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Abstract— If a smooth, closed, and embedded curve is de-
formed along its normal vector field at a rate proportional
to its curvature, it shrinks to a circular point. This curve
evolution is called Euclidean curve shortening, and the result is
known as the Gage-Hamilton-Grayson Theorem. Motivated by
the rendezvous problem in multi-agent systems, we address the
problem of creating a polygon shortening flow. A simple linear
scheme is proposed that exhibits several properties similar to
Euclidean curve shortening. The polygon shrinks to an elliptical
point; convex polygons remain convex; and, the perimeter of
the polygon is monotonically decreasing.

I. INTRODUCTION

A problem which has received considerable interest within

the multi-agent systems literature is called the rendezvous,

consensus, or agreement problem. The general problem is

to develop a local control strategy for a group of agents

such that they achieve consensus, or agreement, on some

information. A version of this problem that is commonly

studied is the following; given a group of n agents (vehicles)

whose positions are represented in the complex plane by

zi = xi + jyi, i = 1, . . . , n, j =
√−1, and whose dynamics

are given by żi = ui, find a local control strategy that

will ensure convergence of all zi’s to a point. Solutions to

this problem have been developed for both the case where

the communication topology is fixed, and where it is time-

varying (see [22] and the references therein). In this paper

we propose a strategy which solves this problem with a fixed

communication topology. The strategy is motivated by the

theory of curve shortening. Because of this, the formation

of the group of agents as they converge to a common point

has properties which are analogous to the curve shortening

theory.

Consider a family of smooth, closed curves x(p, t) lying

in the plane. Here, p parameterizes the points along each

individual curve, and t parameterizes the family (i.e., the

initial curve x(p, 0) evolves as a function of time to x(p, t)).
The Euclidean curve shortening flow is given by

∂x
∂t

(p, t) = k(p, t)N(p, t), (1)

where k(p, t) is the Euclidean curvature and N(p, t) is the

inner Euclidean normal. Intuitively, the curvature at a point

on a curve is the inverse of the radius of the largest tangent

circle to the curve (on the concave side) at the point. The

Euclidean curve shortening flow is depicted in Fig. 1. We also

define L(t) to be the length of the curve at time t and A(t)
the area enclosed by the curve. The isoperimetric inequality

kN

kN

kN

Fig. 1. The Euclidean curve shortening flow.

[19] states that
L(t)2

A(t)
≥ 4π.

Equality is achieved if and only if the curve is a circle.

Therefore, the ratio L2/A gives a measure of “how circular”

the curve is. In 1983, Gage [9] showed that when a convex

curve evolves according to (1), A(t) → 0, and the ratio L2/A
is decreasing. In 1984 Gage [10] showed that if the curvature

does not blow up prematurely (i.e., a cusp does not form)

then, for a convex curve, L2/A → 4π and the curve shrinks

to a circular point. The term “circular point” means that the

curve is collapsing to a point, and if we zoom in on the curve

as it is collapsing, the curve is becoming circular. In 1986

Gage and Hamilton [11] showed that for convex curves the

curvature does not blow up prematurely, and in 1987 Grayson

[12] showed that any embedded (non-self-intersecting) curve

shrinks to a circular point. The Euclidean curve shortening

flow also has the property that it shrinks the length of the

curve L(t) as fast as possible using only local information

[13]. The notion of shrinking “as fast as possible” will be

clarified later.

The Euclidean curve shortening flow is defined in terms

of the Euclidean curvature and the Euclidean normal. These

quantities are invariant under Euclidean transformations (i.e.,

rotations, translations, and reflections). Sapiro and Tannen-

baum [21] created a new curve shortening flow which is

defined in terms of quantities that are invariant under affine

transformations. We say that a flow is invariant under a

transformation if the flow and transformation commute. This

flow, which is called affine curve shortening, has applications

in image processing [5] and computer vision [4]. In [21] it is

shown that if a smooth convex curve evolves according to the

affine curve shortening flow, the curve shrinks to an elliptical

point. In [1] this result is extended to smooth embedded

curves. For a complete account of many of the results of
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curve shortening see [6].

The elegant results obtained in the curve shortening liter-

ature have motivated research in creating discrete analogues

of the flows; that is, to create a shortening flow for polygons

which exhibits similar attributes to the Euclidean (or affine)

curve shortening flow. This research has been driven by

both theoretical interest [3], [15], [18], and by applications

such as crystal growth [20]. In [3], the evolution of planar

polygons is studied in discrete time, and an affine polygon

shortening scheme is proposed which shrinks polygons to

elliptical points. This means that the vertices are collapsing

to a point, and if we zoom in on the collapsing polygon,

the vertices are converging to an ellipse. In addition, [3]

proposes a Euclidean polygon shortening scheme based on

the Menger-Melnikov curvature [17]. In [15] this scheme is

studied and it is shown that most quadrilaterals shrink to

circular points. In [18] a discrete curve shortening equation

is formulated such that the the area inclosed by the polygon

shrinks at a rate of 2π (the same as in Euclidean curve

shortening). It is also shown that the perimeter of the polygon

is monotonically decreasing.

Unlike in [15], [18], where nonlinear schemes are devel-

oped that approach (1) as the polygon tends to a smooth

curve, we attempt to achieve analogues to the curve short-

ening theory using a linear scheme. By exploiting the linear

structure we are able to obtain analytical results that mimic

those of the Gage-Hamilton-Grayson Theorem. We study

a polygon consisting of vertices z1, . . . , zn as it evolves

according to

żi =
1
2
(zi+1 − zi) +

1
2
(zi−1 − zi). (2)

Intuitively, (2) dictates that each vertex chases the centroid

of its two neighboring vertices. Notice that each agent need

only compute the relative position of its two neighbors, and

thus this scheme is based on local information. This scheme

is studied in discrete time in [3], where it is referred to as an

affine polygon shortening scheme. We show the following

properties of this scheme: 1) Polygons shrink to elliptical

points, 2) Convex polygons remain convex, 3) If vertices

are arranged in a star formation about their centroid, they

will remain in a star formation for all time (i.e, the vertices

(agents) will not collide) 4) The perimeter of the polygon is

a monotonically decreasing function of time.

This paper is organized as follows. In Section II we give

a more detailed development of Euclidean curve shortening.

In Section III we introduce the linear scheme given in (2).

In Sections IV and V we show that under (2) star formations

are invariant, and convex polygons remain convex. Finally,

in Section VI we derive the optimal direction for perimeter

shortening and show that under (2) the perimeter of the poly-

gon is monotonically decreasing. Most proofs are omitted

due to space limitations. However, a full paper is currently

in preparation.

II. BACKGROUND

In this section we will give some background on Euclidean

geometry and derive the Euclidean curve shortening flow.

The sections on Euclidean geometry and Euclidean curve

shortening follow the development of [2] and [14] respec-

tively.

A. Euclidean geometry

A Euclidean transformation of R
2 is a function L : R

2 →
R

2 of the form

L(x) = Ux + a,

where U is an orthogonal 2 × 2 matrix and a ∈ R
2. Recall

that a matrix U is orthogonal if U−1 = UT (where T denotes

transpose), which is equivalent to saying that the columns of

U are orthonormal. The set of all Euclidean transformations

of R
2 is denoted E(2) and is the set of all rotations,

translations, and reflections of a figure in R
2. Roughly

speaking, Euclidean geometry is the study of properties of

figures which remain unchanged by Euclidean transforma-

tions. These properties are called Euclidean properties, and

include distance, angle, curvature, and collinearity of points.

From this we can introduce the concept of congruence.

Definition 1: A figure F1 is Euclidean-congruent to a

figure F2 if there is a Euclidean transformation which maps

F1 onto F2.

A few examples of sets of figures which are Euclidean-

congruent to each other are: The set of all line segments

of a fixed length, and the set of all squares of a fixed

area. It can easily be verified that Euclidean-congruence

is an equivalence relation, and thus the previous sets are

equivalence classes.

B. Euclidean curve shortening

Consider a family of smooth closed curves x(p, t) :
[0, 1] × [0, τ ] → R

2, where p ∈ [0, 1] parameterizes the

curve and t ∈ [0, τ ] the family. For now we fix t and study

a single curve x(p). The tangent vector to the curve is given

by dx/dp =: ẋ and thus we define the unit tangent as

T(p) := ẋ/‖ẋ‖. Introducing coordinates in R
2 we can write

x(p) = (x1(p), x2(p)). The unit tangent is (ẋ1, ẋ2)/‖ẋ‖ and

the unit normal is then given by N(p) := (−ẋ2, ẋ1)/‖ẋ‖.

When T runs in the counterclockwise direction around the

curve, N is the inner unit normal.

It is convenient and customary to use arc-length to describe

distance around the curve instead of p. The Euclidean arc-

length s is defined via ds := ‖ẋ‖dp. We can re-parameterize

the curve by s as x(s) = (x1(s), x2(s)). The unit tangent

and normal vectors can be written in terms of s as

T(s) = (x′
1, x

′
2), and N(s) = (−x′

2, x
′
1),

where ′ denotes differentiation with respect to s. Using

column vector notation we define

A(s) :=
[
TT

NT

]
=

[
x′

1 x′
2

−x′
2 x′

1

]
.

The matrix A(s) is a rotation matrix which rotates the

standard basis to the coordinate frame T,N attached to the

curve. Differentiating A(s) we get

A′ = A′A−1A =: C(s)A. (3)
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Now, since A is a rotation matrix it is orthogonal and so

AT A = AAT = I . Using this, we can show that C(s)
is skew-symmetric as follows. Differentiating the expression

I = AAT we obtain

0 = (AAT )′ = A′AT + A(AT )′ = A′A−1 + (A−1)T (A′)T

= A′A−1 + (A′A−1)T ,

which implies that C(s) = −C(s)T . Computing C(s) and

using the fact that it is a skew symmetric matrix we get

C(s) =
[

0 k(s)
−k(s) 0

]
, (4)

where the curvature k(s) is given by

k(s) := x′
1x

′′
2 − x′′

1x′
2 = det(x′,x′′),

and det(·, ·) denotes the determinant of the 2 × 2 matrix

created by the two 2 × 1 vectors. Since ds = ‖ẋ‖dp we

can also write k in terms of the parameter p as k(p) =
(ẋ, ẍ)/‖ẋ‖3. From (3) and (4) we obtain the Frenet equation:

dT
ds

= kN,
dN
ds

= −kT.

The curvature of the curve x(s) is given by k(s) and the

radius of curvature is defined to be 1/|k(s)|.
In the Euclidean curve shortening flow the curve x(p, t)

is deformed along its unit normal vector N(p, t) at a rate

proportional to its curvature k(p, t). From (1) this can be

written as
∂x
∂t

(p, t) = k(p, t)N(p, t).

Using the Frenet equation we have kN = dT/ds =
d2x/ds2. Therefore, the Euclidean curve shortening flow can

be written as
∂x
∂t

(p, t) =
∂2x
∂s2

(p, t). (5)

This equation is called the heat equation or diffusion equa-
tion. (Note: on the right hand side of (5), p is a function of

s.)

C. Shrinking the length optimally

In [13] it is stated that the length, L(t), of a curve which is

evolving according to the Euclidean curve shortening flow is

shrinking as fast as possible using only local information. To

see why and in what sense this is true, consider the following.

We can write the length at a fixed time t as

L(t) =
∫ L(t)

0

ds =
∫ 1

0

∥∥∥∥∂x
∂p

∥∥∥∥ dp, (6)

To take the time derivative of this expression we differentiate

‖∂x/∂p‖2 and obtain

∂

∂t

∥∥∥∥∂x
∂p

∥∥∥∥ =
1

‖∂x/∂p‖
〈

∂x
∂p

,
∂

∂p

∂x
∂t

〉
.

Substituting this into dL(t)/dt and integrating by parts, the

following expression can be obtained:

dL

dt
= −

∫ L

0

〈
kN,

∂x
∂t

〉
ds. (7)

Therefore, the direction of ∂x/∂t in which L(t) is decreasing

most rapidly is ∂x/∂t = kN, which is Euclidean curve

shortening (see (1)). Note that this flow is optimal in the

sense that the velocity of the curve at each point always

points in the direction which maximizes the rate of decrease

of L(t). However, the magnitude of the velocity of the curve

at each point is not in general the speed which maximizes

the rate of decrease of L(t).

III. POLYGON SHORTENING

We can consider a group of n agents lying in the plane

to be the vertices of an n-sided polygon. We then attempt

to create a polygon shortening scheme analogous to that of

curve shortening. With an accurate analogue, the vertices,

and thus the agent’s positions, will converge to a point. In

addition, the shape of the polygon as it shrinks to a point

will have properties similar to the curve shortening theory. In

this section we will formally define a polygon and introduce

the polygon shortening scheme.

A. n-gons

We begin by formally defining a polygon and a non-self-

intersecting polygon in R
2 (or equivalently C), which we

will refer to as an n-gon and a simple n-gon respectively

[7].

Definition 2: An n-gon (n-sided polygon) is a (possibly

intersecting) circuit of n line segments z1z2, z2z3, . . . , znz1,

joining consecutive pairs of n distinct points z1, z2, . . . , zn.

The segments are called sides and the points are called

vertices.

Definition 3: A simple n-gon is a non-self-intersecting n-

gon.

We denote the counterclockwise internal angle between

consecutive sides zizi+1 and zi−1zi of an n-gon as βi, where

i = 1, . . . , n modulo n. For a simple n-gon these angles

satisfy
∑n

i=1 βi = (n − 2)π.

Definition 4: An n-gon is convex if it is simple and its

internal angles satisfy 0 < βi ≤ π, ∀i = 1, . . . , n.

Definition 5: An n-gon is strictly convex if it is simple

and its internal angles satisfy 0 < βi < π, ∀i = 1, . . . , n.

B. Linear Scheme

In this section we will introduce the linear polygon short-

ening scheme which will be the focus of the remainder of

the paper. We will be able to exploit the linear structure of

this scheme to demonstrate several of its polygon shortening

properties. The scheme can be described as follows. A group

of n agents are modeled as point masses and numbered from

1 to n. The position of each agent can be described in the

complex plane by the point zi = xi + jyi, i = 1, . . . , n.

These agents make up the vertices of an n-gon. The strategy

is for agent i to chase the centroid of agents i− 1 and i+1.

The ith agent’s velocity points in the direction of the centroid

of its neighbors and the magnitude of the velocity is equal

to the distance from agent i to the centroid. This scheme is

described in (2), where all indices are evaluated modulo n.
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3z 1z

α
2θ
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Fig. 2. The setup for the definition of the function F .

This system can also be written in the form ż = Az where

the matrix A is circulant (see [8]) and is given by

A = circ
(
−1,

1
2
, 0, . . . , 0,

1
2

)
.

The matrix A can be written in terms of the polynomial

qA(s) =
1
2
sn−1 +

1
2
s − 1,

and the matrix P = circ(0, 1, 0, . . . , 0), as A = qA(P ). By

the spectral mapping theorem we obtain

eigs(A) = {qA(1), qA(ω), qA(ω2), . . . , qA(ωn−1)},
where ω = e2πj/n. Therefore, denoting λi := qA(ωi−1), we

have eigs(A) = {λi : i = 1, . . . , n}. Evaluating λi we get

λi =
1
2
(e2πj(n−1)(i−1)/n + e2πj(i−1)/n) − 1

= cos(2π(i − 1)/n) − 1,

where i = 1, . . . , n. Hence, the eigenvalues of A are

real, with one eigenvalue at zero, and all others on the

negative real line. The zero eigenvalue dictates that the agents

converge to their stationary centroid rather than to the origin.

The following theorem describes the geometrical shape

of the points, zi(t), as they converge to their centroid. This

theorem is proved for discrete time in [3].

Theorem 6: Consider n points, z1(t), . . . , zn(t) evolving

in the complex plane according to (2). As t → ∞ these points

converge to an ellipse. That is, z1(t), . . . , zn(t) collapse to

an elliptical point.

IV. STAR FORMATIONS

In this section we will show that a group of agents,

arranged in a star formation about their centroid (see Figure

3), remain in a star formation for all time. We require some

preliminary tools, which are introduced in the following

Lemmas.

Lemma 7 (Lin et al. [16]): Let z1, z2, and z3 be three

points in the complex plane, as shown in Fig. 2. Let r1 =
|z1 − z2|, r2 = |z3 − z2| and

F = 	{(z1 − z2)(z3 − z2)}.
Then (i) 0 < α < π, r1 > 0, and r2 > 0 iff F > 0. (ii)

π < α < 2π, r1 > 0, and r2 > 0 iff F < 0. (iii) the points

are collinear iff F = 0.

1α

6α
5α

4α
3α

2α

z~ 1z

2z

3z

4z

5z

6z

7z

Fig. 3. A counterclockwise star formation.

Proof: Introducing the polar form

z1 − z2 = r1ejθ1 , z3 − z2 = r2ejθ2

where θ1, θ2 are the angles shown in Fig 2. Then

F = 	{(z1 − z2)(z3 − z2)} = 	{r1e−jθ1r2ejθ2}
= r1r2 sin(α)

Thus, 0 < α < π, r1 > 0, and r2 > 0 iff F > 0; and

π < α < 2π, r1 > 0, and r2 > 0 iff F < 0. Also, the points

are collinear iff F = 0.

Now consider our system of n agents, whose positions,

not all collinear, are denoted by z1, . . . , zn. Let z̃ be the

centroid and ri be the distance from the centroid to zi. Let

αi denote the counterclockwise angle from z̃zi to z̃zi+1 for

i = 1, . . . , n− 1, and αn denote the counterclockwise angle

from z̃zn to z̃z1.

Definition 8 (Lin et al. [16]): The n points are said to be

arranged in a counterclockwise star formation if ri > 0 and

0 < αi < π for all i = 1, . . . , n and
∑n

i=1 αi = 2π. They are

said to be arranged in a clockwise star formation if ri > 0
and −π < αi < 0 for all i = 1, . . . , n and

∑n
i=1 αi = −2π.

This formation is shown in Fig. 3. In what follows we

will consider only counterclockwise star formations, since

the treatment for clockwise star formations is analogous.

Also, the case n = 2 is trivial, so it is omitted.

Lemma 9 (Lin et al. [16]): If n points z1, . . . , zn, which

are evolving according to (2), are collinear at some time t1,

then they are collinear for all t < t1 and t > t1.

Theorem 10: Suppose that n distinct points, with n > 2,

are initially arranged in a counterclockwise star formation.

If these points evolve according to (2) they will remain in a

counterclockwise star formation for all time.

Proof: Sketch of Proof. We begin by considering the

function

Fi(t) = 	{(zi(t) − z̃)(zi+1(t) − z̃)}
= riri+1 sin(αi).

By the definition of a counterclockwise star formation we

have ri(0) > 0, and 0 < αi(0) < π, ∀i. Hence by Lemma

7, Fi(0) > 0, ∀i. We want to show that Fi(t) > 0, ∀i
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Fig. 4. The evolution of a polygon whose vertices start in a star formation
about their centroid ∗. The dashed lines show the trajectories of each vertex.

2z

1z 3z

2β
1γ

2γ1ρ 2ρ

Fig. 5. The setup for the definition of the function H .

and ∀t, which by Lemma 7 shows that the vertices are in a

counterclockwise star formation for all time.

Suppose by way of contradiction that t1 is the first time

that an Fi becomes zero. We can select i = m such that

Fm(t1) = 0, and Fm+1(t1) > 0, for if all the Fi’s are zero at

t1, then the points are collinear, which by Lemma 9 is a con-

tradiction. Hence, we have Fi(t) > 0, ∀ t ∈ [0, t1) and i =
1, . . . , n, Fm(t1) = 0, and Fm+1(t1) > 0. Now, if Fm(t1) =
0, by Lemma 7, one of the four following conditions must

be satisfied. (i) αm(t1) = π and rm(t1), rm+1(t1) > 0. (ii)

αm(t1) = 0 and rm(t1), rm+1(t1) > 0. (iii) rm(t1) = 0.

(iv) rm+1(t1) = 0. The proof then follows by showing that

a contradiction results if any of these four conditions are

satisfied.

Fig. 4 shows the evolution of a polygon which starts in

a star formation about its centroid. Notice that the polygon

remains in a star formation, becomes convex, and collapses

to an elliptic point.

V. CONVEX STAYS CONVEX

In this section we will show that as a convex n-gon evolves

according to (2), it remains convex. To do this we require

a function similar to that in Lemma 7 which measures the

counterclockwise internal angle between two sides of a n-

gon.

Lemma 11: Consider a simple n-gon lying in the complex

plane, whose vertices zi are numbered counterclockwise

around the n-gon. Let z1, z2, and z3 be three vertices of the

Fig. 6. The evolution of a convex n-gon. The dashed lines show the
trajectories of each vertex.

n-gon as shown in Fig. 5. Let β2 denote the counterclockwise

angle from the side z2z3 to the side z1z2, and define ρ1 =
|z1 − z2|, ρ2 = |z3 − z2|, and H = 	{(z1 − z2)(z3 − z2)}.

Then (i) 0 < β2 < π, ρ1 > 0, and ρ2 > 0 iff H > 0. (ii)

π < β2 < 2π, ρ1 > 0, and ρ2 > 0 iff H < 0. (iii) the points

are collinear iff H = 0.

This is proved in the same manner as Lemma 7.

Lemma 12: If an n-gon is convex, with its vertices zi,

i = 1, . . . , n, numbered counterclockwise around the n-gon,

then these vertices are in a counterclockwise star formation

about their centroid.

Theorem 13: Consider a strictly convex n-gon at time

t = 0 whose vertices zi, i = 1, . . . , n, are numbered

counterclockwise around the n-gon. If these vertices evolve

according to (2), the n-gon will remain strictly convex for

all time.

The proof of this theorem proceeds in the same manner

as the proof of Theorem 10 by using the function Hi. It also

utilizes the fact that by Theorem 10 and Lemma 12 a strictly

convex n-gon is in a star formation and thus remains in a

star formation for all time.

Corollary 14: Consider an n-gon which is convex at t =
0. If the vertices evolve according to (2), then for any t > 0,

the n-gon will be strictly convex.

This proof follows directly from the proof of Theorem 13.

Fig. 6 shows the evolution of a convex n-gon. Notice that

the polygon remains convex and collapses to a point.

VI. SHRINKING A POLYGON’S PERIMETER

Given a polygon with vertices z1, . . . , zn and sides

z1z2, . . . , znz1 we can write the perimeter of the polygon

as

P (t) =
n∑

i=1

|zi+1 − zi|. (8)

We would like to compute an expression for Ṗ (t) analogous

to that in Section II-C. In order to take the time derivative

of this expression consider taking the derivative of |zi+1 −
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zi|2 = 〈zi+1 − zi, zi+1 − zi〉, which yields

d

dt
|zi+1 − zi|2 =

d

dt
〈zi+1 − zi, zi+1 − zi〉

= 2�{〈zi+1 − zi, żi+1 − żi〉} .

But also,

d

dt
|zi+1 − zi|2 = 2|zi+1 − zi| d

dt
|zi+1 − zi|.

Letting żi = ui for i = 1, . . . , n and rearranging we have

d

dt
|zi+1 − zi| = �

{〈
zi+1 − zi

|zi+1 − zi| , ui+1 − ui

〉}
.

Therefore

Ṗ (t) =
n∑

i=1

�
{〈

zi+1 − zi

|zi+1 − zi| , ui+1 − ui

〉}
.

Since all indices are evaluated modulo n this can be rewritten

as

Ṗ (t) = −
n∑

i=1

�
{〈

zi−1 − zi

|zi−1 − zi| +
zi+1 − zi

|zi+1 − zi| , ui

〉}
. (9)

To maximize the rate of decrease of P (t) the two vectors

in the inner product must point in the same direction. This

implies that ui should point in the direction of

zi−1 − zi

|zi−1 − zi| +
zi+1 − zi

|zi+1 − zi| .

That is, ui should point in the direction which bisects the

internal angle βi of the polygon. In general, neither the

linear scheme (2) nor the shortening by Menger-Melnikov

curvature point in this direction. However, this direction does

not ensure that the polygon becomes circular (or elliptical);

in simulation, adjacent vertices may capture each other and

the polygon may collapse to a line.

Using (9) and the linear scheme (2) we can determine

Ṗ (t). For Ṗ (t) to be defined we require that adjacent vertices

be distinct. This is ensured, for example, if the vertices start

in a star formation about their centroid.

Theorem 15: Consider an n-gon whose distinct vertices

evolve according to (2). If adjacent vertices remain distinct,

the perimeter P (t) of the n-gon (defined in (8)) monotoni-

cally decreases to zero.

Proof: Substituting (2) into (9) and expanding we have

Ṗ (t) =
1
2

n∑
i=1

�
{

− |zi − zi−1| − |zi+1 − zi|+
〈

zi − zi−1

|zi − zi−1| , zi+1 − zi

〉
+

〈
zi+1 − zi

|zi+1 − zi| , zi − zi−1

〉}
.

Each term in this summation has the form �{−|u| − |v| +
〈u/|u|, v〉+〈v/|v|, u〉}. From the Cauchy-Schwarz inequality

we have �{〈u/|u|, v〉} ≤ |v|, �{〈v/|v|, u〉} ≤ |u|, and

thus �{−|u| − |v|+ 〈u/|u|, v〉+ 〈v/|v|, u〉} ≤ 0. Therefore,

Ṗ (t) ≤ 0. Equality is achieved if and only if u/|u| = v/|v|
for each term in the summation; that is, if and only if

zi − zi−1

|zi − zi−1| =
zi+1 − zi

|zi+1 − zi| , ∀i. (10)

However, assume by way of contradiction that (10) is satis-

fied. Rotate the coordinate system such that z1 and z2 lie on

the real axis and z2 − z1 > 0. Setting i = 2 in (10) we have

z3 − z2 > 0, setting i = 3 we have z4 − z3 > 0, and so on.

Hence zi+1 − zi > 0, ∀i = 1, . . . , n − 1, which implies that

zn > z1. But setting i = n in (10) we have z1 − zn > 0, a

contradiction. Therefore (10) cannot be satisfied, Ṗ (t) < 0,

and since the vertices converge to their stationary centroid,

P (t) monotonically decreases to zero.

VII. CONCLUSIONS

Motivated by the rendezvous problem in multi-agent

systems we reviewed the theory of curve shortening. We

proposed a simple linear scheme for polygon shortening

and showed that it exhibits several properties similar to the

curve shortening theory. In terms of future work, it would be

interesting to study a nonlinear polygon shortening scheme

to try to create an even closer analogy.
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