y(t) = f1[u(t)]+f2[u(t−1)]+...+fp[u(t−(p−1))]+µ+v(t)
(I.1)

where u(t) and y(t) are the system input and output at
time t = 1, 2, ..., respectively. The unknown constant µ
represents the possible DC offset and the noise sequence

v(t) is assumed to be independent identically distributed
random variables with zero mean, independent of the input

and E|v(t)|4+ρ < ∞ for some ρ > 0. In particular,
E|v(t)|2 = σ2

v . Here, E stands for the expectation operator.

No a priori information on the structures of fi’s is assumed.

Also, only an upper bound (p− 1) on the order is assumed.
The exact order is unknown.

The model (I.1) is often referred to as the nonlinear

FIR additive system in the literature [3], [6]. It is one of

the widely used nonlinear and non-parametric techniques

to describe nonlinear behaviors. A generalized Hammerstein

model is also a special case of the additive model. Let

bi(z) = b1i + b2iz
−1 + ... + bqiiz

−(qi−1), i = 1, ..., q

where z−1 represents the unit delay. The non-parametric

generalized FIR Hammerstein model [5] is in the form of

y(t) = b1(z)f̄1(u(t))+b2(z)f̄2(u(t))+...+bq(z)f̄q(u(t))+v(t)
(I.2)

for some unknown bi(z)’s and nonlinear functions f̄(·)’s.
In particular, if b1(z) = b2(z) = ... = bq(z) and f̄1 =
f̄2 = ... = f̄q, the generalized Hammerstein model becomes

a standard FIR Hammerstein model. The generalized Ham-

merstein model has extensive applications in controls, e.g.,

in thermal power plant, heat exchanger, stream flow process,

cement kiln and closed circuit cement ball grinding mill [5].

Now, let

p = max
i

qi, bji = 0 if j > qi

We can re-write the generalized Hammerstein model (I.2) as

y(t) =

q1∑
i=1

bi1f̄1(u(t−i+1))+...+

qq∑
i=1

biq f̄q(u(t−i+1))+v(t)

=

q∑
l=1

b1lf̄l(u(t)) + ... +

q∑
l=1

bplf̄l(u(t − p + 1)) + v(t)

= f1(u(t) + f2(u(t − 1)) + ... + fp(u(t − p + 1)) + v(t)

which is exactly an additive model.

Additive models can also be viewed as a generalization of

the well known linear FIR models [11], [15]

y(t) = α1u(t) + α2u(t − 1) + ... + αpu(t − p + 1) + v(t)

where the linear terms αju(t − j + 1)’s are replaced by the
nonlinear terms fj [u(t − j + 1)]’s which provide capabili-
ties to describe nonlinear behavior that linear systems are

inadequate to model.

Though widely used in many fields, to the best of

our knowledge, identification of the nonlinear additive

model (I.1) has not received much attention in the con-

trol/identification community. Most studies on the additive

models are found in the regression literature [3], [6] where

the setting can be quite different. Three main difficulties

associated with identification of the additive model (I.1) are

• The couplings of fi’s. Note that the output y(t) depends
on all the nonlinearities fi[u(t − i + 1)], i = 1, ..., p,
and this coupling obviously makes identification of the

additive model non-trivial.

• The order estimation. Since no information on the exact

order is available, order estimation has to be part of

identification.

• The lack of a priori information on the structures of the

unknown nonlinearities. In fact, fi’s can be discontinu-

ous.

We make a comment on the last difficulty. Though identi-

fication of nonlinear systems without structural information

remains an intractable task, considerable advancements have

been made for identification of a static nonlinearity y = f(u)
without a priori structural information on f . For example,
the kernel methods [8], the orthonormal basis and series

expansion methods [1], [13] and the smooth spline method

[2], [16] have been proposed and analyzed in details. There-

fore, it is our intention to focus on the first two difficulties
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in the paper. Clearly, if the decoupling problem can be

solved, identification of the additive model is reduced to

identification of static nonlinearities fi’s separately. We will

elaborate on this issue more later.

The main contributions of the paper are some novel ideas

that make the order determination and decoupling possible

without a priori knowledge on the unknown nonlinearities.

II. INPUT DESIGNS

Given the range of interest I = [−a, a] for the input, we
divide I into (m − 1) partitions

−a = a1 < a2 < ... < am = a (II.1)

The symmetry of I is not necessary and is for simplicity
only. First, for t ∈ [1,mp], we define u(t) as

u(t) =

{
ai+1 t = ip + 1, i = 0, ...,m − 1
a1 otherwise

(II.2)

To average out the effects of the noise, we repeat u(t) n
times, i.e., u(t) is periodic with period mp and

{u(t)}mp
t=1 = {u(t)}2mp

t=mp+1 = ... = {u(t)}N
t=(n−1)mp+1

where N = mpn. With proper initial conditions,

u(0) = u(−1) = ... = u(−p + 2) = a1 (II.3)

it can be easily verified that

y(1) = f1(a1) + ... + fp(a1) + µ + v(1)

y(p + 1) = f1(a2) + ... + fp(a1) + µ + v(p + 1)

y((m−1)p+1) = f1(am)+...+fp(a1)+µ+v((m−1)p+1)

y(p) = f1(a1) + ... + fp(a1) + µ + v(p)

y(p + p) = f1(a1) + ... + fp(a2) + µ + v(p + p)

y((m − 1)p + p) = f1(a1) + ... + fp−1(a1)+

fp(am) + µ + v((m − 1)p + p)

To further simplify notation, let

µj =

p∑
l=1,l �=j

fl(a1) + µ, j = 1, 2, ..., p

and

yijk = y((k − 1)mp + (i − 1)p + j),

vijk = v((k − 1)mp + (i − 1)p + j) (II.4)

The outputs y(t) at t = (k − 1)mp + (i − 1)p + j can be
expressed by

yijk = fj(ai) + µj + vijk (II.5)

for k = 1, 2, ..., n, i = 1, 2, ...,m and j = 1, 2, ..., p.
Clearly, the index j = 1, ..., p separates the contributions
of fj(·)’s, the index i = 1, ...,m covers input partitions ai’s

and k = 1, ..., n is to average out the effect of the noise. Note
u(t) is periodic with period mp and the total length of u(t)
is nmp, i.e., n determines how many periods are used for
identification. To have a better resolution for the input range

I , m has to be increased and to reduce the effect of the

noise, n needs to be increased. The input length N = npm
is linear in m, n and p. This linear property is a property
of the additive model and is quite different from a general

nonlinear system where N grows exponentially as pnmp [9].

This difference is crucial because the order is not known in

advance and we have to assume a large upper bound p to
begin with.

It should be remarked that the initial condition assumption

(II.3) does not impose any restriction to the system at all. If

the actual initial condition is different or unknown, we may

assign

u(1) = u(2) = ... = u(p − 1) = a1

and then, reset the time index t̃ = t − p + 1.

III. REGRESSOR SELECTION

The order determination problem amounts whether to

include one more delayed input variable in the system. Since

no structural information is available, a method for order

determination without requiring the knowledge of fj’s has

to be developed for the nonlinear additive model (I.1). Our

idea in this paper is not to tackle the order determination

problem directly but to investigate which fj’s contribute to

the output. This is actually a regressor selection problem. The

term fj that contributes to the output with the maximum j
gives rise to the order. We discuss three approaches from an

intuitive visual inspection method to sophisticated statistical

approaches.

At this point, we comment that identification of the non-

linear additive model (I.1) is actually ill-defined. Note that if

for any l �= j, we replace fj [u(t−j +1)] and fl[u(t− l+1)]
by fj [u(t−j+1)]+µ̄ and fl[u(t−l+1)]−µ̄ respectively for
any constant µ̄, the input-output measurements of the system
remain the same. In other words, the DC offset in each fj

is not identifiable without normalizations. For this purpose,

we make the following assumption.

Assumption 3.1: Consider the nonlinear additive model
(I.1) and the partition (II.1). Assume that for each j =
1, 2, ..., p,

1

m

m∑
i=1

fj(ai) = 0

Now, we define 4 averages: the grand average ȳ... of all

observations, the average ȳij. of the ith level of the jth
function fj , the average ȳ.j. of the jth function fj , and the

average ȳi.. of the ith level,

ȳ... = 1
nmp

∑n
k=1

∑m
i=1

∑p
j=1 yijk

ȳij. = 1
n

∑n
k=1 yijk = fj(ai) + µj + 1

n

∑n
k=1 vijk

ȳ.j. = 1
m

∑m
i=1 ȳij. = 1

nm

∑m
i=1

∑n
k=1 yijk

ȳi.. = 1
p

∑p
j=1 ȳij. = 1

pn

∑p
j=1

∑n
k=1 yijk

(III.1)

where the dot “.” subscript implies the average with respect

to the subscript it replaces.
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A. Visual inspection

µj is constant when i is varied. Whether fj contributes to

the output can be visually inspected if the graph of fj(ai)
vs ai is available. Since fj(ai) is unknown, we need to have
an estimate of fj(ai). To this end, let

zij = ȳij.−ȳ.j. = fj(ai)+
1

n

n∑
k=1

(vijk−
1

m

m∑
i=1

vijk) (III.2)

Theorem 3.1: Consider the above equation.

1)

1

n

n∑
k=1

(vijk−
1

m

m∑
i=1

vijk) and
1

n

n∑
k=1

(vilk−
1

m

m∑
i=1

vilk)

are independent if j �= l.
2)

E
1

n

n∑
k=1

(vijk −
1

m

m∑
i=1

vijk) = 0,

E[
1

n

n∑
k=1

(vijk −
1

m

m∑
i=1

vijk)]2 =
1

n
(1 −

1

m
)σ2

v

3) zij → fj(ai) for every i and j in probability as n →
∞.

Proof: The first one is trivial because vijk and vilk are

independent. The second part shows the convergence in the

mean squares which implies the convergence in probability

of the third part. Thus, what we have to show is the second

part. Note

E
1

n2

n∑
k=1

(vijk −
1

m

m∑
i=1

vijk)

n∑
l=1

(vijl −
1

m

m∑
d=1

vdjl)

= σ2
v(n/n2 − 2/(mn) + 1/(nm)) =

1

n
(1 −

1

m
)σ2

v

This completes the proof.

The implication of the above result is that zij is com-

putable based on the input-output measurements and con-

verges to fj(ai). Therefore, an estimate of the graph of
fj(ai) vs ai is obtained by the graph of zij vs ai by varying

i for large n. Accordingly, the contribution of fj(ai) can be
visually inspected by the graph of zij vs ai.

B. Relative contributions

The above idea can be made precise. Again, note that

the average of fj(ai) with respect to ai is zero and hence,

the magnitude
∑m

i=1 f2
j (ai) is an indication of how much

the term fj(·) contributes to the output. If fj(ai) does not
contribute, i.e., fj(ai) = 0, i = 1, ...,m,

∑m
i=1 f2

j (ai) =
0. On the other hand, if

∑m
i=1 f2

j (ai) �= 0, then some of
fj(ai)’s must be non-zero. Keep in mind however what we
are really interested is not whether fj(·) contributes or not,
but whether the contribution is significant or not. In other

words, a relative contribution is more appropriate for order

determination. This can be measured by calculating the ratio∑m
i=1 f2

j (ai)∑p
l=1,l �=j

∑m
i=1 f2

l (ai)
(III.3)

The numerator is the contribution of fj and the denominator

is the contribution of the rest terms. This ratio quantifies the

relative contribution of fj compared to the sum of the rest

terms. Now the question is how to find this ratio which is

not available. To this end, we define

SSj = n
∑m

i=1(ȳij. − ȳ.j.)
2, j = 1, 2, ..., p

SSE =
∑n

k=1

∑m
i=1

∑p
j=1(yijk − ȳij.)

2 (III.4)

and based on SSj , we further define the relative contribution

index

Rj =

1
n(m−1)SSj

1
n(m−1)

∑p
l=1,l �=j SSl

, j = 1, ..., p (III.5)

Theorem 3.2: Consider the relative contribution index Rj .

If
∑p

l=1,l �=j

∑m
i=1 f2

l (ai) �= 0, then

Rj →

∑m
i=1 f2

j (ai)∑p
l=1,l �=j

∑m
i=1 f2

l (ai)

in probability as n → ∞.
Proof: SSj and SSl are independent for j �= l. Now, from∑n

k=1(yijk − ȳij.) =
∑n

k=1 yijk − nȳij. = 0∑m
i=1(ȳij. − ȳ.j.) =

∑m
i=1 ȳij. − mȳ.j. = 0∑p

j=1(ȳij. − ȳi..) =
∑p

j=1 ȳij. − pȳi.. = 0

it is easily verified that

E
SSE

mp(n−1) = E

Pn
k=1

Pm
i=1

Pp

j=1
(yijk−ȳij.)

2

mp(n−1) = σ2
v

E[ SSE

mp(n−1) − σ2
v ]2 ∼ O( 1

n
) as n → ∞

E
SSj

m−1 = E
n

Pm
i=1

(ȳij.−ȳ.j.)
2

m−1 = σ2
v +

n
Pm

i=1
f2

j (ai)

m−1

E[
SSj

n(m−1) − (σ2
v/n +

Pm
i=1

f2

j (ai)

m−1 )]2 ∼ O( 1
n
) as n → ∞

(III.6)

Thus,
SSj

n(m−1) → 1
(m−1)

∑m
i=1 f2

j (ai) in probabil-

ity. This implies that the numerator of Rj con-

verges to 1
(m−1)

∑m
i=1 f2

j (ai) and the denominator of

Rj converges to
1

(m−1)

∑p
l=1,l �=j

∑m
i=1 f2

l (ai). Further,∑p
l=1,l �=j

∑m
i=1 f2

l (ai) > 0 implies that Rj is a continuous

function of the numerator and denominator. Now, from Slut-

sky’s theorem [4] and the fact that convergence in probability

and convergence in distribution are equivalent if the limit is

a constant, we have

Rj →

1
(m−1)

∑m
i=1 f2

j (ai)

1
(m−1)

∑p
l=1,l �=j

∑m
i=1 f2

l (ai)

Though some equations in (III.6) were not used in the

convergence proof of Rj , they are needed later. Also, as an

by-product, the result tells us that SSE

mp(n−1) actually provides

an unbiased and consistent estimate of the unknown noise

variance σ2
v .

To determine whether the term fj contributes, we compute

Rj , j = 1, 2, ..., p. Let the threshold d, for example d = 0.05
or 5%, be chosen. If Rj ≥ d, we say the term fj contributes

and otherwise, fj does not contribute. Since Rj converges

to the quantity in (III.3), the test is very reliable for large

n. For small n, an improvement can be made. Note that
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SSj/n(m−1) is a biased estimate of 1
m−1

∑m
i=1 f2

j (ai) and

the bias term
σ2

v

n
goes to zero as n gets large. To compensate

this bias term for small n, we may subtract an unbiased and
consistent estimate of σ2

v/n from SSj/n(m − 1) and re-
define Rj as

SSj/[n(m − 1)] − SSE/[nmp(n − 1)]∑p
l=1,l �=j{SSl/[n(m − 1)] − SSE/[nmp(n − 1)]}

(III.7)

So far no assumption on the probability distribution of

the noise is assumed and the obtained results are asymptotic

in nature. To be able to test Rj statistically for not so

large n, additional information on the unknown noise is
needed. For instance, if the noise is assumed to be Gaussian,

SSj/n(m − 1) is (non-central) chi-square distributed and
then, hypotheses test or the confidence internal calculation

becomes feasible. This is close to the idea of the analysis of

variance that will be discussed in the next section.

C. The analysis of variance

The analysis of variance (ANOVA) is a powerful tool

in statistics [3], [12] and was first introduced to system

identification in [9], [10] where a nonlinear FIR system was

examined. The ANOVA enumerates all possible combina-

tions of the input lags and compares their contributions by

some statistical measures. Thus, the input length and the

computational complexity are high and grow exponentially as

the order increases referred to as the curse of dimensionality

[6], [9] that limits the use of the ANOVA to very low order

systems. By taking advantages of the form of the additive

model (I.1) and carefully designing the input signals as in

(II.2), however, the curse of the dimensionality is no longer

a problem. In fact, the input length and the computational

complexity are linear functions of n, m and p for the
nonlinear additive model (I.1) as discussed before.

Similar to the previous section, the idea of the ANOVA

is to study the variance of yijk for fixed j by varying i. If
fj has no contribution, the variance is the same as the noise

variance σ2
v . If the variance is significantly larger than σ2

v ,

fj likely contributes to the output.

Strictly speaking, to carry out the ANOVA, the noise has

to be assumed to be Gaussian. It has been reported in the

literature [7], [9], [10] that, however, the ANOVA is robust

even when this assumption is not satisfied. Before presenting

the results, we define two variables.

SST =
∑n

k=1

∑m
i=1

∑p
j=1(yijk − ȳ...)

2,

SSR = mn
∑p

j=1(ȳ.j. − ȳ...)
2

Theorem 3.3: Consider the nonlinear additive model (I.1)
and the input (II.2). Assume the noise is i.i.d. Gaussian with

zero mean and variance σ2
v . Then, the random variables SST ,

SSE , SSR and SSj , j = 1, 2, ..., p defined in (III.4) satisfy

SST = SSE + SS1 + ... + SSp + SSR (III.8)

and SSE , SSR and SSj , j = 1, 2, ..., p are statistically
independent. Moreover, SSE ∼ χ2(mp(n − 1)) and if

fj(ai) = 0, i = 1, 2, ...,m, for some j, SSj ∼ χ2(m − 1)
and consequently

Fj =
SSj/(m − 1)

SSE/[mp(n − 1)]
∼ F (m − 1,mp(n − 1))

i.e., when fj(ai) = 0, i = 1, 2, ...,m, Fj is F-distributed

with (m − 1) and mp(n − 1) degrees of freedom.
Proof: Equation (III.8) is from (III.6) and the independence

is from the Cochran theorem, see page 69 of [12]. The rest

part comes from the definitions of χ2 and F distributions
[12].

Since SSj/(m−1) is an estimate of n
m−1

∑m
i=1 f2

j (ai)+
σ2

v and SSE/[mp(n−1)] is an estimate of σ2
v , an implication

of the results is that if fj does not contribute to the output,

i.e., fj(ai) = 0, i = 1, 2, ...,m, Fj ≈ σ2
v/σ2

v = 1. If fj does

contribute, Fj > 1. Mathematically, this can be put into a
form of hypotheses test for each j = 1, 2..., p,

H0,j : fj(ai) = 0, ∀i
against H1,j : at least one of fj(ai) �= 0

(III.9)

If H0,j is rejected, the output does depend on fj . To test

the hypotheses, we calculate Fj , j = 1, ..., p based on the
measured input-output data. Let the threshold d be taken
from Fα(m − 1,mp(n − 1))-distribution table, where α
denotes the level of significance, i.e., the probability to reject

H0,j thoughH0,j is true. The hypothesis is rejected if Fj > d
and we conclude that fj does contribute.

Once the tests are carried out for Fj , j = 1, 2, ..., p, we
have determined which fj contributes to the output and the

maximum j so that fj contributes to the output is the system

order.

We comment that the hypotheses test is done in terms of

the probability

Prob{reject H0,j : H0,j is true}

This is often referred to as the type I error. The test can also

be done in terms of the type II error

Prob{reject H0,j : H0,j is false} = 1−

Prob{fail to reject H0,j : H0,j is false}

This test is based on non-central F distributions and is more

involved. Interested readers can find details from [12].

D. Discussion and simulation

Three order determination methods are proposed and each

one has its own advantage. The visual inspection approach is

very intuitive and simple. It may also reveal the structures of

the unknown nonlinearities graphically. The relative contri-

bution index Rj accurately measures the relative contribution

that is often more important than the individual contribution

in order determination. The ANOVA approach is a robust

approach but does not measure relative contributions.

We now consider a numerical example of the form of a

generalized Hammerstein model (I.2) with b1 = b11+b21z
−1,

b2 = b12+b22z
−1, f̄1 = u(t) and f̄2 = u(t)2 or equivalently

y(t) = b11u(t) + b12u(t)2 − µ1︸ ︷︷ ︸
f1(u(t))
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+ b21u(t − 1) + b22u(t − 1)2 − µ2︸ ︷︷ ︸
f2(u(t−1))

+ 0︸︷︷︸
f3(u(t−2))+f4(u(t−3))+f5(u(t−4))

+µ1 + µ2︸ ︷︷ ︸
µ

+v(t)

The purpose of µi is to make the average of fi(·) zero. The
above system is frequently encountered in communications.

For instance, it describes nonlinear distortions due to am-

plifiers in satellite link communication [14] and in ADSL

[17].

In the simulation, the structures of fi’s as well as the

exact order are unknown and only an upper bound p = 5
is assumed. The input range is I = [−a, a] = [−2, 2] with
m = 11 and

ai = (i − 1) · 0.4 − 1, i = 1, 2, ..., 11(= m)

The noise v(t) is i.i.d. Gaussian with zero mean and σ2
v =

0.25, and n = 100 that impliesmp(n−1) = 5445. For b11 =
1, b12 = 0.7, b21 = 0.8 and b22 = −0.6, Figure 1 shows
the simulation results of zij (= fj(ai) + 1

n

∑n
k=1(vijk −

1
m

∑m
i=1 vijk)) vs ai, for j = 1, 2, 3, 4, 5. Rj and Fj , j =

1, 2, 3, 4, 5, are listed in Table 1. Further, the significance
level or the probability to reject H0j though H0j is true is

taken to be 0.01 which results in F0.01(10, 5445) = 2.3242.
The results shown in the figure are the averages of 100

Monte Carlo simulations. The ranges of Rj and Fj for

100 Monte Carlo simulations are in the table. By visually

inspecting Figure 1, it is clear that f1 and f2 contribute

while f3, f4 and f5 are almost identically zero and do not

contribute. We conclude that the order is 2 − 1 = 1. If
the relative contribution index Rj is used, we notice that

R3, R4 and R5 ≈ 0 and this implies that f3, f4 and f5 do

not contribute while f1 and f2 do. Therefore, the order is

2 − 1 = 1. Finally, F1, F2 > F0.01(10, 5445) = 2.3242 and
F3, F4, F5 < 2.3242 so the ANOVA method also concludes
that f1 and f2 contribute and f3, f4 and f5 do not. For this

example, all three methods reach the same conclusion.

IV. CONCLUDING REMARKS

In this paper, we have studied identification of nonlinear

additive models. We feel however some ideas presented in

the paper can be extended to identification of other nonlinear

systems. In particular, the partition of the input range and

the adoption of the relative contribution index may provide

a fresh way of thinking in order estimation for nonlinear

systems.
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j 1 2 3 4 5

Rj [1.3703, 1.5850] [0.6268, 0.7249] [6 ∗ 10−5, 0.0012] [9 ∗ 10−5, 0.0012] [0.0001, 0.0015]
Fj [1067, 1211] [713, 814] [0.2688, 2.3029] [0.2418, 2.2649] [0.2282, 1.9707]
F0.01(10, 5445) = 2.3242

TABLE I

THE RANGES OF Rj , Fj AND F0.01(10, 5445)
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Fig. 1. zij vs ai, j = 1, 2, 3, 4, 5.
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