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Abstract— This paper considers the application of the skewed
structured singular value to the robust stability of systems
subject to strictly real parametric uncertainty. Three state-
space formulations that counteract the discontinuous nature
of this problem are detailed. It is shown that the calcula-
tion of the supremum of the structured singular value over
a frequency range using these formulations transforms into
a single skewed structured singular value calculation. Like
the structured singular value, the calculation of the exact
value of the skewed structured singular value is a NP-hard
problem, therefore alternative, less computationally demanding
algorithms to determine upper and lower bounds are necessary.
Two algorithms that determine upper and lower bounds on the
skewed structured single value are presented. These algorithms
are critically assessed by performing a robust stability analysis
on a safety-critical experimental drive-by-wire vehicle.

I. INTRODUCTION

For many physical systems, it is appropriate to consider
the effect of parameter based uncertainty on system
stability and performance. The structured singular value,
µ , provides a rigorous means of analyzing the robustness
of such systems [1]. Although µ analysis provides a
general framework for robust analysis, in practice skew
µ problems commonly occur where not all the uncertain
parameters are allowed to vary freely. One example of skew
µ is a stability analysis where frequency is considered as
an uncertain variable. By reformulation of the problem
incorporating frequency as a perturbation parameter, the
gridded µ problem becomes a skew µ problem where no
frequencies are missed in the search. Although these skew µ
problems can be reformulated as iterative µ problems, direct
methods for obtaining bounds on skew µ are desirable for
computational reasons. Recent work on the development of
direct methods to determine both upper and lower bounds
on skew µ for suitably mixed uncertainty is detailed in [2],
[3].

The focus in this work is on the special case where the
parametric uncertainty is constrained to be real. It is known
that this so-called “real µ” problem is a discontinuous
function of the problem data [4]. The literature suggests that
a “frequency interval” type solution using Linear Matrix
Inequalities (LMIs) can address this type of problem [5].
While this type of LMI formulation generally provides a
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valid upper bound on µ , their practical implementation
is limited. It is fair to say that the computational burden
becomes impracticable for all but the most straightforward
of problems. As an alternative approach, three state-
space formulations are considered here that address the
discontinuity issue associated with real µ . It is proposed
that the calculation of the supremum of µ over a frequency
range becomes a single skew µ computation. Due to the
NP-hard nature of this problem, bounds on skew µ are
sought. In order to obtain an upper bound on skew µ , the
generalized eigenvalue formulation of [2] is implemented.
Determining a lower bound on skew µ for strictly real
parametric uncertainty is more difficult. It should be noted
that the lower bound skew µ algorithm of [3] will not
provide a solution to this problem due to convergence
difficulties. In this work, a new skew µ optimization-based
lower bound algorithm is presented. Coupled with the state-
space formulations, promising results that provide useful
worst-case information about the problem are returned. To
demonstrate, a robust stability analysis for a safety-critical
drive-by-wire application is performed where the parameter
uncertainty is strictly real and repeated.

This paper is outlined as follows, section II introduces
the nomenclature used and details the formal definitions of
both the structured singular value and the skew structured
singular value. Section III details the three state-space for-
mulations that counteract the discontinuity issue with the real
µ problem. Section IV presents an generalized eigenvalue
formulation and an optimization-based algorithm used to
determine upper and lower bounds on skew µ respectively.
In section V, a robust stability analysis is performed on the
drive-by-wire vehicle using standard µ-Tools techniques and
the so-called “state-space skew µ” methods presented in this
paper.

II. ROBUSTNESS ANALYSIS TECHNIQUES
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Fig. 1. Canonical µ analysis framework.
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The µ approach for systems analysis is based on the
observation that problems involving interconnections of lin-
ear time invariant (LTI) systems with uncertain parameters
and unmodelled dynamics can be reduced to considering
the constant matrix feedback interconnection in Fig. 1. The
uncertainty block ∆ is structured where three non-negative
integers mr, mc and mC specify the number of uncertainty
blocks of each type. The block structure K (mr,mc,mC) is
an m-tuple of positive integers.

K = (k1, . . . ,kmr , kmr+1, . . . ,kmr+mc ,kmr+mc+1, . . . ,km)

with m = mr + mc + mC. This m-tuple specifies the dimen-
sions of the perturbation blocks, which determines the set of
allowable perturbations, namely define:

XK =
{

∆ =block diag
(
δ r

1 Ik1 , . . . ,δ
r
mr

Ikmr
, . . .

δ c
1 Ikmr+1 , . . . ,δ

c
mc

Ikmr+mc
, ∆C

1 , . . . ,∆C
mC

)}

with:
δ r

i ∈ R, δ c
i ∈ C, ∆C

i ∈ Ckmr+mc+i ×kmr+mc+i

Note that XK ⊂ Cn×n (where n = ∑m
i=1 ki) and that this block

structure allows for repeated real scalars (δ r
i I), repeated

complex scalars (δ c
i I), and full complex blocks (∆C

i ). Noting
this block structure, the following definition, taken from [1]
is introduced.

Definition 1: The structured singular value, µK (M), of
a matrix M ∈ Cn×n with respect to a block structure
K (mr,mc,mC) is defined as:

µK (M) =
1

min
∆∈XK

{σ(∆) : det(In −∆M) = 0} (1)

with µK (M) = 0 if no ∆ ∈ XK solves det(In − ∆M) =
0. Linear Fractional Transformations (LFTs) are used to
reorganize a perturbed problem with uncertainty into the
feedback interconnection in Fig. 1. In particular, if M ∈Cn×n

is partitioned as:

M =
[

M11 M12

M21 M22

]
(2)

with M11 ∈ Cn1×n1 , M11 ∈ Cn1×n1 and n = n1 + n2, then an
upper LFT will be described as:

∆∗M = M22 +M21∆(In1 −M11∆)−1M12 (3)

If two block structures are defined as XK1 ⊂Cn1×n1 , XK2 ⊂
Cn2×n2 , then the augmented block structure X ˆK ∈ Cn×n is
defined as:

X ˆK = {∆ = block diag(∆ f ,∆v) :

∆ f ∈BXK1 , ∆v ∈ XK2}
where BXK1 =

{
∆ f ∈ XK1 : σ(∆ f ) ≤ 1

}
.

The skewed structured singular value is the smallest struc-
tured singular value of a subset of perturbations that desta-
bilizes the system M with the remainder of the perturbations
contained within a fixed range. Formally stating this:

Definition 2: The skewed structure singular value,
µs

ˆK
(M), of a matrix M ∈ Cn×n with respect to a block

structure ˆK (mr f ,mc f ,mCf ,mrv ,mcv ,mCv) is defined as:

µs
ˆK
(M) =

1
min

∆∈X ˆK

{σ(∆v) : det(In −∆M) = 0} (4)

with µs
ˆK
(M) = 0 if no ∆ ∈ X ˆK solves det(In −∆M) = 0.

III. STATE-SPACE APPROACHES USING SKEW µ
In general, robustness analysis problems correspond to a

question of checking the value for:

µK (M(s)) (5)

over the closed right-half-plane (where M(s) is a stable
system). This approach can be computationally intensive and
an appropriate frequency range and the fineness of the grid
must be decided. Even with such an approach, there still
remains the possibility of missing important points especially
as real µ may be discontinuous. Instead three grid-free state-
space formulations are presented that counteract all the issues
associated with a grid search.

A. State-space µ (Bilinear Transform)

The development of the first two tests is based on the
fact that a transfer function can be expressed as a LFT of a
constant matrix on the frequency variable. Given a transfer
function M(s) its differential equation representation is con-
sidered and expanded using the usual state-space formula:

M(s) = C(sIp −A)−1B+D =
1
s

Ip ∗ M̂ (6)

where M̂ is the constant matrix:

M̂ =
[

A B
C D

]
(7)

and p is the dimension of the state-space. The idea is to
replace M(s) with this expression and include 1

s Ip as one of
the uncertainties. Instead of testing 1

s Ip over the right-half-
plane, a better solution is to test within a unit circle. This
is achieved by employing a bilinear transform, where the
transformation:

T =
[

Ip
√

2Ip√
2Ip Ip

]

is used to generate 1
s Ip in the right-half-plane from δω Ip ∗T

where δω Ip lies within the unit disk. The test now follows
by applying the main loop theorem [6] and evaluating T ∗M̂
(Fig. 2).

Theorem 1 ([7]): (Bilinear transform)
Suppose that M(s) has all of its poles in the open left-half-
plane (i.e. nominal stability) and let β > 0. Let a minimal
state-space representation for M(s) be given as:

M(s) = C(sIp −A)−1B+D (8)

Given XK compatible with M(s), define a new uncertainty
structure X ˆK as:

X ˆK =
{

block diag(δω Ip,∆) : δω ∈ C, ∆ ∈ XK

}
(9)
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Fig. 2. State-space µ test.

Then for all ∆ ∈ M (XK ) with ‖∆‖∞ � β , the perturbed
closed-loop system in Fig. 1 is (well-posed and) uniformly
stable if and only if:

µ ˆK

(
T ∗ M̂

)
< 1

where:

T ∗ M̂ =

⎡
⎣A −1

1 (Ip +A)
√

2
β A −1

1 B√
2
β CA −1

1
1
β (CA −1

1 B+D)

⎤
⎦ (10)

and:
A −1

1 = (Ip −A)−1

B. State-space µ (Real Interval Transform)

The benefit of the first state-space approach is that the
uncertainty block is both real and complex so reasonable
solutions for the bounds are expected. However it may be
desirable to exploit the fact that the frequency uncertainty
parameter is real-valued to obtain possibly better results. The
transformation:

T =
[ −Ip

√
2Ip

j
√

2Ip − jIp

]

is used to generate 1
s Ip in the right-half-plane from δω Ip ∗T

where δω Ip lies within the interval [−1,1] along the real axis.
The test now follows by once again applying the main loop
theorem and evaluating T ∗ M̂.

Theorem 2: (Real interval transform)
Suppose that M(s) has all of its poles in the open left-half-
plane and let β > 0. Given a minimal state-space representa-
tion of M(s) defined in theorem 1 and given XK compatible
with M(s), define a new uncertainty structure X ˆK as:

X ˆK =
{

block diag(δω Ip,∆) : δω ∈ R, ∆ ∈ XK

}
(11)

Then for all ∆ ∈ M (XK ) with ‖∆‖∞ � β , the perturbed
closed-loop system in Fig. 2 is uniformly stable if and only
if:

µ ˆK

(
T ∗ M̂

)
< 1

where:

T ∗ M̂ =

⎡
⎣A −1

2 (−Ip + jA)
√

2
β A −1

2 B

j
√

2
β CA −1

2 − 1
β ( jCA −1

2 B−D)

⎤
⎦ (12)

and:
A −1

2 = (Ip + jA)−1

C. State-space µ (Bounded Frequency Test)

The basis for the third approach differs from the first
two but remains a frequency independent approach with
frequency represented as an uncertain (real) parameter. Un-
like the previous two approaches, instead of checking for
frequency points over the right-half-plane corresponding to
ω ∈ [0, ∞] , this approach allows a frequency interval to be
selected a priori where ω ∈ [ω, ω]. Using the transforma-
tion:

T =
[

0 Ip
1
2 Ip

1
2 Ip

]

and introducing the parameters:

ω0 = (ω +ω)/2

αω = (ω −ω)/2

The following theorem extends results first presented in
[8] where the test again follows by applying the main loop
theorem and evaluating T ∗ M̂.

Theorem 3: (Bounded frequency test)
Suppose that M(s) has all of its poles in the open left-
half-plane and let β > 0. Given a minimal state-space
representation of M(s) and the uncertainty structure X ˆK
defined in theorem 1 and theorem 2 respectively, then for
all ∆ ∈ M (XK ) with ‖∆‖∞ � β , the perturbed closed-loop
system is uniformly stable if and only if:

µ ˆK (T ∗ M̂) < 1

where:

T ∗ M̂ =

⎡
⎣ jαωA −1

3

√
1
β A −1

3 B

− j
√

1
β αωCA −1

3 − 1
β

(
CA −1

3 B−D
)
⎤
⎦ (13)

with:
A −1

3 = (A− jω0Ip)−1

It is with abuse of notation that T ∗ M̂ is used for all three
cases, the reasons for which will become apparent. A full
description of the third approach is presented in [9]. As they
exist, all three state-space formulations from theorems 1,
2 and 3 provide a constant matrix µ test for the general
robust stability problem with a yes/no answer. This can be
improved upon by reformulating as a skew µ problem. This
is quantified in the following proposition.

Proposition 1: (state-space skew µ)
Formulation of frequency as an uncertainty parameter is a
skew µ problem. Since the frequency parameter is skewed
(fixed in range), (10), (12) and (13) can be recast as a skew
µ formulation.

µs
ˆK
(T ∗ M̂) < 1 (14)
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with δω I = ∆ f and ∆ = ∆v.
It is now possible to obtain the worst-case perturbation

from each test and the value of δω containing the worst-case
frequency information. Furthermore, this information may be
determined or unwrapped using the following expressions for
each of the three approaches:

s =
1−δω

1+δω

s = − j
1+δω

1−δω
s = j (ω0 +αω δω)

IV. BOUNDS ON SKEW µ
It is possible to use the transformations to determine

the supremum of µ through a single skew µ analysis. It
is therefore necessary to consider algorithms to determine
bounds on skew µ that adequately address strictly real
parametric uncertainty. An upper bound (ub) on skew µ may
be obtained using the generalized eigenvalue formulation of
[2]. This algorithm is quantified in the following theorem.

Theorem 4: (Mixed skew µ upper bound)
For M ∈ C n×n and any compatible block structure ˆK , a
skew µ upper bound, νu, can be calculated from:

(
A +

1
νu

B

)⎡
⎣x1

x2

x3

⎤
⎦ = 0 (15)

where:

A =

⎡
⎣ M11M∗

11 − I f M11M∗
21 0

M21M∗
11 M21M∗

21 I
0 I 0

⎤
⎦ (16)

and:

B =

⎡
⎣ M12M∗

12 M12M∗
22 0

M22M∗
12 M22M∗

22 0
0 0 I

⎤
⎦ (17)

In its current format, the formulation in (15) does not detail
or consider standard D and G scaling matrices associated
with calculation of the standard µ-Tools upper bound, re-
flecting the structure of the associated perturbation block.
It is detailed in [10] how this scaling is considered and
implemented. An optimization-based approach may be used
to determine a lower bound (lb) on skew µ where the
parametric uncertainty may be real or complex valued.

Theorem 5: (Optimized skew µ lower bound)
Let /0d ∈ R where 0 ≤ /0d ≤ 10−8. For M ∈ C n×n and
any compatible block structure ˆK (mr f ,mc f ,0,mrν ,mcν ,0),
a lower bound on µs

ˆK
(M) can be determined from:

µs
ˆK
(M) =

1
min

∆∈X ˆK

{‖∆νl‖ : |det(In −∆M)| ≤ /0d} (18)

where the solution is (the inverse of) a constrained minimiza-
tion problem.

In order to obtain quality solutions, it is necessary to
relax the nonlinear equality constraint in (4) to an inequality
with the introduction of /0d to counteract the non-convex

Fig. 3. Lanekeeping analogy.

nature of the problem search. Note that “ /0d” is the digital
implementation of zero and is generally of magnitude 10−8

or less. The uncertainty block structure is implemented
where one optimization variable represents a real-valued
uncertainty parameter and two optimization variables are
used to represent the real and imaginary parts of a complex
uncertainty parameter. This lower bound algorithm has been
developed in Matlab using the Optimization Toolbox [11].
The authors have found that improved and reliable lower
bound solutions are returned with reasonable associated
computation times over a wide variety of problems where the
perturbation sets are in excess of 20+ parameters using this
algorithm [10]. Combined with the state-space formulations,
the computational burden in obtaining a lower bound is
further reduced. Indeed, since no form of regularization is
required, valid problem perturbations are always provided
[12]. Both upper and lower bound algorithms are available
in beta form and will be implemented as part of the next
release of the freely downloadable “MuExplorer” software
[13]. The performance of each approach is now illustrated
on a safety-critical experimental drive-by-wire example.

V. DRIVE-BY-WIRE APPLICATION

In this section an experimental drive-by-wire application
is considered. Drive-by-wire systems have many advantages
over conventional automotive steering, braking, and throttle
mechanisms. By electronically actuating the throttle, brakes,
and steering, driving inputs can be fully integrated with
vehicle safety systems. The absence of conventional mechan-
ical associations between the driver and the vehicle raises
some new questions regarding the nature of interactions that
occur between driver, vehicle, and environment in a drive-
by-wire vehicle. The question of stability and performance
requirements are paramount with the introduction of such
systems in order to lead to certifiably safe robust control
law design.

For a constant longitudinal speed, V , the linearized model
is represented by four states where the state vector is given
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Fig. 4. Vehicle with lookahead.

as:
x =

[
e ė ψ ψ̇

]T
(19)

where e is the lateral offset from the lane centre and ψ is the
heading angle. The goal of the robustness analysis is to study
the vehicle’s driver assistance response to small deviations
from the lane centre (Fig. 3). The linear state space matrices
and controller are given with:

A =

⎡
⎢⎢⎢⎣

0 1 0 0

− k
m −Cf +Cr

mV
Cf +Cr−kxla

m
−aCf +bCr

mV
0 0 0 1

− kxc f
Iz

−aCf +bCr
IzV

aCf −bCr−kxlaxc f
Iz

−(a2Cf +b2Cr)
IzV

⎤
⎥⎥⎥⎦

and:

B =
[
0 1

m 0
xc f
Iz

]T

The state feedback controller K is given by:

K =
[
k 0 kxla 0

]
For a constant speed of V = 30m/s and the application

point of the environmental ‘virtual’ force, F , is applied 0.5m
in front of the neutral steer point of the vehicle (Fig. 4).
It is shown in [14] that the nominal system remains stable
with all the poles remaining strictly in the left-half-plane
when the lookahead distance xla is varied from 10m to 50m.
This technique may work for the nominal case but does
not guarantee robust stability against parameter uncertainties.
Instead a better approach is to incorporate uncertainty into
the system (Table I) and use the analysis tools outlined in
section II to assess the robust stability of the system.

A. Frequency Sweeps

For each frequency sweep outlined below, the lookahead
is included as an uncertain parameter with the structured
perturbation block now given as:

∆ = diag(δ r
m, δ r

Iz , δ r
Cf

I4, δ r
Cr

I4, δ r
a I4, δ r

b I4, δ r
xc f

I3, δ r
V I3, δ r

xla
I2)

Running the mu command from the Matlab µ-Tools tool-
box for a frequency sweep of 300 grid points, the upper
bound plot included in Fig. 5 is produced. This upper bound
indicates that this system is not robustly stable for this
level of uncertainty. The lower bound algorithm failed to
return any solution for all grid points. Very little information

TABLE I

PARAMETER VALUES FOR VEHICLE.

Parameter Units Nominal Value Variation
m kg 1640 ± 10%
Iz N/m2 3500 ± 10%

Cf N/rad 100000 ± 5%
Cr N/rad 160000 ± 5%
a m 1.3 ± 10%
b m 1.5 ± 10%

xc f m 0.0772 [-0.1314, 0.2858]
V m/s 30 ± 10%
xla m 30 [10, 50]
k N/m 5000 ± 0%

TABLE II

SUMMARY OF RESULTS.

Description µ Max µ Value Frequency
Mu-Tools UB ‘U’ µU 1.2251 5.6560

State-space skew µ 1 UB µs
U1 1.6899 -

State-space skew µ 2 UB µs
U2 1.6532 -

State-space skew µ 3 UB µs
U3 1.7470 [4,5]

State-space skew µ 1 LB µs
opt1 0.9898 5.4721

State-space skew µ 2 LB µs
opt2 0.9929 4.5270

State-space skew µ 3 LB µs
opt3 0.9965 4.5364

is obtained from this analysis using the µ-Tools toolbox,
considering that the purpose of the lower bound to be twofold
- to obtain a tight gap on the bounds, and to return a valid
destabilizing problem perturbation ∆d . This information is
essential in determining the vector set of parameters that
gives the worst-case response of the system from a time
domain perspective.

B. Frequency Independent Methods

This subsection considers the frequency independent state-
space formulations (10), (12) and (13) outlined in section
III. The augmented perturbation block includes an uncertain
repeated frequency variable. Upper bound results on µ
were obtained using the generalized eigenvalue formulation
outlined in theorem 4. The results are given in Table II. The
peak upper bound value of µ is returned at 1.7470 from the
frequency-bounded state-space approach for the frequency
interval [4,5] rad/s. The clear advantage of this approach
is the ability to select or subdivide frequency intervals a
priori. The first and second state-space formulations also
return good results in this instance. The recursive “finite
frequency” method of [15] may be employed to find a
relatively narrow frequency interval where these peaks
occur. The LMI method of [5] was also used to determine
an upper bound on real µ used since it too allows frequency
intervals to be selected a priori. Implemented using the
mubnd function from the LMI Toolbox, this algorithm
failed to return any solution for any of the 14 frequency
intervals selected due to the computational effort required.
Other similar mixed approaches based on the result in [5],
specifically algorithms outlined in [16], also failed to return
a solution for any frequency interval for this case study.
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Fig. 6. Nominal and worst case time responses for xla = 50m.

Lower bounds on skew µ are obtained using the
optimization-based skew µ algorithm. The results returned
from each of the three state-space approaches are again
included in Table II. The maximum value of µ found
is 0.9965 for a critical frequency of ω = 4.5364 rad/s
using the frequency bounded state-space formulation. This
critical frequency complements the result from the upper
bound approach lying within the frequency interval of [4,5]
rad/s. A further observation stresses the importance of tight
bounds on µ , since the peak upper bound on µ found
is greater than unity while the peak lower bound remains
marginally less than unity. If considered independently, these
are contradicting results. To interpret, the system is not
robustly stable for the levels of uncertainty specified but
no destabilizing problem perturbation that lies within these
allocated uncertainty ranges has been found. For illustrative
purposes, plots of both the upper and lower bounds for each
frequency interval are shown in Fig. 5.

C. Worst-case Time Responses

The accuracy of det(I −M11∆) for each interval for the
optimization algorithm was found to be of the magnitude
10−9 or less, indicating a destabilizing problem perturbation
was found in each case. Fig. 6 shows the time-domain
responses for each of the system states (outputs) to an initial
offset of 0.5m from the road centreline. The lookahead
distance, xla, is 50m for both the nominal and perturbed
time responses. Clearly the optimization-based lower bound
returns a candidate worst-case problem perturbation cor-
responding to very oscillatory responses in Fig. 6. This
perturbation set corresponds to the peak lower bound µ value
of 0.9965.

VI. CONCLUSIONS

In this paper, algorithms that determine reasonable bounds
on skew µ for the case of strictly real and repeated parametric
uncertainty are presented. These algorithms are used with
three different state-space formulations to counteract the dis-
continuity issue associated with “real µ”. The methodologies
outlined have been tested on an experimental drive-by-wire
vehicle, where the physical parameter uncertainty is real-
valued. The frequency bounded state-space approach where
the frequency interval can be selected a priori returned the
best results for this analysis.
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