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Abstract— In this paper, a general control-to-facet problem
for affine systems on polytopes is studied: find an affine
feedback law such that all trajectories of the closed-loop
system leave the state polytope through an a priori specified
(possibly empty) set of facets. Solutions are presented in terms
of (bi)linear inequalities in the coefficients of the affine feed-
back. The result is applied to control synthesis for piecewise-
affine hybrid systems. Using a backward recursion algorithm,
a sufficient condition for reachability of hybrid systems is
obtained, and a piecewise-affine controller is computed that
realizes the required reachability property.

I. INTRODUCTION

In the last decade, modeling and control of hybrid sys-

tems has attracted considerable attention. Nowadays large

numbers of engineering systems are controlled by com-

puters, generating an interaction between the continuous

dynamics of a physical system, and the discrete dynamics

of a computer. This leads to a closed-loop system that is

in fact a hybrid system. Also the modeling of complex

engineering systems themselves is often facilitated by the

use of hybrid system models. Examples of hybrid control

systems are manifold, and range from the control of car

engines to the description of the evolution of biomolecular

networks.

In the literature, a specific subclass of hybrid systems,

called piecewise-affine hybrid systems, introduced by Son-
tag in [12], [13], has been studied quite extensively (see e.g.

[2], and numerous papers in [3], [10], [1]). A piecewise-

affine hybrid system consists of an automaton, with at each

discrete mode of the automaton an affine system on a

polyhedral set, evolving in continuous time. As soon as the

continuous state crosses the boundary of the polyhedral set,

a discrete event occurs, and the automaton switches to a

new discrete mode. There the continuous state is restarted

and will evolve according to the system dynamics of the

affine system corresponding to the new discrete mode. In

every discrete mode, the dynamics of the corresponding

continuous-time affine system, and the polyhedral set on
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which this system is defined, may be different. In this paper

we assume that at each discrete mode the corresponding

affine dynamics are defined on a polytope, i.e. on a bounded
polyhedral set, and that the discrete event that occurs upon

reaching the boundary of a polytope, depends only on the

facet through which the polytope is left.

In this setting, we study the following problem on the

interaction between the continuous and discrete dynamics

of a piecewise-affine hybrid system: is it possible to use
affine state feedback to guarantee that in a given discrete
mode, the continuous state trajectory will leave the state
polytope through an element of an a priori specified set
of possible exit facets? A solution to this problem can be
used to influence the discrete behavior of a hybrid system

in the following way. In each discrete location, affine state

feedback is applied to enable or disable certain sets of

events in the discrete automaton, by steering the continuous

state to a suitable set of exit facets. By combining the

control laws for the continuous state in all discrete locations,

an abstraction of the hybrid system is obtained in terms

of a finite, possibly non-deterministic, automaton. The goal

is to find an affine control law in each discrete location

such that the overall closed-loop system meets the a priori

given control objectives, like certain reachability properties

or guaranteeing safety.

To study the problem described above, we focus our

attention on one discrete mode of a hybrid system, and

consider an affine system on a full-dimensional polytope

P . Given a subset E of the set of all facets of P , the
question is to find necessary and sufficient conditions for

the existence of an affine state feedback, such that all

trajectories of the closed-loop system can only leave P
through one of the facets in E , and do so in finite time.

In several respects, this problem may be considered as an

extension of the control problem that was solved in [6].

Although the problem formulation in [6] looks similar, there

are major differences. First of all in [6] only one exit facet

is allowed, i.e. E contains one single element. In this paper,

E may contain an arbitrary number of elements. Secondly,

in [6] it is assumed that every state trajectory starting on

the exit facet must leave the state polytope instantaneously.

In [6] this requirement is needed for technical reasons,

although it has no particular meaning in a hybrid systems

context. In the present paper, this additional assumption is

not needed any longer.

The approach to reachability analysis and control syn-

thesis for piecewise-affine hybrid systems described in this
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paper is based on a decomposition of the continuous and

discrete dynamics as proposed in [11]. In [5], the relation-

ship of these questions with control-to-facet problems was

investigated. Note however that in general reachability of

piecewise-affine hybrid systems is undecidable (see [14],

and [8] for some related results). One problem is that an

exact analysis would require integration of the continu-

ous dynamics in combination with an iterative refinement

technique, which makes the problem intractable. In this

paper, we use a more pragmatic approach, that can be

regarded as an extension of the results in [7]. By avoiding

integration of the continuous dynamics, one may obtain

sufficient conditions for reachability of hybrid systems,

that can be verified algorithmically in a finite number of

steps. Note however, that the method is conservative in

that it may fail to find a controller, even if one exists.

Nevertheless, this is the best one can expect for a problem

that is undecidable. In comparison with [7], this paper is

more general because it also covers the situation of general

full-dimensional polytopes. At the same time the derivation

of the result has been simplified.

The paper is organized as follows. The next section con-

tains an exact formulation of the control-to-facet problems

considered in this paper, and introduces some terminology

needed in the sequel. In Section III an important intermedi-

ate result is presented, relating the existence of fixed points

with the existence of state trajectories never leaving the

state polytope. In Section IV the control-to-facet problems

formulated in Section II are studied. If the state polytope is

a simplex, a complete solution of all problems is possible in

terms of linear inequalities on the inputs at the vertices of

the simplex. For general polytopes, a solution is presented,

mainly in terms of linear inequalities on the coefficients of

the affine state feedback. In Section V it is explained how

solutions to the control-to-facet problems can be applied

in the control of hybrid systems. Conclusions and final

remarks are stated in Section VI.

II. PROBLEM DESCRIPTION

Let N ∈ N, and let v1, . . . , vM be M points in R
N

(M ≥ N + 1), such that there is no hyperplane in R
N

containing all M points. Then the convex hull P :=

Conv({v1, . . . , vM }) is called a full-dimensional polytope in
R

N . The points in {v1, . . . , vM } that cannot be written as

the convex combination of two other points in P are called
the vertices of P; the set of all vertices of P is denoted
by V(P). A full-dimensional polytope in R

N with exactly

N + 1 vertices is called a simplex.
Alternatively, a polytope is characterized as the intersec-

tion of a finite number of halfspaces. A face of a polytope
P is the intersection of P with one of its supporting
hyperplanes. The faces of dimension N−1 are called facets.
Let F (P) = {H1, . . . , HK } denote the set of all facets

of the polytope P . Every facet Hi , (i = 1, . . . , K ), is

contained in a hyperplane nT
i x = αi . Here ni ∈ R

N is

a normal vector of Hi , and αi ∈ R. Throughout the paper

we use the convention that ni is of unit length, and points

out of the polytope P , implying that P = {x ∈ R
N | nT

i x ≤

αi , i = 1, . . . , K }.

On the full-dimensional polytope P we consider an affine
system

ẋ = Ax + Bu + a, x(0) = x0, (1)

with state x ∈ P ⊂ R
N , and input u ∈ U , where U denotes

a closed polytope in R
m , implicitly described by

U = {u ∈ R
m | ∀ j = 1, . . . , L : mT

j u ≤ β j }, (2)

with m j ∈ R
m and β j ∈ R, ( j = 1, . . . , L). We assume

that differential equation (1), fixed by the matrices A ∈

R
N×N , B ∈ R

N×m , and vector a ∈ R
N , remains valid

as long as the state x is contained in the state polytope P .
Then (1) describes the continuous dynamics of a piecewise-

affine hybrid system at one discrete location. In this hybrid

setting, departure of the continuous state through a specific

facet of P enforces the occurrence of a particular event, that
transfers the hybrid system to a new discrete location. In

order to understand and influence this interaction between

the continuous and discrete dynamics of a hybrid system,

we study the following control problems for affine systems

on polytopes.

Problem 2.1: Consider affine system (1) on polytope P ,
and with input u ∈ U . Let E be a (non-empty) subset of

the set F (P) of facets of P . Find F ∈ R
m×N and g ∈ R

m

such that the affine feedback law u = Fx +g is admissible,
i.e. Fx + g ∈ U for all x ∈ P , and all solutions of the
corresponding closed-loop system

ẋ = (A + B F)x + (a + Bg), x(0) = x0, (3)

have the following property: for every x0 ∈ P there exist
T ≥ 0 and ε > 0 such that solution x(t, x0) of (3) satisfies
(i) x(t, x0) ∈ P for all t ∈ [0, T ],

(ii) x(t, x0) �∈ P for all t ∈ (T, T + ε),

(iii) ∃H ∈ E : x(T, x0) ∈ H .
Conditions (i) and (ii) in Problem 2.1 state that at time T
trajectory x(t, x0) leaves the state polytope P for the first
time. In particular, it is guaranteed that all solutions of (3)

leave P in finite time. According to condition (iii), solutions
always leave P through a facet in E . Therefore, the facets

in E are called admissible exit facets.

In a hybrid systems context, it is also useful to search

for control laws that guarantee that no further events take

place. The corresponding continuous-time control problem

is stated next.

Problem 2.2: Consider affine system (1) on polytope P ,
and with input u ∈ U . Find F ∈ R

m×N and g ∈ R
m such

that the affine feedback law u = Fx + g is admissible,
i.e. Fx + g ∈ U for all x ∈ P , and all solutions of the
corresponding closed-loop system

ẋ = (A + B F)x + (a + Bg), x(0) = x0,

4176



satisfy

∀x0 ∈ P ∀t ≥ 0 : x(t, x0) ∈ P. (4)

Condition (4) in Problem 2.2 states that all solution

trajectories of the closed-loop system remain in P forever,
guaranteeing that none of the facets of P is ever crossed.

III. GUARANTEEING DEPARTURE FROM A

POLYTOPE IN FINITE TIME

In this section we consider an autonomous affine system

on a polytope, and focus on a sub-problem of Problem 2.1:

we derive necessary and sufficient conditions that guarantee

that all solution trajectories of an autonomous affine system

leave a polytope in finite time. In a hybrid system context,

this result is needed to assure that in the corresponding

discrete location, eventually a discrete event will occur. In

this way it is possible to avoid undesirable deadlocks in the

automaton, underlying the hybrid system.

Theorem 3.1: Let P be a closed full-dimensional poly-
tope in R

N , and let A ∈ R
N×N and a ∈ R

N . Consider the

affine autonomous system

ẋ = Ax + a, x(0) = x0, (5)

and let x(t, x0) denote the solution trajectory of (5) with
initial state x0. Then the following properties are equivalent

(i) For all x0 ∈ P , trajectory x(t, x0) leaves P in finite
time.

(ii) ∀x ∈ P: Ax + a �= 0.

(iii) ∃n ∈ R
N : ∀x ∈ P: nT (Ax + a) > 0.

(iv) ∃n ∈ R
N : ∀v ∈ V(P): nT (Av + a) > 0.

Theorem 3.1 states that the required property that all state

trajectories leave the polytope P in finite time is equivalent
with the absence of a fixed point in P . Alternatively, the
property is equivalent with the existence of a direction n,
such that in all vertices of P the vector field Ax + a has a
positive component in the direction of n.

Proof of Theorem 3.1: (i) �⇒ (ii): If x0 ∈ P is such that
Ax0 + a = 0, then x(t, x0) ≡ x0 is a solution that remains
in P forever, which contradicts (i).
(ii) �⇒ (iii): If Ax + a �= 0 for all x ∈ P , then Q :=

{Ax +a | x ∈ P} is a closed polytope, not containing 0. So

there exists a hyperplane nT x = α, with α > 0, separating

Q and {0}. It follows that ∀y ∈ Q : nT y > α. In particular,

nT (Ax + a) > α > 0 for all x ∈ P .
(iii) �⇒ (iv): Trivial.

(iv) �⇒ (i): Let n ∈ R
N be such that nT (Av + a) > 0

for all vertices v ∈ V(P). Choose β ∈ R such that ∀x ∈

P : nT x < β, and c > 0 such that in every vertex v ∈

V(P): nT (Av + a) > c. Then nT (Ax + a) > c for all
x ∈ P . Indeed, if x ∈ P , there exist v1, . . . , vk ∈ V(P) and

λ1, . . . , λk ∈ [0, 1] such that
∑k

i=1 λi = 1 and
∑k

i=1 λivi =

x . Hence

nT (Ax + a) = nT (A
k∑

i=1
λivi +

k∑
i=1

λi a)

=

k∑
i=1

λi n
T (Avi + a) >

k∑
i=1

λi c = c.

Let x(t, x0) be a solution of (5), and suppose that x(t, x0) ∈

P for all t ≥ 0. Define y(t) = nT x(t, x0). Then on the one
hand y(t) < β for all t ≥ 0, because x(t, x0) remains in
P . On the other hand, ẏ(t) = nT ẋ(t, x0) = nT (Ax(t, x0)+

a) > c for all t ≥ 0, i.e. y grows with a speed of at least
c. So y(t) ≥ nT x0 + ct for all t ≥ 0, which leads to a

contradiction because y(t) < β for all t ≥ 0. We conclude

that x(t, x0) must leave P in finite time. �

IV. SOLVING CONTROL TO FACET PROBLEMS

In this section we present solutions to the control prob-

lems stated in Section II, mainly in terms of linear inequal-

ities on the coefficients of the pair (F, g) ∈ R
m×(N+1),

that describes the affine feedback law u = Fx + g. In most
results, convexity plays a major role, because it can be used

to extend certain properties valid at all vertices of a facet

to all points of this facet.

In both control problems of Section II it is required to

design a control law that guarantees that no solution of the

closed-loop system can leave the state polytope P through
a facet that does not belong to the set E of admissible exit

facets. Therefore, we first consider the problem of avoiding

non-admissible exit facets.

Lemma 4.1: Consider an affine system ẋ = Ax + Bu +a
on a full-dimensional polytope P , and with u ∈ U , where
U is a closed polytope, implicitly described by (2). Let E
be the (possibly empty) set of admissible exit facets. For

every facet H of P , we denote by V(H ) the set of vertices

of H , and by nH the normal vector of H of unit length and
pointing out of P . Let F ∈ R

m×N and g ∈ R
m . Then the

following two statements are equivalent:

(A) The affine state feedback u = Fx + g is admissible,
and for all x0 ∈ P solution x(t, x0) of the closed-loop
system satisfies the following property

∃T ≥ 0 ∃ε > 0 : (∀t ∈ [0, T ] : x(t, x0) ∈ P∧

∀t ∈ (T, T + ε) : x(t, x0) �∈ P)

�⇒

∃H ∈ E : x(T, x0) ∈ H.

(B) The following set of linear inequalities is satisfied:

(i) ∀v ∈ V(P) ∀ j ∈ {1, . . . , L} : mT
j (Fv + g) ≤ β j ,

(ii) ∀H ∈ F (P)\E ∀v ∈ V(H ) : nT
H ((A + B F)v +

(a + Bg)) ≤ 0.

Proof: (A) �⇒ (B): If feedback u = Fx + g is admissible,
then Fv + g ∈ U for all v ∈ V(P), and formula (2) for

U implies that (i) holds. To prove (ii), let H ∈ F (P)\E ,

and suppose that there is a vertex v ∈ V(H ), such that
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nT
H ((A + B F)v + (a + Bg)) > 0. Then, due to continuity,

there also exists a point x0 in the relative interior of H ,
such that nT

H ((A + B F)x0+ (a + Bg)) > 0. Hence x(t, x0)
leaves P at time 0, despite the fact that H is the only facet
to which x0 belongs. This yields a contradiction, because
trajectories of the closed-loop system can only leave P
through an admissible exit facet.

(B) �⇒ (A): Condition (i) states that feedback u = Fx +

g is admissible: u = Fx + g ∈ U for all x ∈ P . Condition
(ii) of (B) expresses that the state of the closed-loop system

can only leave P through an admissible exit facet H ∈

E . If the inequalities in (ii) are strict, this is obvious, and

otherwise, in case of non-strict inequalities, one may use

the same perturbation argument as in [6, Appendix A] to

prove this claim. �

Next, solutions to Control Problems 2.2 and 2.1 are

obtained as special cases of Lemma 4.1.

Theorem 4.2: Consider an affine system (1) on a full-
dimensional polytope P , and with inputs u from an input
polytope U , implicitly described by (2). Let F ∈ R

m×N

and g ∈ R
m . Then u = Fx + g is an admissible affine state

feedback that solves Problem 2.2 if and only if

(i) ∀v ∈ V(P) ∀ j ∈ {1, . . . , L} : mT
j (Fv + g) ≤ β j ,

(ii) ∀H ∈ F (P) ∀v ∈ V(H ) : nT
H ((A + B F)v + (a +

Bg)) ≤ 0.

Proof: Apply Lemma 4.1 with E = ∅. �

Theorem 4.3: Consider an affine system (1) on a full-
dimensional polytope P , and with inputs u from an input
polytope U , implicitly described by (2). Let E ⊂ F (P) be

a non-empty set of admissible exit facets. Let F ∈ R
m×N

and g ∈ R
m . Then u = Fx + g is an admissible affine state

feedback that solves Problem 2.1 if and only if

(i) ∀v ∈ V(P) ∀ j ∈ {1, . . . , L} : mT
j (Fv + g) ≤ β j ,

(ii) ∀H ∈ F (P)\E ∀v ∈ V(H ) : nT
H ((A + B F)v + (a +

Bg)) ≤ 0.

(iii) ∃n ∈ R
N : ∀v ∈ V(P) : nT ((A+B F)v+(a+Bg)) >

0.

Proof: Condition (i) is equivalent with the fact that feedback
u = Fx + g is admissible. According to Theorem 3.1, all
trajectories of the closed-loop system leave P in finite time
if and only if condition (iii) is satisfied. Finally, Lemma

4.1 states that condition (ii) guarantees that trajectories can

only leave through an admissible exit facet. �

Note that conditions (i) and (ii) of Theorem 4.2 just

consist of a system of linear inequalities in the coefficients

of F and g. Therefore, the existence of a solution (F, g) to

this system of linear inequalities can be tested using existing

software on polyhedral sets. Furthermore, every solution to

the linear inequalities (i) and (ii) corresponds to an affine

feedback law u = Fx + g that solves Control Problem
2.2. In Theorem 4.3 the situation is slightly different. Still,

conditions (i) and (ii) of Theorem 4.3 consist of linear

inequalities in the coefficients of F and g. Condition (iii)
however, is not just a linear inequality in several unknowns.

In (iii), both the pair (F, g) of feedback coefficients and

the normal vector n are unknowns, and since also products
of these terms occur, the inequalities in (iii) seem to be

bilinear. The algorithmic solution of this type of equations,

in combination with the linear inequalities in (i) and (ii),

is subject of current research of the authors, and is not

presented in this paper. Instead, we consider the special

case in which the state polytope of the affine system is a

simplex. In this case, explicit solution of the inequalities in
(iii) can be avoided, using an alternative approach purely

based on the solution of linear inequalities. The rest of this

section is devoted to the elaboration of this result.

First we observe that every affine function f is uniquely
determined by its values at the vertices of a full-dimensional

simplex. So, for a system on a simplex S, we may de-
termine suitable inputs at the vertices first, and compute

the corresponding affine feedback law realizing these inputs

afterward, instead of working with the closed-loop system

from the very beginning. To solve Problem 2.1, the inputs

at the vertices have to be chosen in such a way that the

vector field of the corresponding closed-loop system has no

fixed points inside S and does not point outward on non-
admissible exit facets. Furthermore, instead of collecting all

inequalities in which the normal vector n H of one particular

facet is involved, all inequalities valid at one vertex of a

simplex are collected.

Theorem 4.4: Consider an affine system (1) on a full-
dimensional simplex S in R

N , and with inputs u from an
input polytope U ⊂ R

m . Let E ⊂ F (S) be a non-empty

set of admissible exit facets. Let V(S) = {v1, . . . , vN+1}
be the set of vertices of S. For i = 1, . . . , N + 1, let Fi =

{H ∈ F (S) | vi ∈ V(H )} denote the set of all facets of S
of which vi is a vertex. For every i ∈ {1, . . . , N + 1} we

define the (possibly empty) polytope

Ui := {u ∈ U | nT
H (Avi + Bu + a) ≤ 0 for all H ∈ Fi\E}.

Then Control Problem 2.1 is solvable if and only if the

following conditions are satisfied:

(i) Ui �= ∅ for all i = 1, . . . , N + 1,

(ii) For all i ∈ {1, . . . , N +1} there is a vertex wi ∈ V(Ui )

such that

0 �∈ Conv({Avi + Bwi + a | i = 1, . . . , N + 1}).

In particular, if inputs ui ∈ Ui , (i = 1, . . . , N + 1) are

chosen in such a way that 0 �∈ Conv({Avi + Bui + a | i =

1, . . . , N + 1}), then an admissible affine state feedback

solving Problem 2.1 is given by u = Fx + g, with F ∈

R
m×N and g ∈ R

m the unique solution of

⎛
⎜⎝

vT
1 1
...

...

vT
N+1 1

⎞
⎟⎠

⎛
⎜⎜⎝

FT

gT

⎞
⎟⎟⎠ =

⎛
⎜⎝

uT
1
...

uT
N+1

⎞
⎟⎠ . (6)
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Proof: (Necessity) Assume that u = Fx+g is an admissible
affine state feedback solving Control Problem 2.1. For i =

1, . . . , N + 1 we define ui := Fvi + g. Then ui ∈ Ui ,

because u = Fx + g is admissible, and, by interchanging
the universal quantifiers in condition (ii) of Theorem 4.3,

nT
H (Avi + Bui + a) = nT

H ((A + B F)vi + (a + Bg)) ≤ 0

for all H ∈ Fi\E . Furthermore, condition (iii) of Theorem

4.3 implies that there exists an n ∈ R
N such that nT (Avi +

Bui + a) > 0 for all i = 1, . . . , N + 1. So, every polytope

Ui contains a point ui such that Avi + Bui + a belongs
to the open half space nT x > 0. Then also one of the

vertices wi of Ui satisfies nT (Avi + Bwi + a) > 0. Hence,

Conv({Avi + Bwi + a | i = 1, . . . , N + 1}) is contained in

the half space nT x > 0, and condition (ii) is satisfied.

(Sufficiency) Assume that conditions (i) and (ii) are

satisfied. Then there exist inputs ui ∈ Ui , (i = 1, . . . , N+1)

such that 0 �∈ Conv({Avi + Bui + a | i = 1, . . . , N + 1}).

Let u = Fx + g be the corresponding affine state feedback,
obtained by solving the set of linear equalities (6). Then

condition (i) of Theorem 4.3 is satisfied, because Fvi +g =

ui ∈ U for all i = 1, . . . , N + 1. Let H be a facet in
F (S)\E , and vi be a vertex of H . Then H ∈ Fi\E , and

nT
H ((A + B F)vi + (a + Bg)) = nT

H (Avi + Bui + a) ≤ 0,

because ui ∈ Ui . Hence, also condition (ii) of Theorem

4.3 is satisfied. Finally, since 0 �∈ Conv({Avi + Bui + a |

i = 1, . . . , N + 1}) =: R, there exists a hyperplane
nT x = α with α > 0, that separates R and {0}. So, for all

i = 1, . . . , N + 1 we have nT ((A + B F)vi + (a + Bg)) =

nT (Avi + Bui +a) > α > 0, and condition (iii) of Theorem

4.3 is valid. So u = Fx + g solves Control Problem 2.1. �

Remark 4.5: The necessary and sufficient conditions
stated in Theorem 4.4 can be checked in a finite number

of steps, using existing software on polyhedral sets (see

e.g. [4], [9], [15]). Furthermore, the result provides a con-

structive method to compute an admissible affine feedback

solution to Control Problem 2.1.

V. APPLICATION TO CONTROL OF HYBRID

SYSTEMS

In this section we show how solutions to the control-

to-facet problems that were derived in this paper, can be

applied to control synthesis for hybrid systems. For this,

we have to introduce the class of piecewise-affine hybrid

systems, mentioned in Section I, in a more formal way.

Definition 5.1: A piecewise-affine hybrid system consists
of a discrete event system (Q, E, f ), (where Q denotes a
finite state set, E a set of events, and f :⊂ (Q × E) → Q
the partial transition function), interacting with |Q| affine

systems on polytopes. For every q ∈ Q, the continuous
dynamics at state q is described by the affine system

ẋq(t) = Aq xq(t) + Bqu(t) + aq, xq(t0) = x0q , (7)

on a full-dimensional polytope Pq ⊂ R
N , and with input

u ∈ U , where U is a polytope in R
m . Differential equation

(7) remains valid until xq(t) crosses a guard Gq(e) ⊂ ∂ Pq .

At that time instant t1 ≥ t0, discrete event e occurs and

1) the discrete state transfers to q+ = f (q, e),
2) the continuous state is reset by an affine reset map,

x0q+ = R(q, e, q+)xq(t1)+ r(q, e, q+), and continues

to evolve according to the new differential equation

ẋq+(t) = Aq+xq+(t) + Bq+u(t) + aq+, xq+(t1) = x0q+ .

In this paper, it is additionally assumed that every guard set

Gq(e) consists of facets of the polytope Pq , i.e. ∀(q, e) ∈

dom( f ) : Gq(e) ⊂ F (Pq ).

Clearly, the behavior of a piecewise-affine hybrid system

consists of a discrete and a continuous component. The

continuous component may be influenced directly by ap-

plication of an admissible affine feedback law

u = kq(xq) = Fq xq + gq , (8)

at each discrete state q ∈ Q. A piecewise-affine state
feedback {kq | q ∈ Q} also influences indirectly the discrete

component of the behavior of a hybrid system. After appli-

cation of a piecewise-affine state feedback, an autonomous

hybrid system is obtained. The discrete component of the

behavior of this system may be regarded as the trajectories

of a discrete event system. In this section we will present

a method to compute an admissible affine state feedback

(8) in each discrete state q ∈ Q, such that the discrete
component of the behavior of the closed-loop hybrid system

satisfies one of the following reachability properties.

Problem 5.2 (Reach-avoid problem): Given a piecewise-
affine hybrid system, with initial discrete state q0 and
required final discrete state q f . Let Qu ⊂ Q be a set of
unsafe discrete states that have to be avoided. Determine

a piecewise-affine state feedback {kq | q ∈ Q}, such that

any hybrid trajectory of the closed-loop system, starting in

discrete state q0 (and with continuous initial state xq0(0) an

arbitrary element of Pq0 ), reaches discrete state q f in finite

time, without visiting unsafe states q ∈ Qu . In the reach-
avoid-stay problem there is the additional requirement that
every discrete state trajectory that reaches q f , terminates

because the affine feedback u = Fq f xq f + gq f at discrete

state q f is such that the continuous state xq f never leaves

the state polytope Pq f after arriving there.

Sufficient conditions for solving Problem 5.2 can be

obtained using the solutions to the control-to-facet problems

in Section IV. Let q ∈ Q, with corresponding state polytope
Pq , and let Qc ⊂ Q. We define

E(q, Qc) = {e ∈ E | (q, e) ∈ dom( f ) and f (q, e) ∈ Qc},

H(q, Qc) = {H ∈ F (Pq) | ∃e ∈ E(q, Qc) : H ⊂ Gq(e)}.

I.e. E(q, Qc) consists of all events that lead to a transition

from discrete state q to a discrete state belonging to the
set Qc. H(q, Qc) is the corresponding set of facets; an

event e ∈ E(q, Qc) is triggered if and only the continuous

4179



state leaves polytope Pq through a facet in H(q, Qc). So,

to guarantee that in finite time a discrete transition takes

place from location q to a discrete state in Qc, by using an

affine feedback control law on the continuous state, Problem

2.1 has to be solved for the set H(q, Qc) of possible exit

facets. Since necessary and sufficient conditions for this

problem have been formulated in Theorem 4.3, we obtain

the following backward recursion algorithm for solving

Problem 5.2

Algorithm 5.3: Given: a piecewise-affine hybrid system,
with initial discrete state q0, required final discrete state q f ,

and unsafe state set Qu . Assume that q f �∈ Qu .

(1) j := 0; Q−1 := ∅; Q0 := {q f };

(2) While q0 �∈ Q j and Q j �= Q j−1 do

Q j+1 := Q j ∪ {q ∈ Q\Qu | Problem 2.1 with

E = H(q, Q j ) is solvable at location q};

j := j + 1;

end

The output of the algorithm is an increasing sequence of

sets of discrete locations Q j , j = −1, 0, 1, . . . , � and a set

of affine feedback laws {kq | q ∈ Q�\{q f }}.

Theorem 5.4: Consider a piecewise-affine hybrid system
with initial location q0, required final location q f , and

set Qu of unsafe states. Let the sequence Q j , j =

−1, 0, 1, . . . , � and the piecewise affine feedback law {kq |

q ∈ Q�\{q f }} be the outputs of Algorithm 5.3. If q0 ∈ Q�,

then the reach-avoid problem 5.2 is solved by application

of the piecewise-affine feedback {kq | q ∈ Q�\{q f }}.

If, additionally, there exists an admissible affine feedback

kq f that satisfies the conditions of Theorem 4.2 at discrete

location q f , then the reach-avoid-stay problem 5.2 is solved

by the piecewise-affine feedback law {kq | q ∈ Q�}.

Remark 5.5: Theorem 5.4 only provides a sufficient con-
dition for the solution of Problem 5.2. Therefore the con-

dition is conservative in the sense that Problem 5.2 may

be solvable, although Algorithm 5.3 fails to find a solution.

This conservatism is mainly due to the fact that the reset

maps and the corresponding initial states of the continuous

dynamics are not used in the algorithm. Nevertheless, suf-

ficient conditions to verify reachability properties of hybrid

systems are the best one can hope for, because the general

reachability problem for hybrid systems has been shown to

be undecidable ([14]). The main advantage of the approach

described in this paper is its computability. The algorithm

consists of a co-reachability algorithm for discrete event

systems, combined with the verification of the solvability of

sets of (bi)linear inequalities at each discrete state. Note that

our solution method prevents the discrete event system from

repeated switching between two or more discrete states. The

outcome of the co-reachability algorithm guarantees that in

all trajectories that reach the final discrete state q f , each

discrete state is visited at most once.

VI. CONCLUSIONS AND FINAL REMARKS

In this paper, necessary and sufficient conditions were

derived for the existence of an affine feedback, that steers

all trajectories of an affine system on a polytope in finite

time to an a priori specified set of exit facets. The conditions

consist of (bi)linear inequalities in the coefficients of the

affine feedback law. For affine systems on simplices, an

explicit solution procedure was presented, purely based on

the solution of linear inequalities.

The result was used for control synthesis for piecewise-

affine hybrid systems. An algorithm was presented to con-

struct a piecewise-affine control law that solves a reachabil-

ity problem, meanwhile guaranteeing safety. The algorithm

is conservative, in that it may fail to find a suitable control

law, even if one exists. However, since in general reachabil-

ity of hybrid systems is undecidable, sufficient conditions

combined with a synthesis procedure are of interest.

More research is required for a detailed elaboration of

the algorithms; in particular, efficiency questions should be

considered.
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