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Abstract

We consider bang–bang control problems with state in-
equality constraints. It is shown that the control problem in-
duces an optimization problem where the optimization vector
consists of all switching times of the bang-bang control and
junction times with boundary arcs. The induced optimization
problem is a generalization of the one studied in [1], [19],
[20], [22] for bang–bang controls without state constraints.
We develop second order sufficient conditions (SSC) for the
state–constrained control problem which require that (1) the
SSC for the induced optimization problem are satisfied and
(2) additional conditions for the switching function hold at
switching and junction times. An optimization algorithm is
presented which simultaneously carries out the second–order
test. The algorithm is illustrated on a numerical example in
cancer chemotherapy.

I. INTRODUCTION

Second–order sufficient optimality conditions (SSC) for
bang–bang controls have been derived in Agrachev, Stefani
and Zezza [1] on the basis of an induced optimization
problem where the control process is optimized with respect
to the unknown switching times of the bang–bang control.
The equivalence of this type of SSC with a different form of
SSC obtained earlier has recently been shown in [19], [20],
[22]. Numerical methods for the verification of optimization
based SSC have been developed in Maurer et al. [17] using
the so–called arc–parametrization method where the arc–
lengths of the bang–bang arcs are optimized.

In this paper, we propose an extension of the methods
in [17] for solving bang–bang control problems with state
constraints. The optimization vector in the induced optimiza-
tion problem is composed by the switching times and exit–
time, resp., exit–time (junction times) of boundary arcs. The
numerical method is based on the fact that the optimal control
can be determined as a feedback expression on both interior
and boundary arcs. We present a numerical test of SSC for
the induced optimization problem and conjecture that this
test leads to SSC for the state–constrained control problem
under the additional assumptions (A1)–(A5) on interior and
boundary arcs. We discuss a numerical example, the optimal
cancer therapy for a two–compartment model [11], which is
shown to satisfy the SSC presented in this paper.

II. OPTIMAL BANG-BANG CONTROL PROBLEMS WITH

STATE CONSTRAINTS

We consider state-constrained optimal control problems
with control appearing linearly. Let x(t) ∈ IRn denote the
state variable and u(t) ∈ IR the control variable at time
t ∈ [0, tf ] where the final time tf > 0 is either fixed or
free. For simplicity, the control is assumed to be scalar. The
following optimal control problem will be denoted by (OC):
determine a measurable control function u : [0, tf ] → IR
and a terminal time tf > 0 such that the pair of functions
(x(·), u(·)) minimizes the cost functional of Mayer type

J(x, u, tf ) := g(x(tf ), tf ) (1)

subject to the constraints in the interval [0, tf ],

ẋ(t) = f(x(t), u(t)) = f0(x(t)) + f1(x(t))u(t), (2)

x(0) = x0, ϕ(x(tf ), tf ) = 0, (3)

umin ≤ u(t) ≤ umax, umin < umax , (4)

and the scalar state inequality constraint

S(x(t)) ≤ 0 for 0 ≤ t ≤ tf . (5)

The functions g : IRn × IR → IR, f0, f1 : IRn → IRn,
ϕ : IRn × IR → IRr, 0 ≤ r ≤ n, and S : IRn → IR
are assumed to be twice continuously differentiable since
we intend to derive and verify second order conditions. The
state constraint is assumed to be of order one [7], [15], i.e.,
the total time derivative of the function S(x(t)) contains the
control explicitly,

S1(x, u) : = Sx(x)f(x, u) = Sx(x)f0(x) + Sx(x)f1(x)u
=: a(x) + b(x)u, (6)

where b(x) = Sx(x)f1(x) �≡ 0 . Here and in the sequel,
partial derivatives are denoted by subscripts.

An interval [τ1, τ2] ⊂ [0, tf ] is called a boundary arc if
S(x(t)) ≡ 0 holds for all t ∈ [τ1, τ2]. If τ1 and τ2 are
maximal with this property, then τ1 is called entry-time and
τ2 is called exit-time of the boundary arc; τ1, τ2 are also
called junction times. The following assumption is a standard
regularity condition for a boundary arc [7], [14], [16].

(A1) On a boundary arc the following condition holds:
b(x(t)) �= 0 ∀ t ∈ [τ1, τ2] .
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In view of this assumption, we can compute the boundary
control on a boundary arc from the equation S1(x, u) =
a(x) + b(x)u = 0 as the feedback expression

ub(x) = −a(x)/b(x) , u(t) = ub(x(t)) . (7)

The following assumption will be needed to determine the
multiplier associated with the state constraint explicitly.

(A2) The boundary control lies in the interior of the
control region:

umin < u(t) = ub(x(t)) < umax ∀ t ∈ [τ1, τ2] .

Assumptions (A1) and (A2) allow us to formulate first order
necessary conditions of Pontryagin’s minimum principle
in a computationally convenient form. We recall from
[7], [16] that the Lagrange multiplier associated with the
state constraint (5) is a measure that is represented by a
function µ of bounded variation. Using (A1) and (A2) it
has been shown in [15], [16], [14], [13] that the measure
has a Radon–Nikodym derivative η. Hence, we may write
the adjoint equation in a differential form. Suppose now
that ū : [0, tf ] → [umin, umax] is an optimal control with
corresponding trajectory x̄ which satisfy assumptions (A1)
and (A2) and for which the state space constraint is not
active at the initial and terminal time,

S(x(0)) < 0, S(x(tf )) < 0 .

In the direct adjoining approach [7], [16], the augmented
Pontryagin or Hamiltonian function is defined by

H(t, x, u, λ, µ) = λf(t, x, u) + ηS(x)
= λf0(t, x) + λf1(t, x)u + ηS(x) ,

(8)

where the adjoint variable λ ∈ IRn is a row vector and η
is the multiplier associated with the state constraint. In the
sequel, we will use the junction theorem in [15], Corollary
5.2 (ii), where it was shown that the adjoint variables are
continuous at junction times provided that the state constraint
is of first order and the control is discontinuous at junctions.
Note that the discontinuity of the control follows from
assumption (A2). Then there exist an absolutely continuous
(a.c.) adjoint function λ : [0, tf ] → IRn, a piecewise a.c.
multiplier function η : [0, tf ] → IR and a multiplier ρ ∈ IRr

(row vector) such that the following conditions hold a.e. on
[0, tf ]:

λ̇(t) = −Hx(x̄(t), ū(t), λ(t), η(t)), (9)

λ(tf ) = lx(x̄(tf ), tf , ρ), (10)

H(x̄(t), ū(t), λ(t), η(t))|t=tf
+ lt(x̄(tf ), tf , ρ) = 0, (11)

H(x̄(t), ū(t), λ(t), η(t))
= min {H(x̄(t), u, λ(t), η(t)) | umin ≤ u ≤ umax }, (12)

η(t) ≥ 0 , η(t) = 0 if S(x(t)) < 0, (13)

where l(x, tf , ρ) := (g + ρϕ)(x(tf ), tf ) is the endpoint
Lagrangian function. The factor at u in the Hamiltonian is
called the switching function

σ(x, λ) := λf1(x) , σ(t) = σ(x(t), λ(t)) . (14)

On interior arcs with S(x(t)) < 0 the minimum condition
(12) yields the control law

u(t) =
{

umin, if σ(t) > 0
umax, if σ(t) < 0

}
. (15)

The switching times of the control are zeroes of the
switching function. A singular arc occurs if the switching
function σ(t) vanishes on an open interval. In this paper,
we do not consider singular arcs and make the following
assumption

(A3) On interior arcs the control u(t) is bang-bang and
has only finitely many switching times.

For a boundary arc [τ1, τ2] it was assumed in (A2) that the
control takes values in the interior of the control set. Hence,
the minimum condition (12) yields

σ(t) = λ(t)f1(x(t)) = 0 ∀ t ∈ [τ1, τ2]. (16)

This relation can be interpreted as the property that a
boundary control behaves formally like a singular control,
a fact that was exploited in [15] to obtain junction theorems.
By differentiating (16) and using the adjoint equation (9) we
find the following explicit representation of the multiplier
η(t); cf. [16], [13],

η(t) = [λ(t)(f1)x(x(t))f(x(t), ub(x(t)))
−λ(t)fx(x(t), ub(x(t)))f1(x(t)) ] / b(x(t)),

(17)

where ub(x(t)) is the boundary control (7).

III. THE INDUCED OPTIMIZATION PROBLEM AND

SECOND ORDER SUFFICIENT CONDITIONS

Under assumptions (A1)–(A3), the optimal control prob-
lem can be transcribed into an optimization problem in
the following way. We assume that the structure of the
optimal control, i.e., the sequence of finitely many bang-
bang and boundary arcs, is known. Let ti, i = 1, . . . , s, be
the switching and junction times which are ordered as

0 =: t0 < t1 < . . . < ti < . . . < ts < ts+1 := tf .

For simplicity, assume that there exists only a single boun-
dary arc [τ1, τ2] = [tk, tk+1] with an index 1 ≤ k ≤ s. Then
[0, tk) and (tk+1, tf ] are the interior arcs. By assumption, in
every interval Ij := [tj−1, tj ] there exists a function uj(x)
with the property that the optimal control is given by

u(t) = uj(x(t)) , tj−1 ≤ t ≤ tj , (j = 1, . . . , s, s+1). (18)

The interval Ik+1 then represents the boundary arc. The
function uj(x) is either the constant value of the bang-bang
control on interior arcs or the boundary control uk+1(x) =
ub(x) = −a(x)/b(x).

Consider now the the optimization variable

z := (t1, . . . , ts+1)∗ ∈ IRs+1, ts+1 := tf ,

resp. z := (t1, . . . , ts)∗ ∈ IRs for fixed final time tf , where
the asterisk denotes the transpose. Denote by x(t; z) the
absolutely continuous solution of the ODE system

ẋ(t) = f(x(t), uj(x(t))) for tj−1 ≤ t ≤ tj (19)
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with initial condition x(0) = x0. Then the control problem
(OC) can be reformulated as the following induced opti-
mization problem (OP ) with equality constraints:

(OP ) Minimize G(z) := g(x(ts+1; z), ts+1)
subject to Φ(z) := ϕ(x(ts+1; z), ts+1) = 0 ,

S(z) := S(x(tk; z)) = 0 .
(20)

The last equation arises from the entry-condition for the
boundary arc. We consider the Lagrangian for the induced
optimization problem (OP ) in normal form,

L(z, ρ, β) = G(z) + ρΦ(z) + βS(z) (21)

with multipliers ρ ∈ IRr (row vector) and β ∈ IR. First
order necessary and second order sufficient conditions (SSC)
for (20) are well known in the literature. In the following
theorem, we consider control problems with free final time
which involve the optimization vector z ∈ IRs+1.

THEOREM 3.1: (SSC for the optimization problem (OP ))
Let z̄ be feasible for the optimization problem (20). Suppose
there exist multipliers ρ ∈ IRr and β ∈ IR such the the
following three conditions hold:

(a) rank [ Φz(z̄) | Sz(z̄) ] = s + 1,

(b) Lz(z̄, ρ, β) = 0,

(c) v∗Lzz(z̄, ρ, β)v > 0 for all v ∈ IRs+1, v �= 0,

with Φz(z̄)v = 0, Sz(z̄)v = 0.

Then z̄ is a strict local minimizer of the optimization problem
(OP ). 	

Arguments similar to those in [17], [22] reveal that the
first order conditions in part (a) and (b) of Theorem 3.1
are closely related to those in (9)–(11) involving the ad-
joint function λ(t). However, on the boundary, we obtain
adjoint variables which correspond to the indirect adjoining
approach described in [7], [16] where the function S1(x, u)
in (6) is adjoined in the Hamiltonian by a multiplier η1 which
is different from η. The multiplier β in the Lagrangian (21)
yields the jump condition λ(τ1+) = λ(τ1−) − βSx(x(τ1))
for the adjoint variable at the entry–time τ1. Moreover, one
can show the relation β =

∫ τ2

τ1
η(t)dt > 0.

For bang-bang control problems without state inequality
constraints, Agrachev, Stefani, Zezza [1] and Maurer, Os-
molovskii [19], [20], [22] have shown that one further needs
the so–called strict bang-bang property to obtain SSC for
the bang–bang control problem. The following assumption
gives an extension of the strict bang-bang property to control
problems with state space constraints.

(A4) (a) on interior arcs with switching times ti ,
i = 1, ..., k − 1, k + 2, ..., s, it holds:
σ(ti) = 0, σ̇(ti)(u(ti−) − u(ti+)) > 0,

σ(t) �= 0 for t �= ti .

(b) at the entry-time tk and exit-time tk+1 of the
boundary arc the following conditions hold:
σ̇(tk−)(u(tk−) − u(tk+)) > 0 ,

σ̇(tk+1+)(u(tk+1−) − u(tk+1+)) > 0 .

Finally, we need the property that the multiplier η(t) satisfies
the strict complementarity condition.

(A5) Strict complementarity: η(t) > 0 ∀ t ∈ [tk, tk+1].

Note that assumptions (A4) and (A5) have also been used
in [12], [13] to construct a local field of extremals near
the boundary arc. Now we can state second order sufficient
conditions for the state constrained control problem (1)–(5);
the proof will be published elsewhere.

THEOREM 3.2: (SSC for the state–constrained control
problem (OC)) Let ū be a feasible control for the control
problem (1)–(5) which has finitely many switching and
junction times t̄i, i = 1, . . . , s and let x̄ be the corre-
sponding trajectory. Suppose there exists an adjoint function
λ : [0, tf ] → IRn and a multiplier ρ ∈ IRr such that
assumptions (A1)–(A5) hold where the multiplier function
η : [0, tf ] → IR is defined by (17). Suppose further that the
vector z̄ = (t̄1, . . . , t̄s, t̄s+1)∗ ∈ IRs+1, t̄s+1 = tf , satisfies
the SSC in Theorem 3.1. Then the control ū provides a strict
strong minimum for the control problem (OC). 	
IV. NUMERICAL METHODS FOR SOLVING THE INDUCED

OPTIMIZATION PROBLEM

In this section, we shall extend the arc–parametrization
method in [8], [17] to solve state-constrained control prob-
lems. Instead of directly optimizing the switching and junc-
tion times tj , j = 1, . . . , s, one determines the arc durations

ξj := tj − tj−1, j = 1, . . . , s, s + 1, (22)

of bang–bang and boundary arcs. Therefore, the optimization
variable z = (t1, . . . , ts, ts+1)∗, ts+1 := tf , is replaced by
the optimization variable

ξ := (ξ1, . . . , ξs, ξs+1)∗ ∈ IRs+1, ξj := tj − tj−1. (23)

The variables z and ξ are related by a linear transformation
involving the regular (s + 1) × (s + 1)–matrix R,

ξ = R z, z = R−1ξ,

R =

⎛
⎜⎜⎜⎜⎝

1 0 . . . 0

−1 1
. . .

...
. . .

. . . 0
0 −1 1

⎞
⎟⎟⎟⎟⎠ .

(24)

In the arc–parametrization method, the time interval [tj−1, tj ]
is mapped to the fixed interval Ij :=

[
j−1
s+1 , j

s+1

]
by the linear

transformation

t = aj + bjτ, τ ∈ Ij =
[
j − 1
s + 1

,
j

s + 1

]
, (25)

where aj = tj−1 − (j − 1)ξj , bj = (s + 1)ξj . Identifying
x(τ) ∼= x(aj + bjτ) = x(t) in the relevant intervals, we
obtain the ODE system

ẋ(τ) = (s + 1) ξj f(x(τ), uj(x(τ))) for τ ∈ Ij . (26)

The solutions in the intervals Ij are concatenated to define
the continuous solution x(t) = x(t; ξ) in the normalized
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interval [0, 1]. When expressed in the new optimization
variable ξ, the optimization problem (OP ) in (20) gives the
following optimization problem (ÕP ):

Minimize G̃(ξ) := g(x(1; ξ), tf ), tf =
s+1∑
j=1

ξj ,

subject to Φ̃(ξ) := ϕ(x(1; ξ), tf ) = 0 ,

S̃(ξ) := S(x(k/(s + 1); ξ)) = 0 .

(27)

Using the linear transformation (24) it can easily be seen that
the SSC for the optimization problems (OP ) and (ÕP ) are
equivalent; cf. similar arguments in [17].

To solve this optimization problem, we use a suitable
adaptation of the control package NUDOCCCS in Büskens
[3], [5]. Then we can take advantage of the fact that this
routine also provides the Jacobian of the equality constraints
and the Hessian of the Lagrangian which are needed in the
check of the second order condition in Theorem 3.1.

V. NUMERICAL EXAMPLE: TWO-COMPARTMENT MODEL

IN CANCER CHEMOTHERAPY WITH A STATE CONSTRAINT

Ledzewicz and Schättler [11], [12] considered a two-
compartment model in cancer chemotherapy and established
the optimality using the methods outlined in [13]. Here,
we prove optimality by appling the numerical SSC test in
Theorem 3.2 which is conceptually different from the one in
[13]. The description of the control model is taken from [11]:
“The cell cycle is broken into two compartments of which
the first combines the first growth phase G1 and the synthesis
phase S while the second contains the second growth phase
G2 and mitosis M . Let xi(t), i = 1, 2, denote the number
of cancer cells in the i–compartment at time time t.” The
control u is the drug treatment which is measured by its
cell–killing effect. The control model is to minimize the cost
functional with fixed final time tf

J(x, u) = r1x1(tf ) + r2x2(tf ) +
∫ tf

0

u(t)dt (28)

subject to

ẋ1 = −a1x1 + 2(1 − u)a2x2,
ẋ2 = a1x1 − a2x2,

x1(0) = x10, x2(0) = x20

0 ≤ u(t) ≤ 1 ∀ t ∈ [0, tf ].

(29)

The cost functional (28) can be transformed to a functional
(1) of Mayer type by introducing the equation ẋ3 = u,
x3(0) = 0, which yields

J(x, u) = g(x(tf )) = r1x1(tf ) + r2x2(tf ) + x3(tf ).

In addition, we consider the state constraint of order one

S(x(t)) := x1(t) + x2(t) − α ≤ 0, 0 ≤ t ≤ tf , (30)

which imposes an upper bound on the total number of tumor
cells in both compartments. The first total time derivative (6)
of S(x) is given by

S1(x, u) = a2x2 − 2a2x2u .

Obviously, assumption (A1) is satisfied since b(x(t)) =
−2a2x2(t) �= 0 on [0, tf ]. The data in (28) and (29) are
taken from [11]; the initial values x10, x20 are extrapolated
from this paper:

r1 = 6.94, r2 = 3.94, a1 = 0.197, a2 = 0.356,
x1(0) = x10 = 0.86, x2(0) = x20 = 0.55, tf = 10 .

The parameter α in the state constraint (30) will be assigned
the value α = 1.7 for which the state constraint becomes
active. The augmented Hamiltionian (8) is given by

H = λ1(−a1x1 + 2a2x2) + λ2(a1x1 − a2x2) + σu
+η(x1 + x2 − α),

(31)
where σ is the switching function

σ = σ(x, λ) = 1 − 2a2x2λ1 . (32)

The adjoint equation (9) and the transversality condition (10)
yield

λ̇1 = a1(λ1 − λ2) − η, λ1(tf ) = r1 ,

λ̇2 = a2(2(u − 1)λ1 + λ2) − η, λ2(tf ) = r2 .
(33)

The boundary control ub(x) satisfies the equation
S1(x, ub(x)) ≡ 0 which gives

ub(x) ≡ 1/2 .

Hence, the boundary control lies in the interior of the control
set and satisfies assumption (A2). The multiplier η for the
state constraint (30) is determined by equation (17):

η(t) = a1λ1(t)
(

x1(t)
x2(t)

+ 1
)
− a2λ1(t) − a1λ2(t) . (34)

To determine the structure of the optimal control we first
discretize the control problem with 500 gridpoints and apply
the program NUDOCCCS of Büskens [3]. Figures 1 and 2
display the state, resp., adjoint variables, Figure 3 depicts
the optimal control and the switching function and Figure 4
gives the state constrained function x1 + x2.

The control has two bang-bang arcs and one boundary
arc:

u(t) =

⎧⎨
⎩

0, for t ∈ [0, t1]
ub(x(t)) = 1

2 , for t ∈ [t1, t2]
1, for t ∈ [t2, tf ]

⎫⎬
⎭ . (35)

It can be seen from Figure 3, that the optimal control
satisfies assumptions (A3) and (A4) since, in particular, for
k = 1 in (A4) we have σ̇(t1−) < 0 and σ̇(t2+) < 0.
Moreover, Figure 5 shows that the multiplier η satisfies the
strict complementarity condition (A5).

It remains to verify the SSC in Theorem 3.1 for the
optimization problem (27). The optimization variable is

ξ = (ξ1, ξ2), ξ1 = t1, ξ2 = t2 − t1 .

Then the arc–length of the final time interval is given by

tf − ξ1 − ξ2, tf = 10 .
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Fig. 1. State variables x1 and x2 .
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Fig. 2. Adjoint variables λ1 and λ2 .
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Fig. 3. Optimal control (dotted) and switching function (solid).
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Fig. 4. State constrained function x1(t) + x2(t) .
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Fig. 5. Multiplier function η(t) in (34).

Since no terminal state boundary conditions are prescribed,
the only equality constraint is the entry–condition of the
boundary arc,

x1(1/3; ξ) + x2(1/3; ξ) = α = 1.7 .

The code NUDOCCCS gives the following results:

t1 = ξ1 = 1.490713, t2 = ξ1 + ξ2 = 2.653005,
λ1(0) = 2.44417, λ2(0) = 2.82883,
x1(tf ) = 0.2635156, x2(tf ) = 0.2673589,
J(x, u) = 10.81033 .

(36)

The Hessian of the Lagrangian for (27) is computed as

Lξξ =
(

0.2253187 0.1280601
0.1280601 0.0992115

)

while the Jacobian of the equality constraint is given by

S̃ξ = (0.1979670, 0).

Obviously, the Hessian Lξξ is positive definite and we have
rank (S̃ξ) = 1 . Hence, we may conclude that the control (35)
referring to the data (36) satisfies the SSC in Theorem 3.1
and provides a strict local minimum of the optimal control
problem.

The results on SSC have an immediate application in
sensitivity analysis of parametric bang-bang control prob-
lems with state constraints. The methods in [10], [17] can
be extended to compute parametric sensitivity derivatives of
switching and junction times, resp., arclengths of bang–bang
and boundary arcs. For the chemotherapy problem under
consideration we obtain the following sensitivity derivatives
for the arclengths of the first bang-bang arc and the boundary
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arc:

dξ1/da1 = −1.513 , dξ2/da1 = 11.99 ,

dξ1/da2 = −3.350 , dξ2/da2 = 0.5165 ,

dξ1/dx10 = −5.359 , dξ1/dx10 = 4.421 ,

dξ1/dx20 = −7.233 , dξ1/dx20 = 4.077 .

In particular, note the high sensitivity of the arclength of the
boundary arc w.r.t. a variation in the parameter a1 .

VI. CONCLUSION

We have presented second–order sufficient conditions
(SSC) for bang–bang control problems which are subject to
a first–order state constraint. The form of these SSC can be
regarded as a generalization of those in [1], [19], [20], [22]
for purely bang–bang controls. We have discussed numerical
methods which efficiently solve the state–constrained bang–
bang control problem and provide a test for SSC. The
numerical methods were illustrated by an example in cancer
chemotherapy. The proposed SSC have been successfully
tested on further examples by Altrogge and Goris [2]: (1) a
drug displacement problem with a toxicity constraint which
was solved in [21]; (2) the control of an image converter
with a constraint on the electric field [9]; (3) the control of
a nuclear reactor [15]; (4) the cancer chemotherapy for a
three–compartment model [23].

The methods in [4], [5], [10], [17] for computing para-
metric sensitivity derivatives of optimal solutions can be
extended to bang–bang control problems with state con-
straints. In particular, as in [17] one obtains the sensitivity
derivatives of switching and junction times which can be
used to design real–time control algorithms for the online
computation of optimal control and state trajectories under
data perturbations; cf., e.g., [6].
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