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Abstract— Distributed or networked systems become rapidly
intractable as their size augments. This is due to the combi-
natorial explosion taking place in the state space, but also in
the trajectory space. The latter is reinforced by the amount of
concurrency in the system (the fact that several non related
events can occur simultaneously). We describe a triple strategy
to extend standard monitoring approaches to such systems. We
first use a true concurrency semantics to represent trajectories
of the system. We then describe a very compact data structure to
handle sets of trajectories, that we call the trellis of the system.
This notion generalizes to distributed systems the standard
notion of trellis of an automaton, where one dimension is time,
and the other dimension encodes possible states at each time.
Finally, we show that trellises have nice factorization properties,
that allow the design of distributed monitoring approaches.
In other words, a problem like state estimation for example,
can be solved by parts, component per component, provided
interactions between components are properly handled. We
illustrate the approach on a distributed diagnosis problem.

Index Terms— distributed system, concurrency, trellis, mod-
ular/distributed diagnosis, message passing algorithm.

I. INTRODUCTION

Large distributed (discrete event) systems require new
monitoring paradigms. The major issues are both related to
the size of systems (combinatorial explosions on numbers
of states and trajectories), and to the distributed nature of
systems, as in web programming for example, which makes
centralized monitoring approaches unpractical or impossible.
“Divide and conquer” seems to be the most natural strategy
to deal with such systems. The literature on this recent topic
goes into this direction. Some approaches focus on issues
related to distributed observations, and propose distributed
monitoring methods based on several communicating super-
visors [10], [12], [15]. Other approaches combine distributed
observations with a modular characterization of system be-
haviors [11], [14], [18], [20], [24].

The present paper belongs to this second category. We
model a distributed system as a set of interconnected compo-
nents, the observations of which are collected by independent
sensors. Two connected components interact through an in-
terface (typically an intermediary automaton), and the global
interaction structure can be represented as a graph, where an
edge is drawn between two components as soon as they have
a common interface. Our strategy to reduce combinatorial
explosions is threefold. 1/ We take explicitly into account
the parallelism in the system, through a true concurrency
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semantics on trajectories. This idea is borrowed to theoretical
computer science and contrasts with traditional approaches
for discrete event systems, that consider sequences of events
(see [14], [19], etc.) 2/ We propose a compact data structure
to encode sets of trajectories, that we call the trellis of the
system. This notion is detailed in [26], and generalizes to
distributed concurrent systems the usual notion of trellis of
an automaton. And 3/ we use the fact that the trellis of
a modular or distributed system factorizes as the product
(in an appropriate sense) of trellises of its components.
This last property allows to process systems by part, with
“belief propagation”-like algorithms, exploiting the graphical
structure of interactions in the system.

To show the efficiency of trellises for distributed com-
putations, we consider the distributed diagnosis problem. It
amounts to recovering all (hidden) system trajectories that
explain observations collected on all sensors. We solve the
problem by parts, with an architecture of local supervisors
(one per component) that coordinate their work. All compu-
tations are based on trellis operations, specifically products,
pullbacks and projections. Each supervisor ends up with
a local view of the set of global trajectories that explain
all observations. The latter can be recovered by gluing
together compatible local solutions. We essentially describe
supervisor interactions, and skip on the classical recursions in
time inside each supervisor. These two recursions, in “space”
and in “time” can be interleaved naturally and their result
do not depend on the ordering of operations. Due to space
limitations and to the technicality of the topic, we do not
provide a full theoretical treatment but rather focus on the
essential concepts, that we illustrate on a small example.

II. DISTRIBUTED SYSTEMS

There exist several related formalisms to describe concur-
rent systems. We adopt the formalism of Petri nets, that we
specialize into multi-clock nets to make them suited to the
notion of trellis. The latter take the form of a synchronous
product of automata. We then describe distributed systems
as a collection of components interacting through interfaces.

A. Concurrent system

We consider concurrent systems modeled as safe Petri
nets (PN). We adopt the notation N = (P, T,→, P 0) for
nets, where P, T are respectively place and transition sets,
and → is the flow relation relating places to transitions and
transitions to places. P 0 ⊆ P is the subset of initially marked
places in the net (i.e. places containing a token). We adopt
the standard notations •t and t• for pre- and post-sets of t,
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as well as the standard dynamics for a PN (see for ex. [2]
for details). A net N is safe when each place contains at
most one token in any reachable marking. So markings can
be identified with subsets of places.

We limit ourselves to a particular sub-class of safe nets,
that we call multi-clock nets (MCN). A MCN N = (P, T,→
, P 0, ν) is provided with a partition function on places ν :
P → P 0, and satisfies ∀t ∈ T, ν is injective both on •t and
on t•, and ν(•t) = ν(t•). In a MCN, the number of tokens
is constant, and in any reachable marking P ′ ⊆ P , one has
ν : P ′ → P 0 is bijective. In other words, ∀p ∈ P , the
restriction N|p̄ of net N to places p̄ � ν−1(ν(p)) (the class
of p) is a sequential machine, i.e. an ordinary automaton.
Fig. 1 gives an example of a MCN with 3 classes. It is always
possible to reshape a safe net into a MCN with essentially the
same behavior, for example by introducing complementary
places. So the limitation to MCNs is not a strong assumption.
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Fig. 1. A multi-clock net, with place classes {a, b}, {g, c}, {d, e, f}.
Sequential components N|ā,N|ḡ,N|d̄ are evidenced on the picture. A
transition like t1 synchronizes the first two components.

B. Building systems from components

A labeled net N = (P, T,→, P 0, ν, λ, Λ) is a net pro-
vided with a label set Λ and a labeling function λ : T → Λ
on transitions. There exist several ways to combine two
nets N1,N2 into a larger one. A well known one [3], [4]
is the synchronous product of labeled nets. This product,
denoted N1 ×N N2, forms the disjoint union of places, then
synchronizes (=glues) transitions t1, t2 in T1, T2 (resp.) that
carry identical labels, and finally preserves all transitions
ti ∈ Ti that carry a private label (i.e. λi(ti) ∈ Λi \ Λj ,
i �= j). Fig. 1 illustrates this idea : the left and central
components synchronize on transitions labeled t1 (we use
transition names as label sets there). This generalizes : a
MCN N can be expressed as the synchronous product of
the automata N|p̄, p ∈ P 0, still using transition names as
labels.

We propose here another way of specifying interactions
between components, by means of a shared sub-net. This
definition suits better the computations we develop in the
sequel, and suggests the important notion of interface.

We first briefly recall the notion of morphism between
nets, as defined in [4]. A morphism φ : N1 → N2 is a pair
(φP , φT ), with φP a relation on places, and φT a partial
function on transitions1. φ preserves the initial marking as
follows : P 0

2 = φ(P 0
1 ) and ∀p2 ∈ P 0

2 , ∃!p1 ∈ P 0
1 : p1φp2.

If φ is defined on p1 ∈ P1, then it is also defined on

1For simplicity, we write φ instead of φP or φT .

both •p1 and p•1. Finally, φ is required to preserve the
neighborhood of each transition : t2 = φ(t1) implies that
restrictions φ : •t1 → •t2 and φ : t•1 → t•2 are both
bijective. In the special case of multi-clock nets, we further
require that φ preserve partitions of places : ∀(p1, p2) ∈
P1 × P2, p1φp2 ⇒ ν1(p1)φν2(p2). MCNs provided with
such morphisms define the category2 Nets [1].

Let N0,N1,N2 be labeled nets, and φi : Ni → N0, i =
1, 2, be net morphisms. We further assume that these φi are
partial functions on places (we forbid place duplications).

The pullback of this triple, that we denote by N = N1

N0

∧N

N2 (or N = N1 ∧N N2 for short), is defined on places by

P = {(p1, �) : p1 ∈ P1, p1 �∈ Dom(φ1)}

∪ {(�, p2) : p2 ∈ P2, p2 �∈ Dom(φ2)}

∪ {(p1, p2) ∈ P1 × P2 : φ1(p1) = φ2(p2)} (1)

and on transitions by

T = {(t1, �) : t1∈T1, t1 �∈Dom(φ1), λ1(t1) ∈ Λ1\Λ2}

∪ {(�, t2) : t2∈T2, t2 �∈Dom(φ2), λ2(t2) ∈ Λ2\Λ1}

∪ {(t1, t2)∈ T1×T2 : ti �∈Dom(φi), λ1(t1) = λ2(t2)}

∪ {(t1, t2)∈ T1×T2 : φ1(t1) = φ2(t2)} (2)

The flow relation follows accordingly, as well as the def-
inition of initial places. We denote by ψi : N → Ni

the canonical morphism that maps elements of N to the
corresponding element in Ni. By construction, one has
φ1 ◦ ψ1 = φ2 ◦ ψ2.
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Fig. 2. Nets N1,N2 and their interface N0, with associated morphisms
φi : Ni → N0. The net in Fig. 1 is the pullback of this triple, when
transition names are used as synchronization labels.

C. Notion of interface between systems

The pullback actually generalizes the product to the case
of components sharing some places and transitions : when N0

is the empty net, N1∧
N0

N N2 = N2×N N2. Let us focus on a
particular case : we say that N0 is an interface between N1

and N2 iff transitions of Ni carrying a shared label (Λ1∩Λ2)
are all in the definition domain of φi. In other words, there
is no interaction between N1 and N2 “outside” the domains
of the φi, which is characterized in (2) by a vanishing third
line. In other words, the two components only interact by
shared places and transitions.

2For the reader not familiar with these ideas, a category is a collection of
objects, together with morphisms between these objects. This theory allows
to introduce some algebra in object relations, combinations, transformations,
etc.
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Up to isomorphism, the pullback operation is both asso-
ciative and commutative. We say that N is a distributed
system when it can be expressed as the pullback of several
components where the intermediary nets are interfaces. For
simplicity in this paper, we stick to the simple case of two
components and one interface, as depicted in Fig. 2.

III. TRAJECTORY SETS OF DISTRIBUTED SYSTEMS

A. True concurrency semantics (TCS)

In the TCS, runs of a concurrent system are represented
as particular nets, called configurations. A configuration
κ = (C, E,→, C0, ν) is a net such that the flow relation
→ induces a partial order on nodes C ∪ E, which minimal
nodes are exactly C0, and such that each place c in C has at
most one cause, i.e. |•c| ≤ 1, and no place in C is branching,
i.e. |c•| ≤ 1. Places are usually called conditions, and
transitions events, whence the change in notation. The pair
(κ, φ) is a run of net N in the TCS iff κ is a configuration
and morphism φ : κ → N a folding, i.e. a total function on
κ such that φ : C0 → P 0 is bijective. Fig. 3 shows two
configurations that represent runs of the net N in Fig. 1. By
definition of φ, a direct causality relation in a configuration κ

indicates the presence of a shared place in N . By contrast,
two events (or nodes) are concurrent in κ iff they are not
causally related (for ex. the second firing of t1 and the firing
of t6 in the LHS configuration of Fig. 3). Consider any linear
extension of the partial order → in κ, restricted to events E.
Its image by φ yields a firable sequence of transitions of N .
Therefore κ corresponds to an equivalence class of runs of
N , considered as firable sequences.
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t3

t1
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Fig. 3. Two configurations κ1 and κ2 representing runs of the net in
Fig. 1. The foldings φi : κi → N are represented by place and transition
names of N next to conditions and events of κi.

Given net N , there exist several ways to represent trajec-
tory sets of N in a compact manner. Branching processes
and unfoldings have been used for long [8], [5], [6], [7],
[21]. In this paper, we rather advocate the use of trellis
nets , that offer the same algebraic properties than unfoldings,
while being more compact. We refer the reader to [26] for a
comparison of unfoldings and trellises.

We define a pre-trellis net T = (C, E,→, C0, ν) as
a MCN where C0 is the set of places which have no
predecessor, and where each restriction T|c̄, c ∈ C0, is a
partial order of nodes. Notice that T may not be itself a
partial order of nodes, but no circuit of T can take part to a

run. In other words, any run of T identifies a sub-net of T
which is a partial order. To be more precise, let us define a
configuration κ of T as a sub-net of T satisfying :

1) C0 ⊆ κ,
2) ∀e ∈ E ∩ κ, •e ⊆ κ and e• ⊆ κ : each event has all

its causes and consequences,
3) ∀c ∈ C ∩ κ, |•c ∩ κ| = 1 or c ∈ C0 : each condition

is either minimal or has one of its possible causes,
4) ∀c ∈ C ∩ κ, |c• ∩ κ| ≤ 1 : each condition triggers at

most one event,
5) the restriction of T to nodes of κ is a partial order.

Then runs of T in the TCS coincide with the configurations
of T . Given a configuration κ, let us define the height of
condition c in κ as the number of conditions “below c”
in κ|c̄ :

Hκ(c) = | {c′ ∈ C : ν(c′) = ν(c), c′ →∗ c} | (3)

A pre-trellis net T is a trellis iff every event e of T belongs
at least to one configuration (i.e. is reachable), and the height
of any condition c doesn’t depend on the configuration κ

containing c in T (we say that T is “correctly folded”).
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. . .
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Fig. 4. Left : beginning of the trellis (or time-unfolding) of the net in Fig. 1.
Right : a configuration in this trellis (non selected nodes are dimmed).

Trellis nets can be used to represent sets of runs of a given
net N in the TCS. The trellis net T associated to folding
φ : T → N jointly form a trellis process (TP) of N iff they
satisfy the double parsimony criterion :

1) ∀e, e′ ∈ E, [•e = •e′, φ(e) = φ(e′)] ⇒ e = e′,
2) ∀c, c′ ∈ C, [H(c) = H(c′), φ(c) = φ(c′)] ⇒ c = c′.

In a TP, every configuration κ, associated to φ|κ, yields a run
of N . Conversely, a run of N is represented at most once in
T : there doesn’t exist isomorphic runs of N in T , thanks
to the two parsimony criteria above. There exists a unique
maximal trellis process of N containing all runs of N . We
call it the trellis of N , or its time unfolding , and denote
by (U t

N , f t
N ) (see Fig. 4). We refer the reader to [26] for

proofs.

B. Factorization of trellises

The time unfolding operation U t defines a functor be-
tween the category Nets and the sub-category Tr of trellis
nets. This essentially means that 1/ U t can be extended to
morphisms φ : N → N ′, which yields U t(φ) : U t(N ) →
U t(N ′), and 2/ U t commutes with morphism composition :
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U t(φ ◦ φ′) = U t(φ) ◦ U t(φ′). Moreover, the functor U t is
the right adjoint of the inclusion functor from Tr to Nets.
This abstract result has a nice consequence : we know that
right adjoints preserve limits (in the categorical sense), and
pullbacks, like products, are a special form of limit [1].

Translating this into practice, if N = N1

N0

∧N N2, then

U t(N ) = U t(N1)
Ut(N0)
∧T U t(N2) (4)

where morphisms φi : Ni → N0 and ψi : N → Ni are
turned into U t(φi) and U t(ψi). The index T in operator ∧T

indicates that the pullback must be performed in the sub-
category Tr. Using again the co-reflection of Tr into Nets,
∧T can defined by

T1

T0

∧T T2  U t( T1

T0

∧N T2 ) (5)

where  means “isomorphic to.” There exists a recursive
procedure to compute U t(N ) from a net N . Coupled to the
definition of ∧N given section II-C, this yields by (5) an
effective procedure to compute the pullback of trellis nets.

1N 0N 2NU ( )
φ1U ( )

U ( )
φ2)

U ( )t

t

t
U (t

t
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c
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g
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c

g

c

g

d

e f

d

t1

t1

t4

. . .

t2

t2

t3

t1

t1 t1

t4 t4

t1

t1

t5

t6

. . . . . .

Fig. 5. U t applied to Fig. 2. The pullback of this triple, in the category of
trellis nets, yields the trellis of Fig. 4. In each U t(Ni), the black sub-net
corresponds to Dom(U t(φi)).

Important remark : a pullback operation, like a product,
generally yields a net with a much larger structure than the
original components, because pairs of transitions/events are
formed. This would appear clearly on the example if places
e and f were identical in Fig. 1 (we leave this instructive
verification to the reader). Therefore, computations based on
the trellis of a net N should rather be based on the factorized
form given by (4). This is what we propose in section V.

IV. PROJECTION OF TRELLISES

Let N ,M be two nets, related by morphism ψ : N → M,
where ψ is for example the restriction of N to a sub-net
(notice that a restriction selects entire sequential components
of N , thanks to properties of MCN morphisms). Let (T , φ)
be a TP of N , one has ψ ◦ φ : T → M, and applying U t

to this morphism yields U t(ψ ◦ φ) : T → U t(M) because
T  U t(T ). We define the projection of T on M as

ΠM(T ) = U t(φ ◦ ψ)(T ) = U t(φ) ◦ U t(ψ)(T ) (6)

U t(ψ) is an injective map that makes T a prefix of U t
N , and

U t(φ) thus maps configurations of T to U t
M. So ΠM(T )

is a trellis process of M. In the simple case where M is a
sub-net of N , ΠM(T ) can be obtained by 1/ restricting T to
conditions corresponding to places selected in M, followed
by 2/ a trimming operation in order to satisfy the parsimony
requirements on the result (Fig. 6).
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t2
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t3
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t5

t1

t4

t1 t1

Fig. 6. Projection of the TP of N in Fig. 4 on the net N0 of Fig. 2. First,
nodes not related to N0 are removed (dimmed nodes on the left TP). Then
the result is trimmed : redundant copies of the same transition firing are
merged (right).

A projection is said to be non misleading iff every config-
uration κ′ in ΠM(T ) is the image of a configuration κ and no
causality relation is lost (on events of κ′). This is not always
the case because a morphism generally erases causalities
and conflicts, thus creating the appearance of concurrency
on events that can’t appear in the same configuration of T .
A special case deserves attention : If M is a sequential
machine, all projections on M are non misleading (Fig. 6).

Consider system N = N1 ∧N N2, and trellis processes
(Ti, φi) of the Ni, i = 1, 2. It can be proved [26] that any
trellis process (T , φ) of a net N is the union, in the sense of
trellis processes, of all its configurations (κ, φκ). In the case
of T = T1∧T T2, T is thus the union of configurationsκ1∧T

κ2, where (κi, φi) is a configuration of Ti. Looking carefully
at the definition of ∧T , one sees that not all nodes of a
configuration κi will remain in the pullback κ1 ∧T κ2. The
projection aims at identifying these “useful nodes.” Choosing
M = Ni reveals that κ′

i = ΠNi
(κ1 ∧T κ2) is generally a

strict prefix of κi. Moreover, one obviously has κ1 ∧T κ2 =
κ′

1 ∧T κ′
2. Extended to all pairs of configurations, this yields

the minimal factorization of T :

T1 ∧T T2 = ΠN1
(T1 ∧T T2) ∧T ΠN2

(T1 ∧T T2) (7)

where ΠNi
(T1 ∧T T2) selects nodes of Ti that actually take

part to the pullback.

An interesting property arises in the case of a distributed
system, i.e. when N1 and N2 are related by an interface
(section II-C). The following result forms the basis of
distributed/modular computations.

Theorem 1: Let N = N1

N0

∧N N2, where N0 is an
interface between N1 and N2, and assume projections on
N0 are non misleading (for example, N0 is a sequential
machine). Let the Ti be TPs of the Ni, then

ΠN1
(T1 ∧T T2) = T1 ∧T ΠN0

(T2) (8)
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and similarly for the projection on N2.

We only sketch the proof. It is enough to show that
ΠN1

(κ1 ∧T κ2) = κ1 ∧T ΠN0
(κ2) because ΠN1

(T1 ∧T

T2) is the union of its configurations. We then use the
recursive procedure that computes pullbacks. We first show
that ΠN0

(κ1 ∧T κ2) = ΠN0
(κ1) ∧T ΠN0

(κ2), and then
obtain the result by noticing that κ1 and κ2 have no interac-
tion/synchronization outside their projections on N0. Details
can be found in [22] (theorem 2). �

Remark. This result generalizes to any type of interface :
to deal with the issue of misleading projections, one has
to introduce the notion of augmented trellis in order to
keep track of causalities and conflicts due to neighboring
components. These ideas will be developed in a forthcoming
paper.

V. DISTRIBUTED DIAGNOSIS

The diagnosis problem, as stated in [21], [24] can be
summarized as follows : A concurrent system N produces
a run κ that is partially observed through labels produced by
its transitions, that we call alarms to avoid confusions. The
objective is to recover all runs of N explaining the observed
pattern of alarms.

Here, we significantly complexify the picture. We first
assume that N is a distributed system N = N1∧NN2, where
the interface N0 between the two components N1 and N2 is a
sequential machine3. Then, we assume that alarms produced
by transitions of the two components are collected separately,
by independent sensors (one per component). WLOG, we can
assume that the two components have no common alarm. The
alarm pattern Ai collected on Ni is supposed to be a partial
order of alarms (to account for the fact that sensor i may
be itself a collection of sensors), that we can represent as
a configuration (see Fig. 7). The way alarms are collected
by each sensor ensures the Causal Observation Assumption :
if event e1 precedes event e2 in the run κ, i.e. e1 →∗ e2,
then the alarms α1, α2 they produce can’t be observed in
the reverse order, i.e. ¬(α2 →∗ α1).

The centralized approach to the diagnosis problem essen-
tially amounts to computing U t

N×TA, where A = A1×TA2

is the global alarm pattern (see [21] or [?]). ×T corresponds
to ∧T with an empty intermediary net, and uses alarm labels
for synchronization. Here, we assume that U t

N is too large
to allow this approach, and rather want to solve the problem
by parts, using the factorized form of U t

N . Specifically,
our objective is to recover all runs of Ni that both explain
local observations Ai, and are compatible with at least one
local explanation in the other component. Obviously, putting
together two such compatible local solutions κi provides a
possible global trajectory κ = κ1 ∧T κ2 which is a valid
explanation for A1 ×T A2, and conversely.

3For the sake of simplicity, we present concepts on a toy distributed
system made of only two components. But the approach extends naturally
to larger structures with N components, provided the interaction graph is a
tree. In the general case, extra phenomena appear, due to the shape of the
graph, that require specifi c development [25].
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Fig. 7. The two components of the net of Fig. 2, decorated with alarms
produced by each transitions. On the sides, the observed patterns of alarms,
represented as configurations (simple sequences here).
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Fig. 8. Time-unfolding applied to elements of Fig. 7.

More formally, we want to compute

U t
N ×T A = (U t

N1
×T A1) ∧T (U t

N2
×T A2) (9)

This “diagnosis” thus has a factorized form, where U t
Ni

×T

Ai represents the local diagnosis for component Ni. How-
ever, not all configurations in this local diagnosis remain after
the ∧T operation : only pairs of compatible local solutions
are preserved, as in (7). The minimal factorized form of
U t
N ×T A is given by :

U t
N ×T A = ΠN1

(U t
N ×T A) ∧T ΠN2

(U t
N ×T A) (10)

where each projection in the right hand side term yields a
local view of the global diagnosis. From theorem 1, these
local views are given by

ΠN1
(U t

N×T A) = (U t
N1
×T A1) ∧T ΠN0

(U t
N2
×T A2) (11)

This formula has the great advantage of being essentially
based on local computations : Each U t

Ni
×T Ai requires

a much weaker computational effort than U t
N ×T A, and

the term ΠN0
(U t

N2
×T A2) represents a small size message

from (the supervisor of) component N2 to (the supervisor
of) component N1.

Fig. 9 illustrates these computations. Local diagnoses
U t
Ni

×T Ai are a product of labeled nets where alarms are
used for synchronization (transitions labeled with a ∗ repre-
sent silent transitions in a component, that synchronize with
no observation). The projections of local diagnoses on the
interface N0 are represented in the middle. A configuration
κi explaining all local alarms Ai defines a local solution.
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Fig. 9. Local diagnoses U t
Ni

×T Ai and their projection on interface N0.

Terminal nodes of a local solution indicate possible stop
points on the interface, represented by dotted circles. The
result of (11) for component N1 yields the configurations of
Fig. 10. Observe that all local solutions using transition t4 in
Fig. 9 have been discarded because the firing of t4 appears
in no solution for component N2.
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Fig. 10. Gray+black lines on each net represent the local view of the
global diagnosis in N1. Black lines emphasize the 3 maximal configurations
explaining the full alarm pattern A1, and ending at a stop point of both
components on the interface.

VI. CONCLUSION

We have described a modular construction of a distributed
system by synchronizing components through an interface.
We have also presented a trellis structure to describe all
possible trajectories of the resulting system. This trellis
notion generalizes to concurrent systems the usual notion
of trellis for an automaton, on which standard estimation
and control techniques are based. Taking the time unfolding
of a concurrent system defines a continuous functor, which
means that it preserves synchronizations. In other words, the
trellis of a compound system is the “product” of trellises
of its components. This factorized representation for the
trajectory set of a distributed system forms the basis of
modular computations. Product, pullback and projection of
trellises enjoy nice joint properties that allow to process
systems by parts, by exchanging messages between local
supervisors. This message passing strategy, that can be
tightly related to estimation strategies for Bayesian networks,

combines naturally with recursions “in time” inside each
local supervisor, to explain observations on-line as they
reach the supervisor. These aspects of computations will be
developed in a forthcoming paper.
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