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Abstract— We consider stabilisation of SISO switched linear
systems of arbitrary order. Our approach is motivated by
applications in which the major design objective is to achieve
similar behaviour of the closed-loop system in each mode.
We exploit the algebraic properties of a class of matrices to
develop design guidelines to achieve this goal for a class of SISO
switched linear systems. It is shown that closed-loop stability
and transient-free switching can be achieved simultaneously.

I. INTRODUCTION

In this paper we consider stabilisation of classes of linear

time-varying single-input single-output systems of the form

ẋ(t) = A(t)x(t) + b(t)u(t),
y(t) = cT(t)x(t)

where A(·), b(·), cT(·) are piecewise constant functions such

that {A(t), b(t), cT(t)} ∈{{A1, b1, c
T
1 }, . . . , {AN , bN , cT

N}}.

We refer to the LTI system defined by the triple {Ak, bk, cT
k }

as mode k of the switched system, k ∈ I = {1, . . . , N}. At

any time-instant the dynamics of the system are described

by exactly one of those LTI systems.

Our approach in this paper is to find a set of stabilising

controllers for a given switched linear process with N modes.

The mode-switches of the process may occur arbitrarily but

are detected by the switching unit. We apply a controller

structure as depicted in Figure 1 where the controller for each

mode is realised as a single LTI system. At any switching

instant of the plant, the appropriate controller is deployed in

the closed loop by switching the plant input to the respective

controller output. To aid analysis we make the assumption

that there is no time-delay between the switching of the plant

and switching of the controller output. Such a controller

structure is referred to as local-state controller [1].

Systems of this generic structure appear naturally in many

applications; see [2], [3], [4], [5], [1]. Despite considerable

progress on the analysis of switched systems (see [6], [7]

and references therein) many problems in this general area

remain unsolved. In particular, given the frequency with

which one finds switched linear control systems in practice,

one of the most pressing needs is for the development of

analytic tools for the design of such systems.

Our contribution in this paper is to develop tools for the

design of a class of such systems.
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Fig. 1. Structure of the considered switched linear system

II. PROBLEM STATEMENT

The plant dynamics are given by the linear time-varying

differential equation of the form

y(np) =
np−1∑
l=0

ql(t)y(l) + p0(t)u (1)

where y(np) denotes the np’th derivative of y(t) and p0(t),
ql(t) are piecewise constant functions taking on values

in the finite sets p0(t) ∈ {p01, . . . , p0N}, and ql(t) ∈
{ql1, . . . , qlN} ∀ l = 0, . . . , np−1. The discontinuities occur

simultaneously such that p0(t) = p0k whenever ql(t) = qlk

for all l = 0, . . . , np − 1 where k denotes the plant-mode

k ∈ I = {1, . . . , N}.

Thus at any time instant the plant dynamics in Figure 1

correspond to exactly one of the N linear systems

ẋ(t) = Akx(t) + bku(t) (2a)

y(t) = cT x(t) (2b)

where

Ak =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1 0 · · · 0
... 0 1

. . .
...

...
. . .

. . .
. . . 0

0 · · · · · · 0 1
−q0k −q1k · · · · · · −qn−1k

⎞
⎟⎟⎟⎟⎟⎟⎠

cT =
(

1 0 · · · 0
)

, bk =
(

0 · · · 0 p0k

)T
.

With each mode k ∈ I we associate the proper transfer

function

Pk(s) = cT (sI − Ak)−1bk.
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We shall assume that the mode-switches of the plant are

immediately detectable such that the switching instances can

be assumed to be known for the controller. Given these

assumptions, our objective is to design a controller such that

the closed-loop system

• is asymptotically stable for arbitrary switching signals,

• has the poles Λt ⊂ C−, specified independently of the

plant mode k ∈ I,

• and has little or no transients induced by the switching

action.

III. PRELIMINARY DISCUSSION: BASIC IDEAS

In order to achieve the design objectives we associate an

individual controller for each plant mode k ∈ I. We choose

a controller architecture where each controller is realised as

an LTI system as depicted in Figure 1.

The dynamics of the individual controllers are given by

ẋk(t) = Kkxk(t) + lke(t) (3a)

uk(t) = mT
k xk(t) + jke(t) (3b)

where xk(t) ∈ R
nc is the state-vector of the controller

associated with mode k ∈ I; the input e(t) ∈ R is shared by

all controllers and each controller has an individual control

signal uk(t) ∈ R. For the realisation of the controllers we

choose the control canonical form as above with Kk ∈
R

nc×nc , lk, mT
k ∈ R

nc and jk ∈ R. The respective transfer

functions are given by

Ck(s) = mT
k (sI − Kk)−1lk.

As design-law for the controllers we choose a set of

stable target-poles Λt and design the controllers using pole-

placement such that the closed-loop system in each mode

has the specified target-poles Λt.

Assumption 3.1 (Pole-placement): For each plant-mode

k ∈ I the controller Ck(s) is designed such that the poles

of the closed loop transfer function

Ck(s)Pk(s)
1 + Ck(s)Pk(s)

lie in the open left half-plane and are constant for all k ∈ I.

We denote those target poles by Λt = {λ1, . . . , λnp+nc}
accounting for multiplicity. The resulting controllers have

poles in the open left half-plain.

The state x of the switched closed-loop system consists

of the plant-states xp and the controller-states xk

x =
(
xT

p xT
1 . . . xT

N

)T

where x ∈ R
n, n = np +Nnc. For the switched closed-loop

system we then obtain

ẋ(t) = H(t)x(t) , (4)

where H(·) is an arbitrary piecewise constant function H :
R → H = {H1, . . . , HN} ⊂ R

n×n. The constituent system

matrices in each mode k ∈ I are given by

Hk =

⎛
⎜⎜⎜⎜⎜⎝

Ak − bkjkck bkmT
1 δk1 · · · bkmT

NδkN

−l1c
T K1 0

...
. . .

−lNcT 0 KN

⎞
⎟⎟⎟⎟⎟⎠

(5)

where δkj is the Kronecker symbol.

Before we present the main results we note some prelimi-

nary observations. Given the plants (2) and controllers (3) in

control-canonical form, all closed-loop system matrices Hk

are identical except for the np-th row, Furthermore as all but

one of the sets of Kronecker symbols are equal to 0, we have

that σ(Hk) ⊃ σ(Kl) for l �= k. By design (Assumption 3.1)

the remaining eigenvalues are given by Λt for all k ∈ I.

Thus the spectrum of Hk is given by

σ(Hk) = Λt ∪
⋃
l �=k

σ(Kl) ,

accounting for multiplicities. Therefore the matrices Hk have

pairwise np + (N − 1)nc common eigenvalues.

A useful consequence of this approach is that the subspace

corresponding to the target poles do not depend on k given

some mild conditions. This fact shall be useful in the

following discussion and we state it formally as the following

lemma.

Lemma 3.1: Let λ ∈ Λt be a simple eigenvalue of each

Hk, then there exists a vector v �= 0 such that for all k ∈ I

Hkv = λv . (6)

Proof: As λ ∈ σ(Hk) we have that the rows h̃jk of

λI − Hk are linearly dependent for each k. On the other

hand, all the rows, but the np’th are independent of k. By

inspection the set of n − 1 rows obtained by omitting the

np’th row is linearly independent, since by assumption λ is

not an eigenvalue of one of the controllers Kk, k ∈ I. Thus

for each k there are constants γjk such that

h̃nk =
∑
j �=n

γjkh̃jk . (7)

Now by definition an eigenvector v of H1 corresponding

to the eigenvalue λ satisfies h̃j1v = 0, j = 1, . . . , n. This

implies that h̃jkv = 0, j = 1, . . . , n, j �= np for each k ∈ I.

This, however, implies by (7) that also h̃nkv = 0, so that we

have (λI − Hk)v = 0.

Hence, all closed-loop system matrices Hk have np + nc

eigenvectors in common. This fact can be exploited to derive

simple conditions for stability as we shall discuss in the

following section.

IV. STABILITY

Assume that we are given N matrices of the form (5) and

that the poles of the individual systems have been placed so

that Lemma 3.1 is applicable.

3977



Let the columns of Vt ∈ C
n×(np+nc) form a basis of the

common subspace of all matrices Hk ∈ H and consider the

matrix

T :=
(
Vt enp+nc+1 · · · en

)
. (8)

Note that T is invertible as the vectors e(np+nc+1), . . . , en

form a basis of an invariant subspace of H1, which does not

intersect span Vt as Λt ∩ σ
(
Kk

)
= ∅ ∀ k ∈ I.

Applying the similarity transformation T we obtain

T−1H1T = diag (Dt, K2, . . . , KN ) ,

T−1H2T = diag (Dt,K2, . . . , KN ) + T−1enh̃T
2 T ,

up to

T−1HNT = diag (Dt, K2, . . . , KN ) + T−1enh̃T
NT ,

where σ(Dt) = Λt and h̃m := hmnp
− h1np

denotes

the differences between the np’th rows of Hm and H1.

As implied by our construction the differences between the

matrices are all multiples of the same columns. Furthermore

inspection of the np’th rows of the matrices Hk shows that

h̃m can only have nonzero entries in its first np+nc positions

and in the positions np+(m−1)nc+1, . . . , np+mnc. Hence,

in the lower block corresponding to the controllers only the

controller Km is perturbed. So that for m = 2, . . . , N the

matrices after similarity transformation are of the form

T−1HmT =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

Dt 0 . . . U1m 0
0 K2 0 U2m 0
...

. . .
...

...

Km + Umm

0
UNm KN

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

where Um =
(
UT

1m UT
2m . . . UT

Nm

)T ∈ R
n×nc denotes

the perturbation term of the m’th system. Since rank{Hj −
Hk} = 1 for all j �= k and j, k ∈ I the perturbation term

Um has rank 1. We denote

R1 := diag (K2, . . . ,KN ) ,

and for m = 2, . . . , N the lower right (N−1)nc×(N−1)nc-

block of T−1HmT by

Rm :=

⎛
⎜⎜⎜⎜⎜⎜⎝

K2 0 U2m 0
. . .

...
...

Km + Umm

. . .
. . . 0

0 UNm KN

⎞
⎟⎟⎟⎟⎟⎟⎠

.

It follows that the closed-loop system is exponentially stable

if and only if the switched system formed by the matrices

Rm, m = 1, . . . , N is exponentially stable.

Theorem 4.1: The following statements are equivalent:

1) The switched linear system (4) with H(t) ∈ H is

exponentially stable.

2) The switched linear system ẋ = R(t)x with R : R →
{R1, R2, . . . , RN} is exponentially stable.

Proof: This follows from the preceding discussion.

The above theorem reduces the stability analysis of the

switched system of dimension np +Nnc to the stability of a

system of dimension (N−1)nc. In the following we consider

two special cases and show that Theorem 4.1 can be used to

obtain very elegant stability conditions.

A. N first order controllers
We begin our analysis with the case where the controllers

Ck are of first order. Thus for Assumption 3.1 to hold, the

plant have to be of order strictly less than three.

We now employ Theorem 3.1 in [8]. Essentially, the theo-

rem establishes asymptotic stability of the class of switched

systems (4) with the following properties:

• every matrix in H is Hurwitz and diagonalisable;

• the eigenvectors of any matrix in H are real;

• every pair of matrices in H share at least n−1 linearly

independent common eigenvectors.

Let the target poles Λt be distinct and real. With the

assumption that the pole-placement is feasible for all modes

k ∈ I, the resulting closed-loop system matrices Hk have

pairwise n − 1 real distinct eigenvalues. By Lemma 3.1 the

matrices Hk, k ∈ I, have np + 1 common eigenvectors.

Moreover, since each pair of closed-loop system matrices

Hk share N − 2 of the remaining inactive controllers they

have pairwise n − 1 common eigenvectors.

Thus the requirements for Theorem 3.1 in [8] are met and

the closed-loop system is exponentially stable for arbitrary

switching sequences. In other words, the switched system

(4) is stable for arbitrary switching if we choose arbitrary

real negative target-poles Λt such that the design-law in

Assumption 3.1 is satisfied by first-order controllers [9].

Theorem 4.1 can be used to extend this result for systems

with non-real target poles Λt. Choosing a modal-basis for Vt

in (8) we obtain a transformation matrix T with real entries.

It follows that the system matrices Rk of the reduced system

are in R
N−1×N−1. Further, σ(Rk) = ∪l �=kσ(Kl). Since the

controllers are of first order, it follows that the matrices Rk

also satisfy the requirement of Theorem 3.1 in [8].

Corollary 4.1: The switched system (4) with system ma-

trices (5) where Assumption 3.1 is satisfied using N stable

first-order controllers is asymptotically stable.

B. Two subsystems of arbitrary order
Consider now the special case where N = 2 and the

controllers are of arbitrary order nc. Due to the pole-

placement requirement (Assumption 3.1) we obtain for the

respective spectra

σ
(
H1

)
= Λt ∪ σ

(
K2

)
σ
(
H2

)
= Λt ∪ σ

(
K1

)
.

Applying the similarity transformation T of (8) to our two

system matrices we obtain

T−1H1T =
(

Dt 0
0 K2

)
(9a)

T−1H2T =
(

Dt 0
0 K2

)
+

(
0 U1

0 U2

)
(9b)
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where
(
UT

1 UT
2

)T ∈ R
2nc×nc and σ

(
Dt

)
= Λt. Note that

rank{U2} = 1 as we have rank
{
H1 − H2

}
= 1. Further it

follows from the spectrum of H2 that σ
(
K2+U2

)
= σ

(
K1

)
.

The following theorem reduces the stability problem of the

switched system defined by {H1,H2} to a stability problem

only involving the controllers.

Theorem 4.2: Consider the matrices H1,H2 in (5) and

let Assumption 3.1 be satisfied such that σ
(
Hk

)
= Λt ∪

σ(Kl) for k, l = 1, 2, k �= l. Assume furthermore that

Λt ∩ σ
(
Kk

)
= ∅, k = 1, 2. Then the following statements

are equivalent:

1) The switched system given by the set of matrices

{H1, H2} is asymptotically stable for arbitrary switch-

ing signals;

2) The switched system given by the set of matrices

{K2, K2 + U2} is asymptotically stable for arbitrary

switching signals;

3) The switched system given by the set of matrices

{K1, K2} is asymptotically stable for arbitrary switch-

ing signals.

Proof: The equivalence of (i) and (ii) can be seen as

follows. Firstly, the matrices in (5) and (9) are obtained from

one another by similarity. Thus the set {H1,H2} defines

an asymptotically stable switched system if and only if

{T−1
1 H1T1, T−1

1 H2T1} does. On the other hand Λt ⊂ C−,

so that the exponential stability of {T−1
1 H1T1, T

−1
1 H2T1} is

equivalent to that of the lower diagonal block {K2,K2+U2}.

The equivalence (ii) ⇔ (iii) follows if we find a similarity

transformation that transforms K2 and K2 +U2 into K2 and

K1 respectively. Note first, that since rank{H2 − H1} = 1,

the perturbation (UT
1 , UT

2 )T is also of rank one. Further, the

block K2 + U2 is similar to K1 since the eigenvalues in Λt

are generated by the closed loop system of A2 and K2.

Consider now the matrices KT
2 and KT

2 + UT
2 . If we can

find a vector x such that

xm := (KT
2 )mx = (KT

2 +UT
2 )mx , m = 0, . . . , nc−1 (10)

and so that the sequence xm,m = 0, . . . , nc − 1 is linearly

independent, then the similarity transformation

S =
(
x0 . . . xm−1

)
yields

S−1KT
2 S = KT

2 , and S−1(KT
2 + UT

2 )S = KT
1 ,

as the assumption (10) guarantees that both matrices

are brought simultaneously in transposed companion form

(sometimes also known as second companion form) and

because the companion form of K2 +U2 is K1 by similarity.

By taking transposes of the previous equations we have found

the desired transformation that concludes the proof in case

that (10) holds. Now by induction the conditions in (10)

require that

UT
2 (KT

2 )mx = 0 , for m = 0, . . . , nc − 2 .

As rank{UT
2 } = 1 the kernel of UT

2 (KT
2 )m has dimension

n−1 for m = 0, . . . , nc−2 and so by dimensionality reasons

the intersection of these kernels satisfies

V :=
nc−2⋂
m=0

kerUT
2 (KT

2 )m , dim V ≥ 1

Choose an x ∈ V , x �= 0. If the set of vectors {xm,m =
0, . . . , nc − 1} is linearly independent, then (10) holds and

we are done. If this is not the case this means that the lower-

dimensional KT
2 -invariant subspace defined by

W := span
{
xm | m = 0, . . . , nc − 1

}
is by definition contained in the kernel of UT

2 . Hence on this

lower dimensional subspace KT
2 is not perturbed by UT

2 . We

may then repeat the argument on the restriction of KT
2 to a

complementary invariant subspace and repeat the argument

until (10) holds on one of this lower dimensional comple-

mentary subspaces. The procedure terminates for reasons of

dimensionality and the assertion follows.

Comment: Theorem 4.2 reduces the complexity of the

stability analysis of the switched system considerably. To

guarantee asymptotic stability of the switched system (4)

with N = 2 we only need to consider the asymptotic stability

of the switched system given by

ẋ = K(t)x, K(t) ∈ {K1, . . . ,KN} ⊂ R
nc×nc (11)

for arbitrary switching signals. Thus, the stability problem

of the switched system (4) of order np + 2nc is reduced to

the stability problem of a switched system of order nc.

Comment: It should be emphasised that the proof of

Theorem 4.2 relies on the fact that the controller-matrices

are in companion form. At this point it is not clear what

role the specific realisation chosen for the controllers plays

for the result. However, it is obvious that the equivalence

(ii) ⇔ (iii) can only be true when rank{K1 − K2} =
rank{U2} = 1.

Comment: The equivalence of the asymptotic stability of

the system (4) and (11) is less obvious than intuition might

suggest. As we shall see in the next section, the result does

not generalise for systems with more than two subsystems.

In this context it is worth noting that the switched system

(11) is not explicitly part of the closed-loop system (4). For

the switched system (11) the controller dynamics Kk act on

the same state-space; however the controllers in the closed-

loop system (4) are realised as individual LTI systems and

therefore do not share the states.

C. The case of N = 3
The above findings suggest that the switched closed loop

system (4) is stable if and only if the switched system (11)

consisting of the controllers form a stable system. Unfortu-

nately that is not true as the following example shows.

Example 4.1: Consider the switched plant (2) with N =
3, where

A1 =
(

0 1
−11.84 −2.4

)
, A2 =

(
0 1

−34.28 −11.6

)
,

A3 =
(

0 1
−29.7 −11

)
,
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and bk =
(
0 1

)T
, cT

k =
(
1 0

)
for k = 1, 2, 3, and let the

requested target-poles be given by Λt = {−1±3i,−1.8,−8}.

It can be verified that the pole-placement requirement is

satisfied by the following set of controllers (3) with

K1 =
(

0 1
−9.6 −9.4

)
, K2 =

(
0 1

−7.4 −0.2

)
,

K3 =
(

0 1
−5.5 −0.8

)

and mT
1 =

(
30.34 −7.536

)
, mT

2 =
(−109.7 34.1

)
, mT

3 =( − 19.35 42.54
)
, and lk =

(
0 1

)T
, jk = 0 for k = 1, 2, 3.

It can be numerically verified that V (x) = xT Px with

P =
(

3.0745 0.0671
0.0671 0.4356

)

is a common quadratic Lyapunov function for the switched

system (11) with K(t) ∈ {K1,K2,K3}. Hence, the switched

system (11) consisting of the controllers is asymptotically

stable for arbitrary switching.

However we can find a switching sequence for which the

closed-loop switched system (4) is unstable. The spectral

radius

�
(
e0.22H3e0.32H2e0.72H1

)
= 1.024

where Hk are the closed-loop system matrices (5). Hence,

there exists a switching sequence for which the closed loop

system is unstable [10].

The above example shows that Theorem 4.2 cannot be

generalised for systems with N subsystems. Thus we have

to resort to Theorem 4.1 for the analysis of switched systems

(5) with N ≥ 3.

V. CONTROLLERS WITH INTEGRATORS

The stability results derived in the previous sections re-

quire that the constituent closed-loop systems ẋ = Hkx,

k ∈ I are stable LTI systems. Since the eigenvalues of the

non-active controllers are part of the spectrum of Hk, we

cannot apply the stability results when the controllers have

integrators. In this section we show that this problem can be

resolved by choosing a variation of the local-state controller-

architecture.

For this step we shall assume that the controllers have

the same number of integrators for each mode k ∈ I.

Then we can choose a controller-architecture such that these

integrators are shared by the controllers and therefore are

always active in the closed-loop. For this purpose we choose

a controller architecture with a joint integrator in front of

the controller bank as shown in Figure 2 such that the local

controllers Ck(s) have no pure integrator.

Choosing the state-vector of the closed-loop system as x =(
xT

p vT xT
k · · · xT

N

)T
yields the system matrices

Hk =

⎛
⎜⎜⎜⎜⎜⎝

Ak bkjk b1m
T
1 δk1 · · · bNmT

NδkN

−cT 0 0 · · · 0
0 l1 K1 0 0
...

... 0
. . .

0 lN 0 KN

⎞
⎟⎟⎟⎟⎟⎠

for all k ∈ I.

Positioning the joint integrator in front of the con-

troller bank preserves the property of the system matrices

rank{Hk −Hl} = 1 for k �= l ∀ k, l ∈ I, since the matrices

Hk again only differ in the np’th row. Since the integrator

is constantly active in the closed loop the eigenvalues of Hk

∀ k ∈ I lie in the open left half-plane when Assumption 3.1

is satisfied. Hence, the results of the previous section are

applicable to controllers with integrators.

C1(s)

C2(s)

CN(s)

Plant

u1

u2

uN

1
s

v u yr e

SU

Fig. 2. Controller architecture with joint integrator.

VI. TRANSIENT-FREE SWITCHING

It is well known that switching can induce undesirable

transients in control systems. In this section we show that

these transients can be avoided using the local-state con-

troller architecture described above.

Loosely speaking, transients occur due to the controller

state-transition after the switch. While controller Ck(s) is

active in the loop the control-output of Cl(s) evolves ac-

cording to

Ul(s) =
Cl(s)

1 + Ck(s)Pk(s)
R(s).

Assume now that switching only occurs when the closed-

loop system (for practical purposes) reached steady-state, i.e.

ẋ = 0. Thus the steady-state x̂k for each mode is given by

x̂k = −H−1
k bk. We can eliminate transients at steady-state

switching if x̂k is constant for every mode k ∈ I.

Since we consider systems in control-canonical form, this

requirement is equivalent to demanding that the controller-

outputs at steady-state is constant for each mode. Thus,

lim
s→0

Cl(s)
1 + Ck(s)Pk(s)

= γl ∀ k ∈ I. (12)

Condition (12) is formulated in the frequency-domain

such that it can be easily incorporated into the control-

design procedure (Assumption 3.1). In fact, by adding one

extra degree of freedom we can achieve both, stability of

the switched system and transient-free switching when the

system is in steady-state (see [?] for details). The following

example illustrates this.

Example 6.1: Given the plant (2) with transfer functions

P1 =
2

s + 9
, P2 =

1
s + 8
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and let the target poles be Λt = {−0.5 ± i,−10}. We shall

require a controller with integrator. Using the standard pole-

placing method yields for the two controllers

C1(s) =
−12.75s + 12.5

s(s + 8)
, C2(s) =

−3.38s + 6.25
s(s + 2)

.

Using Theorem 4.2 we can show that the resulting switched

system is exponentially stable, since there exists a com-

mon quadratic Lyapunov function for (11). The steady-

state in mode 1 is x̂1 =
(
1 1.4 0.7 0.18

)T
and x̂2 =(

1 1.92 0.96 0.24
)T

in mode 2.

Figure 3a shows the step-response of the switched closed-

loop system when the plant mode switches ever 20 time-

units. Even though the reference value is reached in every

switching interval, we can observe considerable transients at

the switching instances.

In order to meet the additional condition (12) for transient-

free switching we need a controller with an extra degree of

freedom. As additional target-pole we choose λt = −20. We

then obtain the controllers

C1 =
2.7s2 − 6.25s + 125
s3 + 22s2 + 27.78s

, C2 =
63.9s2 − 12.5s + 250
s3 + 28s2 + 83.33s

.

This switched system is also exponentially stable

for arbitrary switching and its steady-state is

x̂k =
(
1 1 0.036 0 0.012 0

)T
, k ∈ I.

The step-response of the closed-loop system shows no

transients at the switching instances (Figure 3b).

0 20 40 60 80 100
0

0.5

1

1.5

a

0 20 40 60 80 100
0

0.5

1

1.5

time

b

Fig. 3. (a) stable switched system with transients, (b) stable switched
system without transients using condition (12).

VII. CONCLUSIONS AND DISCUSSION

In this paper we considered a typical control problem

for switched linear systems. It is shown that the stability

analysis can be considerably simplified by using the proposed

design-law and the local-state controller architecture. Further,

for systems with first-order controllers we have shown that

stability for arbitrary switching is always guaranteed. In

the case that the switched system has only two modes, the

stability of the switched closed-loop system is equivalent to

the stability of the switched system defined by the controller-

matrices. Thus the stability analysis degenerates from a

switched system of order np + 2nc to that of a switched

system of order nc.

Furthermore, we have shown that transients at the switch-

ing instances can be avoided when satisfying condition (12).

By adding an extra degree of freedom both stability of the

closed-loop system and transient-free switching at steady-

state can be achieved.

The stability analysis in this paper depends fundamentally

on the assumption that the poles of the closed-loop transfer

function are invariant while switching. This requires that

the respective controller outputs are instantaneously activated

whenever the plant-mode changes. From a practical point of

view this is an unrealistic assumption. In most applications

there will be a certain time-delay between the mode-switch of

the plant and the switching of the control signal. The impact

of such delays on the stability of the closed-loop system are

an important problem and are subject of future research.

An open question is also how the realisations of the

transfer functions effect the results in this paper (c.f. [12]).

Throughout this paper we assume that the individual con-

trollers are realised in control canonical form. While this

is a realistic approach a different choice of the realisation

might provide better performance or stability properties.

Since we can choose the controller realisations independently

of each other, it might be possible to find conditions on the

realisations that simplify the stability analysis.
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