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Abstract— In this paper a novel representation of transfer functions
of sampled-data systems in the lifted domain is proposed. The main
idea is to express these transfer functions by the STPBC (systems
with two-point boundary conditions) machinery avoiding the appeal
to the state space in the lifted domain. This produces a compact LTI
description of sampled-data systems in which the intersample dynamics
are driven solely by the open-loop dynamics of continuous-time parts of
the system and discrete-time dynamics shows up through a reshaping
of the boundary conditions. The proposed representation simplifies
manipulations over sampled-data systems and enables one to keep track
of their structure under multi-level algebraic manipulations.

I. INTRODUCTION

Consider a continuous-time LTI system G, described by the
following state equation:{

ẋ(t) = Ax(t) + Bu(t),

y(t) = Cx(t) + Du(t).
(1)

This equation, quite naturally, characterizes G as a relation between
continuous-time signals u(t) and y(t).

Yet one can look at G form a different perspective/viewpoint. To
this end, introduce a transformation Wh, which maps a continuous-
time signal ζ(t) into the discrete-time sequence {ζ̆k} such that each
ζ̆k is a function in [0, h] (throughout the paper the space of such
functions is referred to as Kh) satisfying ζ̆k(τ) = ζ(kh + τ). This
transformation, called the lifting transformation or simply lifting,
can be visualized as shown in Fig. 1. Clearly, ζ and ζ̆ describe the
same signal. One thus can think of the system G above not as a
relation between u and y, but rather as a relation between their
lifted versions ŭ and y̆. The latter can be easily derived from the
solution

x(kh + τ) = eAτx(kh) +

∫τ

0

eA(τ−θ)Bu(kh + θ)dθ

of (1), which holds for all k ∈ Z+ and τ ∈ R+. This equation
suggests that (1) can be rewritten in the following form:⎧⎪⎪⎨

⎪⎪⎩
x̄k+1 = eAhx̄k +

∫h

0

eA(h−θ)Bŭk(θ)dθ,

y̆k(τ) = CeAτx̄k + Dŭk(τ) + C

∫τ

0

eA(τ−θ)Bŭk(θ)dθ,
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Fig. 1. Lifting continuous-time signals

where x̄k
.
= x(kh), or, equivalently, in the form{

x̄k+1 = Āx̄k + B́ŭk,

y̆k = C̀x̄k + D̆ŭk,
(2)

where1

Ā : R
n → R

n x̄k �→ eAhx̄k, (3a)

B́ : Kh → R
n ŭk �→

∫h

0

eA(h−θ)Bŭk(θ)dθ, (3b)

C̀ : R
n → Kh x̄k �→ CeAτx̄k, (3c)

D̆ : Kh → Kh ŭk �→ Dŭk + C

∫τ

0

eA(τ−θ)Bŭk(θ)dθ. (3d)

This is a discrete-time state equation with a finite-dimensional
state space and infinite-dimensional input and output spaces. The
discrete-time system described by this equation is called the lifting
of G and denoted as Ğ = WhGW−1

h .
The rationale behind the use of the lifting transformation be-

comes apparent when sampled-data systems are analyzed. These
are systems containing both continuous- and discrete-time elements
connected by A/D (sampler) and D/A (hold) converters, see [4].
Analyzing sampled-data systems is complicated since their dy-
namics are hybrid (continuous/discrete) and their continuous-time
behavior is periodically time varying even when both continuous
and discrete parts are time invariant. Both these problems can be
overcome by lifting all continuous-time signals, thus converting
continuous-time elements to equivalent discrete-time ones. This
puts all elements of sampled-data systems on an equal footing,
turning them into discrete time-invariant systems. This idea was
introduced independently in [22], [20], [18], [3] and has proven
to be a powerful tool for analyzing many aspects of sampled-data
systems [2], [5], [23] as well as of the sampled-data controller
design [18], [1], [13].

Nonetheless, the advantages in using lifting come at a high price.
Since the I/O spaces of systems in the lifted domain are infinite
dimensional, most parameters of the lifted state-space realization
(2) are operators over the infinite-dimensional space Kh. This fact
complicates manipulation over these parameters, especially when
they are presented in an integral form (3) which, although appearing
quite natural, complicates manipulations over these operators.

Many of these difficulties can be alleviated by replacing the
integral representation (3) with one based on STPBC (see Ap-
pendix A for relevant definitions). The fact that the representation
using differential equations simplifies manipulations over a class
of integral operators on [0, h] was apparently first recognized on
an abstract level in [6]. Applying to the “D” part of the lifted
systems, this idea was exploited in [1]. Then, a general framework

1To improve the readability of formulae involving both finite- and
infinite-dimensional components, the following operator nomenclature is
used hereafter: a bar, like Ō, indicates an operator whose input and output
spaces are both finite dimensional; a grave accent, Ò, indicates a finite-
dimensional input space and a distributed output space, like Kh; an acute
accent, Ó, indicates a finite-dimensional output space and a distributed input
space; finally, a breve accent, Ŏ, indicates that both the input and output
take distributed values.
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incorporating the impulse and sampling operators was proposed in
[10]. This representation proved a powerful tool, enabling solution
of some open problems in sampled-data control and estimation [13],
[11], [14]. For example, the last two references successfully handled
the computation of matrices like C̀∗(I− D̆Π̆BD̆∗)−1C̀ : R

n �→ R
n,

where Π̆B
.
= I− B́∗(B́B́∗)−1B́ is the orthogonal projection onto the

null space of B́.
The STPBC representation above, however, is only of limited

help when multilevel computations (i.e., those involving inter-
mediate manipulations) have to be performed. Examples include
adaptation of the discrete formulae of [19] or the procedure of [15]
to the sampled-data H∞ smoothing problem. In these cases, the
solutions are not carried out directly in terms of the problem data,
but rather in terms of the solution of the corresponding Kalman
filtering problem, or, equivalently, coprime factors of the data with
the co-inner numerator. When existing lifting techniques are used,
the transformed problem data loses its structure and cannot be
readily handled.

In this respect, alternative representations of the lifted transfer
functions, which would make it possible to maintain the structure of
sampled-data systems under manipulations over their lifted transfer
functions, would be of value. The purpose of this paper is to
introduce such a representation. This paper conforms to [10] in
its use of the STPBC machinery as the basic tool. Here, however,
the STPBC machinery is not applied to the parameters of the
state-space realization (2), but rather directly to the corresponding
transfer function Ğ(z). It turns out that the resulting expression for
Ğ(z) is compact and nicely interpretable, bearing some resemblance
to the ideas of [17], [21] (see Remark 2.1). Yet, unlike the latter
approach (which leads to a time-varying representation of sampled-
data systems), the proposed representation makes it possible to stay
in the time-invariant framework and use well-understood LTI tools.

Arguably, a major drawback2 of the available representations
of sampled-data systems in the lifted domain is that all of them
hinge upon the discrete state equation (2) and thus inherit technical
problems associated with it. These problems are apparently caused
by the non-closeness of this model to inverse and adjoint operations.
The problems are manifested either in significantly more cumber-
some derivations and solutions compared to their continuous-time
counterparts or in the need to impose restrictive assumptions on
system parameters (in fact, some of these assumptions never hold
in the sampled-data case). In this respect, one of the advantages of
the proposed approach can be seen in its moving away from (2)
as the ultimate model for analyzing lifted systems. I believe that
the proposed representation could become a basis for more efficient
methods (see [16] for some examples).

The paper is organized as follows. In Section II the representation
is introduced and some of its basic properties are discussed. In
Section III the application of the proposed representation to the con-
struction of sampled-data observer-based controllers is addressed.
Section IV is devoted to the conversion of the general sampled-data
estimation problem to that with stable data. Concluding remarks are
provided in Section V. The paper contains an Appendix, in which
some basic facts about STPBCs are presented.

II. THE COMPACT REPRESENTATION

A. The idea

The main idea of the proposed representation is to avoid the direct
use of the state-space realization (2). Instead, the transfer function

2At least, from the frequency-domain analysis point of view.
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ȳ ū
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Fig. 2. General sampled-data setup.

in the lifted domain, i.e., Ğ(z) = D̆ + C̀(zI − Ā)−1B́, is written in
a more compact form. To this end, note that for all ŭ ∈ Kh

(
Ğ(z)ŭ

)
(τ) = Dŭ(τ) + C

∫τ

0

eA(τ−θ)Bŭ(θ)dθ

+ CeAτ(zI − eAh)−1

∫h

0

eA(h−θ)Bŭ(θ)dθ.

The comparison of this expression with (16a) prompts the following
representation of Ğ(z):

Theorem 2.1: Given G(s) = D+C(sI−A)−1B, its lifted version
has the transfer function

Ğ(z) =

(
A zI�−I B

C D

)
(4)

for all z ∈ C.
Formula (4) has quite a neat interpretation: the intersample

behavior is completely determined by the continuous-time dynamics
of G(s) and the discrete-time dynamics appears in the boundary
conditions only. In fact, the boundary conditions in this case are
zx(0) = x(h), which simply means the concatenation of the
pieces in Fig. 1(b). Remarkably, an addition of pure discrete-time
dynamics to the representation of Theorem 2.1 shows up only
through a reshaping of the boundary conditions of the STPBC in
(4) and, quite naturally, does not affect the intersample dynamics.

To see this, consider the standard sampled-data system in
Fig. 2(a), where

P(s) =

⎡
⎣ A Bw Bu

Cz Dzw Dzu

Cy 0 0

⎤
⎦

(Dyw and Dyu are both taken zero to guarantee the boundedness
of the sampling operation [4]) is a continuous-time plant, K̄(z) is
a discrete-time part of the controller, Sh is the ideal sampler (i.e.,
ȳk = y(kh−)), and Hh is the zero-order hold (u(kh + τ) = ūk).
The application of the lifting transformation to all continuous-time
signals converts the system in Fig. 2(a) to an equivalent discrete-
time LTI system in the lifted domain3 shown in Fig. 2(b).

Conventionally, the lifted generalized plant, P̆(z), is expressed in
terms of its state-space realization

P̆(z) =

⎡
⎣ Ā B́w B̄u

C̀z D̆zw D̀zu

C̄y D́yw D̄yu

⎤
⎦ (5)

with appropriately defined [4, Sec. 10.3] parameters, some of which
are operators over infinite-dimensional I/O spaces (see Footnote 1).
The problem here is that the structure of the hybrid system in
Fig. 2(a) is blurred in representation (5). The situation further

3Note that the sampler in the lifted domain always contains a unit delay
part [12], which is attached to the discrete controller. The rest of the lifted
sampler and the lifted hold are absorbed into the lifted generalized plant P̆.
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deteriorates as the loop is closed by the discrete controller 1
z
K̄(z),

so that the structure of the original system is somewhat lost in
algebraic constructions involving infinite-dimensional operators.

The following theorem proposes an alternative form of the
closed-loop lifted transfer function:

Theorem 2.2: The closed-loop transfer function from w̆ to z̆ for
the lifted system in Fig. 2(b) is

T̆zw(z) =

⎛
⎝ A

0

Bu

0
z

[
I 0
0 I

]
�−

[
I 0

K̄(z)Cy 0

] Bw

0

Cz Dzu Dzw

⎞
⎠ . (6)

Proof: It is known [12] that the sampler and hold in the lifting
domain become the following transfer functions:

Śh(z) = 1
z
I∗h and H̀h(z) =

(
0 I�0 I

I 0

)
I0.

Augmenting zŚh(z) and H̀h(z) to the lifting of P(s) results then
in the following lifted generalized plant:

P̆(z) =

[
I 0

0 I∗h

]
⎛
⎜⎜⎝

A

0

Bu

0

[
zI 0
0 I

]
�−

[
I 0
0 0

] Bw

0

0

I

Cz

Cy

Dzu

0

Dzw

0

0

0

⎞
⎟⎟⎠

[
I 0

0 I0

]
(7)

(this is an alternative to (5)). This STPBC has two inputs, one
of which is of the form I0ū. The application of Proposition A.2
enables one to eliminate this input at the expense of the following
reshape of the boundary conditions:[

zI 0

0 I

] (
x(0) −

[
0

I

]
ū

)
−

[
I 0

0 0

]
x(h) = 0.

Now, taking into account that ū = 1
z
K̄(z)ȳ and ȳ =

[
Cy 0

]
x(h),

the relation above rewrites as[
zI 0

0 I

]
x(0) −

[
I 0

1
z
K̄(z)Cy 0

]
x(h) = 0,

from which (6) follows by multiplying the last row by z.
Remark 2.1: Note that the intersample (continuous-time) behav-

ior of the closed-loop transfer function (6) is comprised of the
dynamics of the continuous-time plant (the modes of A) and the
zero-order hold (the modes at the origin) and is not affected by
the discrete controller K̄. The latter affects only the boundary
conditions, i.e., the way in which the consecutive pieces of lifted
signals are tailored together. This property shows some resemblance
with the approach based on the representation of sampled-data sys-
tems by continuous-time dynamics with jumps [17], [21]. There is,
however, an important conceptual difference between that approach
and the approach proposed in this paper. In the “jump system”
representation of sampled-data dynamics, one ends up with a time-
varying system and, consequently, time-varying machinery should
be adopted. On the contrary, the purpose of the representation
proposed here is to end up with a time-invariant representation,
for which standard frequency-domain methods could be taken up.

B. General sampled-data transfer function

Motivated by Theorem 2.2, define the STPBC

Ğ(z) =

(
A Ω(z)�Υ(z) B

C D

)
, (8)

where Ω(z) and Υ(z) are some square discrete transfer matrices
such that

[
Ω(z) Υ(z)

]
has full normal row rank, as a general

sampled-data transfer function (in many cases Ω(z) = zI). The
STPBC (8) is not well-posed if

det
(
Ω(z) + Υ(z)eAh

)
= 0.

It then appears natural to define all z ∈ C for which this
condition holds as poles of the representation. For example, the
poles of representation (4) are the eigenvalues of eAh. The poles
of the representation, however, are not necessarily the poles of the
corresponding transfer function. Indeed, any left common factor of
Ω(z) and Υ(z) does not affect the operator Ğ(z). This is clearly
seen from (16a), where the boundary condition matrices appear only
through the term (Ω(z)+Υ(z)eAh)−1Υ(z), in which this common
factor is canceled. Thus, throughout the paper common factors of
Ω(z) and Υ(z) are not counted as poles of Ğ(z). An example is
the dim(u) poles at the origin of realization (6), which are not the
poles of T̆zw(z).

The concept of the conjugate transfer function plays an important
role in the frequency-domain analysis of linear systems. Given
a transfer function G(z), its conjugate is defined as G∼(z)

.
=

G ′(z−1), where G ′(z) is the transpose (dual) transfer function [24,
p. 67]. Since G∼(z) = [G(z−∗)]∗, it follows from (17) that for the
general sampled-data transfer function

Ğ∼(z) =

(
−A ′

Υ∼

d (z)�Ω∼

d (z) C ′

−B ′ D ′

)
,

where Ωd(z) and Υd(z) are any square transfer matrices satisfying

Ω(z)Υd(z) = Υ(z)Ωd(z)

and such that
[

Ωd(z)
Υd(z)

]
has full normal rank (these transfer matrices

always exist because
[
Ω(z) Υ(z)

]
has full normal rank). It is

worth emphasizing that the conjugate system always exists within
the class of operators defined by (8). This is not always true for
discrete-time systems described by the standard state equation.

III. SAMPLED-DATA OBSERVER-BASED CONTROLLER

In this section some properties of sampled-data observer-based
controllers are discussed. First, the basic building blocks, namely
the sampled-data state feedback (§III-A) and the sampled-data state
observer (§III-B), will be addressed and then the output feedback
case will be studied in §III-C.

A. State feedback

The sampled-data state feedback corresponds to the choices Cy =

I and K̄(z) = F in the system in Fig. 2. In this case Theorem 2.2
yields the following closed-loop transfer function:

T̆zw(z) =

⎛
⎝ A

0

Bu

0
z

[
I 0
0 I

]
�−

[
I 0
F 0

] Bw

0

Cz Dzu Dzw

⎞
⎠ .

The poles of this realization are the roots of

det

(
zI −

[
I 0

F 0

] [
Ā B̄u

0 I

])
= 0,

where
[

Ā B̄u

0 I

]
.
= exp

([
A Bu

0 0

]
h

)
=

[
eAh

∫h

0
eAτdτ Bu

0 I

]
. (9)

Excluding the common factor at the origin, the poles of the closed-
loop transfer function are then the eigenvalues of the matrix Ā +

B̄uF.
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B. State observer

The sampled-data state observer for the state vector x of the
plant in Fig. 2(a) is given by the following differential equation
with jumps:

ξ̇ = Aξ + Buu, ξ(kh) = ξ(kh−) + L
(
Cyξ(kh−) − ȳk

)
for some gain L. In the lifted domain this equation becomes an LTI
system having the following transfer function from

[
ŭ
ȳ

]
to ξ̆:

K̆obs(z) =

(
A zI�−(I+LCy) Bu −L

I 0 0

)[
I 0

0 I0

]
(10)

or, when ŭ = H̀hū, the following transfer function from
[

ū
ȳ

]
to ξ̆:

K̀obs(z) =

⎛
⎝A

0

Bu

0
z

[
I 0
0 I

]
�−

[
I+LCy 0

0 0

] 0

I

−L

0

I 0 0 0

⎞
⎠ I0. (10 ′)

To derive the transfer function of the error equation, let us write
the dynamics of the continuous-time state vector as

ẋ = Ax + Bww + Buu, x(kh) = x(kh−).

The error equation for ε
.
= x − ξ is then

ε̇ = Aε + Bww, ε(kh) = (I + LCy)ε(kh−),

where the fact that ȳk = Cyx(kh−) was exploited, which does not
depend on u. This leads to the following error transfer function
from w̆ to ε̆:

T̆εw(z) =

(
A zI�−(I+LCy) Bw

I 0

)
,

the poles of which are the eigenvalues of (I + LCy)Ā, where Ā is
given by (9).

C. Output feedback

Sampled-data observer-based controller is obtained from the state
feedback control law by replacing the sampled plant state x̄k with
the sampled output ξ̄k = ξ(kh−) of observer (10 ′). Thus, the
control law is ūk = Fξ̄k. Using (10 ′) and Proposition A.2, it can
now be shown that the transfer function of this controller is

K̄(z) = −
1

z
I∗h

⎛
⎝A

0

Bu

0
z

[
I 0
0 I

]
�−

[
I+LCy 0

F 0

] L

0

F 0 0

⎞
⎠ I0 (11a)

from which, with the help of Proposition A.1 and the Matrix
Inversion Lemma, the following more conventional expression can
be derived:

= −F
(
zI − ((I + LCy)Ā + B̄uF)

)
−1ĀL. (11b)

Note that (11b) can in principle be easily obtained using the
conventional sampled-data methods. These methods, however, are
limited in revealing the structure of the closed-loop sampled-data
system.

To derive the closed-loop transfer function, combine the transfer
functions of the lifted generalized plant and the observer error.
Taking into account the equality ξ̄k = x(kh−) − ε(kh−), the
transfer function from

[
w̆
ū

]
to

[
z̆
ξ̄

]
is

[
I 0

0 1
z
I∗h

]
⎛
⎜⎜⎜⎜⎝

A

0

0

Bu

0

0

0

0

A

zI�−

[
I 0 0
0 0 0
0 0 I+LCy

] Bw

0

Bw

0

I

0

Cz

I

Dzu

0

0

−I

Dzw

0

0

0

⎞
⎟⎟⎟⎟⎠

[
I 0

0 I0

]
.

Now, closing the loop ū = Fξ̄, the closed-loop transfer function is

T̆zw(z) =

⎛
⎜⎜⎝

A

0

0

Bu

0

0

0

0

A

z

[
I 0 0
0 I 0
0 0 I

]
�−

[
I 0 0
F 0 −F
0 0 I+LCy

] Bw

0

Bw

Cz Dzu 0 Dzw

⎞
⎟⎟⎠ .

It is readily seen that the poles of this realization are the solution
of

det

⎛
⎝z

⎡
⎣ I 0 0

0 I 0

0 0 I

⎤
⎦ −

⎡
⎣ I 0 0

F 0 −F

0 0 I + LCy

⎤
⎦

⎡
⎣ Ā B̄u 0

0 I 0

0 0 Ā

⎤
⎦
⎞
⎠ = 0,

where Ā and B̄u are defined in (9). One can see that excluding
dim(u) roots at the origin, which are the common rots of the “Ω”
and “Υ” parts, the poles of the closed-loop transfer function T̆zw(z)

are comprised of the poles of the state feedback (eigenvalues of Ā+

B̄uF) and those of the state observer (eigenvalues of (I + LCy)Ā).
Remark 3.1: The arguments above can be easily adopted to the

case, when the hold function is not the zero-order hold, but rather
a free design parameter. In this case one should use (10) combined
with the control law ŭk = Fξ̆k. This results in the controller

K̀(z) = −

(
A + BuF zI�−(I+LCy) L

F 0

)
I0,

which actually (cf. (16b)) consists of the discrete-time part

K̄(z) = −z
(
zI − (I + LCy)e(A+BuF)h

)
−1L

and the generalized hold acting as follows:

u(kh + τ) = Fe(A+BuF)τ ūk.

The closed-loop transfer function is then derived in complete
analogy with its derivation in the zero-order hold case taking into
account the fact that the observer error transfer function T̆εw(z)

does not depend on the control signal. The result is

T̆zw(z) =

⎛
⎝ A + BuF

0

−BuF

A
z

[
I 0
0 I

]
�−

[
I 0
0 I+LCy

] Bw

Bw

Cz + DzuF 0 Dzw

⎞
⎠

with the poles at the eigenvalues of e(A+BuF)h and (I + LCy)Ā.

IV. “STABILIFICATION” OF GENERAL ESTIMATION PROBLEM

In this section an application of the proposed representation to
the reduction of the general sampled-data estimation problem to the
estimation problem for a stable system is addressed. The general
sampled-data estimation problem can be described as follows. Given
continuous-time LTI systems Gv and Gy having the transfer matrices

G(s) =

[
Gv(s)

Gy(s)

]
=

⎡
⎣ A B

Cv Dv

Cy 0

⎤
⎦

and the ideal sampler Sh, find a stable K (the estimator) having a
discrete-time input and a continuous-time output such that the error
system

Tε
.
= Gv − KShGy

is stable as well and its norm (typically, either H2 or H∞) is
minimized. In the lifted domain this can be equivalently recast as
an the LTI problem of stabilizing (by a stable lifted estimator K̀(z))
the error transfer function

T̆ε(z) = Ğv(z) − K̀(z)Ǵy(z)

and minimizing ||T̆ε||.
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In general neither Gv nor Gy needs to be stable. Yet the analysis is
greatly simplified, especially in the fixed-lag smoothing version of
the estimation problem [9], [15], when they are stable. It turns out,
that the general problem can always (under the natural detectability
assumption) be converted to an equivalent problem with stable data.
The conversion, which will be referred to as the stabilification
procedure, was proposed in [9] using earlier ideas from [8]. The
stabilification procedure exploits the fact that the detectability is
equivalent to the existence of a coprime factorization of the form

Ğ(z) =

[
Ğv(z)

Ǵy(z)

]
=

[
I M̀v(z)

0 M̄y(z)

]−1 [
N̆v(z)

Ńy(z)

]
. (12)

In this case
T̆ε(z) = N̆v(z) − K̀a(z)Ńy(z) (13)

for K̀a = (K̀−M̀v)M̄
−1
y , which is stable (i.e., belongs to H∞) iff so

is K̀ provided the error T̆ε is stable as well. The original problem
is converted thus to an equivalent problem with stable data, (13),
and the solution of the latter is then used to generate K̀ as follows:

K̀(z) = M̀v(z) + K̀a(z)M̄y(z).

The stabilification procedure above can in principle be carried
out using conventional representations of sampled-data systems in
the lifted domain. This, however, would lead to a structure loss
in the factors and effectively make (13) a dead end. As will be
shown below, the use of the representation introduced in Section II
makes it possible to circumvent these difficulties and end up with
the factors, which have similar structure to that of Ğv and Ǵy.

To start with, bring in the lifted transfer functions

[
Ğv(z)

Ǵy(z)

]
=

[
I 0

0 1
z
I∗h

]⎛
⎝ A zI�−I B

Cv Dv

Cy 0

⎞
⎠. (14)

Taking into account that (12) is equivalent to[
v̆

0

]
=

[
N̆v(z) M̀v(z)

Ńy(z) M̄y(z)

] [
w̆

−ȳ

]
,

the equality
[

z̆
ȳ

]
= Ğ(z)w̆ can be rewritten as⎧⎪⎨

⎪⎩
ẋ = Ax + Bw̆, zx(0) = x(h)

v̆ = Cvx + Dvw̆

0 = 1
z
I∗hCyx − ȳ

The left coprime factorization is conventionally constructed by
adding the last equation, premultiplied by the gain L, to the first
equation (thus, in a sense, constructing a state observer). In the
sampled-data case the state observer is constructed via adding the
correction term to the boundary condition (see §III-B). Motivated
by this observation, the boundary condition above can be rewritten
as

z(x(0) + Lȳ) = (I + LCy)x(h),

from which, using Proposition A.2, the following expressions for
the factors in (12) can be inferred:

[
N̆v(z)

Ńy(z)

]
=

[
I 0

0 1
z
I∗h

]⎛
⎝ A zI�−(I+LCy) B

Cv Dv

Cy 0

⎞
⎠

and

[
M̀v(z)

M̄y(z)

]
=

[
0

I

]
+

[
I 0

0 1
z
I∗h

]⎛
⎝ A zI�−(I+LCy) L

Cv Dv

Cy 0

⎞
⎠I0.

Provided (I+LCy)eAh is Schur, the coprimeness of these factors in
RH∞ can be shown by the direct construction of the corresponding
Bézout factors. This part is omitted because of the space limitation.

Having the factorization above, the estimation problem reduces
to that for the stable data N̆v and Ńy. An important observation
is that these transfer functions have similar structure to that of the
original problem data in (14), so that the stabilification procedure
does not lead to any structure impairment. This property is exploited
in [16] to solve the sampled-data H2 smoothing problems.

V. CONCLUDING REMARKS

In this paper a novel representation of transfer functions of
sampled-data systems in the lifted domain has been introduces.
Unlike the existing approaches, the proposed representation avoids
the explicit use of the state-space realization of lifted systems.
Instead, the STPBC (systems with two-point boundary conditions)
formalism is used to express transfer functions directly, in a compact
form. The continuous-time dynamics of this STPBC representation
reflect the intersample behavior of the sampled-data systems and the
discrete-time dynamics are reflected by the boundary conditions. It
has been shown that the proposed compact representation makes
it possible to maintain the structure of sampled-data systems under
manipulations over their lifted transfer functions, thus extending the
class of problems which can be solved by the lifting technique.

It is worth emphasizing that this paper is devoted to the exposition
of the main idea of the proposed formalism only. Many aspects of
its application to the analysis and design of sampled-data systems
are either left unaddressed or only outlined here. The reader is
referred to [16] for the application of the proposed representation
to the sampled-data H2 smoothing.
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APPENDIX A
SYSTEMS WITH TWO-POINT BOUNDARY CONDITIONS

Systems with two-point boundary conditions (STPBC) are sys-
tems operating over the interval [0, h] and driven by the following
dynamics [7], [6]:{

ẋ(t) = Ax(t) + Bu(t), Ωx(0) + Υx(h) = 0,

y(t) = Cx(t) + Du(t),
(15)

where the square matrices Ω and Υ shape the boundary conditions
of the state vector x. The boundary conditions are said to be well-
posed if det(Ω + ΥeAh) �= 0. If this condition holds, the mapping
y = Ŏu is well defined ∀u ∈ Kh with

y(t) = Du(t) + C

∫ t

0

eA(t−θ)Bu(θ)dθ

− CeAt(Ω + ΥeAh)−1Υ

∫h

0

eA(h−θ)Bu(θ)dθ (16a)

= Du(t) − C

∫h

t

eA(t−θ)Bu(θ)dθ

+ CeAt(Ω + ΥeAh)−1Ω

∫h

0

e−AθBu(θ)dθ. (16b)

STPBC are denoted by using the compact block notation:(
A Ω�Υ B

C D

)
.
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When Kh is a Hilbert space (e.g., L2[0, h]), the adjoint of this
system is given by [10](

A Ω�Υ B

C D

)
∗

=

(
−A ′

Υ′

d �Ω′

d C ′

−B ′ D ′

)
, (17)

where Υd and Ωd are any square matrices satisfying ΩΥd = ΥΩd

and such that
[
Ω ′

d Υ ′

d

]
has full row rank.

To make the STPBC formalism applicable to the representation
of sampled-data systems in the lifted domain, the following two
operators are also required:

• The impulse operator Iθ, which transforms a vector η ∈ Rn

into a modulated δ-impulse as follows:(
Iθη

)
(t) = δ(t − θ)η.

• The sampling operator I∗θ, which transforms a continuous
function ζ ∈ Kh into a vector from R

n:

I∗θζ = ζ(θ).

As the sampling operator is unbounded on L2[0, h], it can only be
applied to continuous signals. If this is the case, then the sampling
operation is continuous as a function of θ and there is no problem
in using I∗θ to mean I∗

θ−
.

The manipulations over STPBC can be performed in the state
space, much like the manipulations over standard finite-dimensional
state-space systems, see [6]. Moreover, as shown in [10], the
sampling and impulse operators fit well into the STPBC formalism.
For example, the following result can be formulated:

Proposition A.1 ([10]): Let det(Ω + ΥeAh) �= 0. Then the
equality

[
I∗hCh

I∗0C0

] (
A Ω�Υ I

I 0

) [
BhIh B0I0

]

=

[
CheAh

C0

]
(Ω + ΥeAh)−1

[
−ΥBh ΩB0

]

holds provided that ChBh = 0 and C0B0 = 0.
Furthermore, the proposition below shows how impulse inputs

can be recast as non-zero boundary conditions.
Proposition A.2: Let det(Ω + ΥeAh) �= 0. Then the systems{

ẋ1 = Ax1 + Buu + BηI0η̄, Ωx1(0) + Υx1(h) = 0

y1 = Cx1

(18a)

and{
ẋ2 = Ax2 + Buu, Ω

(
x2(0) − Bηη̄

)
+ Υx2(h) = 0

y2 = Cx2

(18b)

are equivalent as mappings from Kh × R to Kh.
Proof: Equation (18a) is a standard STPBC, so that (16) can

be used to obtain

y1(t) = C

∫t

0

eA(t−θ)Buu(θ)dθ − CeAt(Ω + ΥeAh)−1

×

(
Υ

∫h

0

eA(h−θ)Buu(θ)dθ − ΩBηη̄

)
.

On the other hand, the state equation of (18b) leads to

x2(h) = eAhx2(0) +

∫h

0

eA(h−θ)Buu(θ)dθ.

Substituting this to the boundary condition yields

Ω
(
x2(0) − Bηη̄

)
+ Υ

(
eAhx2(0) +

∫h

0

eA(h−θ)Buu(θ)dθ

)
= 0,

so that, assuming the well-posedness,

x2(0) = −(Ω + ΥeAh)−1

(
Υ

∫h

0

eA(h−θ)Buu(θ)dθ − ΩBηη̄

)
.

It is now readily seen that y1 ≡ y2.
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