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Abstract— Matrix Pencil Models are natural descriptions of
linear networks and systems. Changing the values of elements
of networks, that is redesigning them implies changes in the
zero structure of the associated pencil by structured additive
transformations. The paper examines the problem of zero
assignment of regular matrix pencils by a special type of
structured additive transformations. For a certain family of
network redesign problems the additive perturbations may be
described as diagonal perturbations and such modifications are
considered here. This problem has certain common features
with the pole assignment of linear systems by structured
static compensators and thus the new powerful methodology
of global linearisation [1, 2] can be used. For regular pencils
with infinite zeros, families of structured degenerate additive
transformations are defined and parameterised and this lead
to the derivation of conditions for zero structure assignment,
as well as methodology for computing such solutions. Finally
the case of regular pencils with no infinite zeros is considered
and conditions of zero assignment are developed. The results
here provide the means for studying certain problems of linear
network redesign by modification of the non-dynamic elements.

I. INTRODUCTION

The general problem that is addressed is the redesign of
networks and systems by either modifying the topology of
interconnections and/or changing the type and values of the
elements. Within this general family of problems that belong
to this class, there exist a family of structure assignment
problems formulated on matrix pencils [16] and one of
these problems is considered here. Matrix Pencil models
are natural descriptions of implicit descriptions of networks
[17]. The structure assignment problems [6]-[8] which we
consider are equivalent to a zero assignment of the regular
matrix pencil sF+G+H, where sF+G may express the
internal dynamics matrix of a system (described in extended
state space form) and H=UΛV may represent a static
structural change; in fact, U, V are known graph incidence
matrices (they may express a topology modification) and
Λ is a diagonal matrix of continuous design parameters. In
reality, the three matrices U, V, Λ are design parameters.
Here we shall assume that the incidence matrices U, V are

fixed and thus only the diagonal matrix Λ is free for the
assignment of zeros sF+G+UΛV. A large family of such
problems can be reduced to the case of diagonal additive
perturbations and this is the problem considered here
in some detail. The paper deals with both the study of
solvability conditions, as well as the method for computation
of solutions, whenever such solutions exist.

The general properties of the frequency assignment map are
considered first and the notion of degenerate transformations,
i.e. those making the pencil sF+G+H singular are defined.
For the case of pencils with infinite zeros, a parametrisation
of the set of degenerate transformations H is given based
on the nature of the resulting singularity of the pencil.
The significance of degenerate solutions is emphasised
by establishing the property that if the differential of the
frequency assignment map at a degenerate point H0 is onto,
then this implies assignability of zero structure of the pencil
by some appropriate H. The explicit form of the differential
at a degenerate point is computed and it is shown that
for a generic pencil there exist degenerate points H0 such
that the corresponding differential is onto. Using as the
starting point such degenerate solutions, it is shown that the
non-degenerate transformations H, may be constructed to
assign the zeros of sF+G+H in the neighbourhood of any
arbitrary symmetric set of complex numbers. The proposed
methodology is a Quasi-Newton type numerical approach
and its convergence properties are examined. Finally, the
case of pencils with no infinite zeros is considered and
conditions for the complex zero assignment are derived in
terms of invariants associated with the pencil.

II. ZERO ASSIGNMENT OF MATRIX PENCILS:
BACKGROUND RESULTS

Linear networks and systems may be described in a
natural way by matrix pencil models [17]. Frequently,
issues of redesign of the parameters and/or interconnection
topology of the system arise [16]; such problems are not of
the traditional control type, but they may be studied with
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control theoretic tools. There is a large number of state space
redesign problems [16] and here we consider one of the most
basics which is equivalent to zero structure assignment of
matrix pencils by additive perturbations. The mathematical
formulation of this abstract problem can be stated as follows:

Problem formulation: Given a square matrix pencil
[4] sA + B such that A,B ∈ Rn×n , rankA = n1 < n the
problem to be examined here is to investigate the solvability
of the equation:

det(sA + B + Λ) = ϕ(s) (1)

with respect to Λ = diag{λ1, λ2, ..., λn}when φ(s)is a
given polynomial of n1 degree. �

Notation: Qm,n is the set of lexicographically ordered
sequences of m integers from n set of integers and Dn is
any sequence of n integers from (1,2,...,n) with possible
repetition and any order.

Definition (1): A sequence ω = (i1, i2, ..., in) ∈ Qn,2n

characterises a minor αω of Cn[In,Λ]. On such sequences
we define the following:
(a) The operation π on ω ∈ Qn,2n is defined as:

π(ω) � (π(i1), π(i2), ..., π(in) = (j1, ..., jn)

π(ik) =
{

ik if ik ≤ n

îk = ik − n if ik > n

b) A sequence ω = (i1, i2, ..., in) ∈ Qn,2n is called
degenerate, if π(ω) = (j1, j2..., jn) has at least two
equal elements (i.e. jl = jk) and it is nondegenerate, if
π(ω) = (j1, j2..., jn) has distinct elements.

c) For a sequence ω ∈ Qn,2n, which is nondegenerate
we define as the sign of ω, sign(ω) = σ(ω) =
sign(j1, j2..., jn) and as the trace of ω, the subset of
the elements of π(ω) = (j1, j2..., jn) which correspond
to ik > n and thus is the set < ω >= (̂ik1 , îk2 , ..., îkµ),
ı̀≤n. �

Proposition (1): Let [In,Λ] ∈ �n×2n and denote

Cn [In, Λ] = [........, aω, .......] ∈ �1×
(

2n
n

)
, ω ∈ Qn,2n

Then aω are defined as follows:
• aω=0 , if ω is degenerate
• aω �=0 , if ω is nondegenerate

Furthermore, if ω is nondegenerate, σ(ω) is the sign of

ω and < ω >=
{

îk1 , îk2 , ..., îkµ

}
is the trace of ω, then

aω = σ(ω)λîK1
λîk2

...λîkµ
. �

The set of Qn,2n sequences may thus be divided into
two disjoint sets, the set Qd

n,2n of degenerate sequences and
the set QnD

n,2n of nondegenerate sequences. Both subsets
of sequences are assumed to be lexicographically ordered.
Consider now the characteristic redesigned polynomial

Φ(s) = det(sA + B + Λ) � Φ(A,B,Λ)

By the Binet-Cauchy theorem we have that:

det[sA + B + Λ] = det([In, Λn] · [sAT + BT , In]T ) =

Cn([In,Λn])Cn([sAT + BT , In]T ) = Φ(s).
(2)

Definition (2): Let QD
n,2nQnD

n,2n be the ordered subjects
of degenerate and nondegenerate of Qn,2n associated with
the [In,In] structure. We shall denote by C̃n([ In,Λ]) the
subvector of Cn([In,Λ]) obtained by omitting all zero co-
ordinates corresponding to Qd

n,2n sequences and similarly
by C̃n([sAt + Bt, In]) the reduced subvector of Cn([sAt +
Bt, In]) derived by deleting the QD

n,2n set of coordinates. The
subvectors C̃n([In,Λ]), C̃n([sAt + Bt, In]) will be referred
to as [In, In]-structured projections. Note that

Cn[In, Λ]Cn

([
sA + B
In

])
=

C̃n ([In,Λ]) C̃n

([
sA + B
In

])
= Φ(s)

(3)

and given that

C̃n ([In, Λ]) = [....., aω, .....]

=
[
...., σ(ω)λîk1

....λikµ
, ....

]

=
[
....., λîκ1

....λîκµ
, .....

]
diag {...., σ(ω), ....}

= Ĉn ([In, Λ]) D (σ (ω)) ω ∈ QnD
n,2n

(4)

then

Φ(s) = C̃n ([In,Λ]) D {σ(ω)} C̃n

([
sA + B
In

])

= C̃n ([In, Λ]) C̃n

([
sA + B
In

]) (5)

The vectors

Ĉn ([In,Λ]) � C̃n [In, Λ] D {σ(ω)} ∈ �1×2n

(6)

Ĉn

([
sA + B
In

])
� D {σ (ω)} C̃n

[
sA + B
In

]

= P̂ (s) ∈ �2[s]

will be referred to as normalised [In, In]−structured
projections of Cn ([In, Λ]), Cn ([sAt + Bt, In])t

respectively. In particular, Ĉn ([sAt + Bt, In])t = P̂ (s), will
be called the [In, In]−Grassmann representative. �

Proposition (2): The normalised [In,In]-structured
projection of Ĉn ([In,Λ]) may be expressed as:

C̃n ([In,Λ]) = (1, λ1) ⊗ (1, λ2) ⊗ ..... ⊗ (1, λn) (7)

where ⊗ denotes the standard tensor product. �
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The above result follows by inspection of the expression
of Ĉn ([In,Λ]). The characteristic polynomial is expressed
as in (5) and it is generated by the [In,In]-Grassmann
representative of the system i.e.

P̂ (s) = Ĉn

([
sA + B
In

])
(8)

Remark (1) : For any sA+B, Cn ([sAt + Bt, In]) is a
polynomial vector; however, P̂ (s) is not necessarily coprime.

Definition (3) : The greatest common divisor of the
entries of P̂ (s) will be denoted by ΦA,B(s) and this will be
referred to as the [In, In]-fixed polynomial of the system.
A system for which ΦA,B(s)=1 will be called [In, In]-
irreducible; otherwise, it will be called [In, In]-reducible.

The following result can be readily established:

Theorem (1): The fixed zeros of the redesigned polynomial
Φ (A,B, Λ) for all possible Λ are only the roots of
ΦA,B(s)polynomial. �

We can now easily establish that:

det[sA + B + Λ] =

(1, λ1) ⊗ (1, λ2) ⊗ . . . . . . ⊗ (1, λn) = P̂ (s)

By equating the coefficients of the powers of s we get:

(1, λ1) ⊗ (1, λ2) ⊗ . . . ⊗ (1, λn) · P = φ

where φ is the coefficient vector of φ(s) and P is called the
Plucker matrix for the problem [3].

Example (1) : Let a system matrix of a circuit be:

sA + B =

⎡
⎣ s + 5 s − 1 s

2s s s + 3
1 2 −1

⎤
⎦

In this case the C3([I3,Λ3]) matrix is

C3 [I3, Λ3] ≡ C3

⎡
⎣ 1 0 0 λ1 0 0

0 1 0 0 λ2 0
0 0 1 0 0 λ3

⎤
⎦

And can be calculated to be:

(1, 0, 0, λ3, 0,−λ2, 0, 0, 0, λ2λ3, λ1, 0, 0, 0,

−λ1λ3, 0, λ1λ2, 0, 0, λ1λ2λ3)

The [sA+B, In]T matrix is expressed as:

[
sA + B
I3

]
≡

⎡
⎢⎢⎢⎢⎢⎢⎣

s + 5 s − 1 s
2s s s + 3
1 2 −1
1 0 0
0 1 0
0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

The nonzero elements of C3([I3,Λ3]) are (1, λ3,- λ2, λ2λ3,
λ1, - λ1λ3, λ1λ2, λ1λ2λ3) and the corresponding elements

of C3([sA+B,I3]T ) are ( 3s2-21s-33, -s2+7s, 2s+5, s+5, -3s-6,
-s, -1, 1). Therefore:

det(sA+B+Λ) = [1, λ3, λ2, λ2λ3, λ1, λ1λ3, λ1λ2, λ1λ2λ3].

[3s2−21s−33,−s2 +7s, 2s+5, s+5,−3s−6,−s,−1, 1]T

�

The problem described involves the solution of a set of
nonlinear algebraic equations. When the number of solutions
is finite, this number is combinatorially large (one can prove
that the degree is n!) and this makes the problem difficult
to be investigated via the standard Groebner basis tools [9]
especially when n is large. To construct a solution of the
problem we will follow the methodology in [2] by studying
the local properties of degenerate solutions.

The Frequency Assignment Map associated with the
problem is the map assigning Λ to the coefficient vector φ
i.e.

F : Rn → Rn : F (Λ) = ϕ

A diagonal matrix Λ0 is degenerate iff:

F (Λ0) = 0 or equivalently

det(sA + B + Λ0) = 0

In other words, Λ0 is degenerate if the pencil sA + B + Λ0

becomes singular. The following theorem shows the great
importance of degenerate matrices.

Theorem (2): If there exists a degenerate matrix Λ0such
that the differential DFΛo is onto then any set of n
frequencies can be assigned via some diagonal perturbation.
�

For a generic n × n pencil when n is small the set
of all degenerate matrices may be constructed by use of
Groebner Basis algorithm [9].

Example (2) Consider the Pencil

sA + B =

⎡
⎣ -3s 2+4s -1-s

-3+4s 5 + s −1 − 2s
-4+s 6+5s -1-3s

⎤
⎦

then the set of equations defining all the degenerate matrices
diag{x,y,z} is given by:

x - 4 y - x y + 6 z + 5 x z + x y z=0
-5 + x - 3 x y - 11 z + x z - 3 y z=0
-2 + 7 x + 10 y - 19 z=0

a Groebner Basis for the above set of equations is:

480 + 5312*x + 16433*xˆ2 + 21474*xˆ3 + 15452*xˆ4 +
5726*xˆ5 + 147*xˆ6=0
1579680 - 10392988*x - 18923271*xˆ2 - 12885549*xˆ3 -
3302425*xˆ4 - 81879*xˆ5 + 2714400*y=0
2122560 - 12293068*x - 18923271*xˆ2 - 12885549*xˆ3
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-3302425*xˆ4 - 81879*xˆ5 + 5157360*z=0

which gives 3! solutions 4 real and 2 complex.

One can calculate the number of degenerate matrices
for a generic pencil as follows:

Theorem (3) For a generic n × n pencil sA + B such
that rank(A) = n − 1 the number of degenerate diagonal
matrices is finite and equal to n!. �

III. CLASSIFICATION OF THE SET OF
DEGENERATE COMPENSATORS

We may classify the degenerate matrices Λ of a Pencil
sA+B according to the sizes of row or column minimal
indices of sA + B − Λ.

Definition: A degenerate matrix Λ of a Pencil sA + B is
of degree k if the polynomial module that spans the right
Kernel of sA + B − Λ has Forney dynamical order k.

Theorem (4): For a generic nxn pencil sA+B with
rank(A)=n-1 the number Bd of degenerate diagonal matrices
of degree d, (0≤d≤n-1) is finite

Bd =

⎧⎨
⎩

(
n

d + 1

)
Ad+1 if d > 0

1 if d = 0

where Ad+1is the number of permutations of d+1 objects
with no fixed points. �

Although the construction of degenerate matrices looks as
though it has the same complexity as that of the problem
we have started, there is a certain degenerate matrix that
can be easily constructed via linear equations. These are the
degenerate diagonal matrices of degree 0 and n-1.

Proposition (3): Let vt, w vectors such that:

vtA = 0, Aw = 0

then the diagonal matrices

Λ0 = −diag{vtb1

v1
, ...,

vtbn

vn
}, Λ0 = −diag{vtb1

v1
, ...,

vtbn

vn
},

Λn−1 = −diag{bt
1w

w1
, ...,

bt
nw

wn
}

where bi, (bt
i) are the columns (rows) of B and

vi(wi) are the coordinates of v(w), is degenerate.
�

Another classification of the degenerate matrices are
into infinite and finite. Infinite are those solutions that are
taken as limits of sequences Λn whose one or more elements
tend to infinity. The degenerate matrices constructed in
proposition 4 are finite iff vi �= 0. If V is the basis matrix
of the left kernel of A next theorem characterises V so that
there exists at least one finite degenerate matrix.

Theorem (5): If V =
[

v1 ... vn

]
is a basis matrix of

the left kernel of A then there exists a v ∈ V such that the
corresponding degenerate matrix produced by v is finite iff
vi �= 0. �

Note that if the above defined V has not the desired
properties if there exists a k × n submatrix of A, say A′,
such that rank(A) = rank(A′).

IV. GENERICITY RESULTS AND CONSTRUCTION
OF SOLUTIONS

The differential of the frequency assignment map F
related to our problem, plays a very important role in
the determination of the onto properties of the map and
therefore in the solvability of the problem. This can be
calculated in many ways and for a general square rank
deficient polynomial matrix A(s) it can be proved that:

Lemma (1): The following holds true:

det(A(s) + xB(s)) = x.trace(Adj(A(s))B(s)) + O(x2)

this shows that if adj(sA + B − Λ0) = g(s) · vt(s) then
DFΛ0 can be represented by the coefficient matrix of the
polynomial vector (g1(s)v1(s),..., gn(s)vn(s)). Next we will
prove the following result:

Proposition (4): For a generic Pencil the degenerate
diagonal matrix Λ0 of the zero assignment map of the
problem, satisfies rankDFΛ0 = n �

Next we will prove that a Quasi-Newton type of numerical
method starting from a regular degenerate matrix can
produce diagonal matrices which assign the desired
frequencies and it is within an r distance from the
degenerate matrix.

Theorem (6): Let M = n
∥∥DF−1

Λ0

∥∥ ‖T‖ , a =
∥∥DF−1

Λ0
φ
∥∥

and ε,r be such that:

ε ≤ r

a
<

(M−1 + ‖Λ0‖n−1)
1

n−1 − ‖Λ0‖
a

= ε0

then a sequence Λk produced by the iteration:

Λk+1 = Λk − DF−1
Λ0

(F (Λk) − εφ)

converges to a Λ that satisfies:

F (Λ) = εφ, ‖Λ − Λ0‖ ≤ r

�

The above suggest the following methodology for the
solution of the problem:

1) Construct the degenerate matrix Λ0 as above
2) Use the iteration:

Λk+1 = Λk − DF−1
Λ0

(F (Λk) − εφ)
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with the parameters as in the Theorem (6) and starting from
Λ0, until convergence is reached.

Example (3): Consider a network whose system matrix
T (s) is defined by:[

G1 + G2 + sC −G2
−G2 G2 + G3 + 1/[(sL + (1/G4)]

]

Letting X3=1/[(sL+(1/G4)]X2 , T(s) is transformed to:⎡
⎣ G1 + G2 + sC −G2 0

−G2 G2 + G3 1
0 1 −sL − (1/G4)

⎤
⎦

when the values are: C=1,L=1,G1=4,G2=1,G3=0,G4=∞ the
system matrix becomes:

T1(s) =

⎡
⎣ s + 5 −1 0

−1 1 1
0 1 −s

⎤
⎦

assuming that we would like to change the natural frequen-
cies of the above system by tuning the values of G2,G3,G4,
we get the following perturbation:⎡

⎣ G2 −G2 0
−G2 G2 + G3 0
0 0 G4

⎤
⎦ =

=

⎡
⎣ 1 0 0

−1 1 0
0 0 1

⎤
⎦
⎡
⎣ G2 0 0

0 G3 0
0 0 G4

⎤
⎦
⎡
⎣ 1 −1 0

0 1 0
0 0 1

⎤
⎦= UΛUT

Which is equivalent to applying a diagonal perturbation Λ =
diag(G2, G3, G4) to the system

U−1T1(s)(UT )−1 =

⎡
⎣ s + 5 s + 4 0

s + 4 s + 4 1
0 1 −s

⎤
⎦

The degenerate perturbations are defined by:

f2(G2, G3, G4) = −1 − G2 − G3 = 0
f1(G2, G3, G4) = −5 − 4G2 − 5G3 − G2G3 + G4+

+G2G4 + G3G4 = 0
f0(G2, G3, G4) = −5 − G2 + 4G4 + 4G2G4 + 5G3G4+

+G2G3G4 = 0

and the finite solutions are given by:

a) G2=-2, G3=1, G4=-3
b) G2=0, G3=-1, G4=-5

both of them are full (or regular), so both can be used as
staring points for a numerical Quasi-Newton method to place
the characteristic polynomial at any given second order one,
p(s) :

xn+1 = xn − (Jf)−1
x0

(f − ep)

where

x = (G2, G3, G4)T , p = [1, 8, 15]T , f = [f2, f1, f0]T

and x0 = (−2, 1,−3)T . Starting with e=0.5 the
method converges after about 60 iterations to x60 =
(−2, 5507, 1, 050697,−2, 74137)T . Taking now this as a

starting point we repeat the method for e=1.2 and so on.
The following table displays the various solutions we obtain
through this algorithm the last column being the Euclidean
distance of the solution from the degenerate one:

Iterations E G2 G3 G4 Dist from
deg perturbation

0 0 -2 1 -3 0
60 0,5 -2,55 1,050 -2,741 0,610
50 1,2 -3,325 1,125 -2,652 1,375
85 2,5 -4,706 1,206 -2,611 2,741
135 5 -7,278 1,278 -2,594 5,301
250 10 -12,33 1,333 -2,588 10,34
80 18 -20,36 1,365 -2,586 18,37

V. ARBITRARY ASSIGNMENT IN TERMS OF THE
PLUCKER MATRIX: THE CASE N = Ni

The onto properties of a polynomial map such as F
can be examined in terms of its differential. The rank
of the differential of a complex algebraic map although
it is a local invariant may determine its global properties [14].

Proposition (5): If F is a algebraic map between two
complex varieties X,Y such that dimX≤Y then: there
exists x ∈ X: rankDFX =dim Y iff F is (almost) onto.
�

This shows that the invariant that characterises the
onto property of the map F is the n-th exterior product
of its differential DFX and in the case we examine, this
invariant is the determinant of the Jacobian of F , i.e.
det(J(F)X). Due to the property that F(x) = f(x).P, where
f(x)=[1,xl,x2,...,x1x2..xn] the Jacobian of the pole placement
map, that can be calculated in terms of the Jacobian of f
and the Plucker matrix P, i.e. det(J(F)x)=Cn(J(f)).Cn(P).
Thus, the calculation of det(J(F)x) is reduced to calculating
Cn(J(f)). The calculation of J(f) is easily achieved by the
following result:

Theorem (7): The partial derivative of f with respect
to xi, is given by:

(1, x1)⊗ . . .⊗ (1, xI−1)⊗ (0, 1)⊗ (1, xI+1)⊗ . . .⊗ (1, xn)

�

Using the above, we select n entries of the vector
f(x) say a = [al, a2, ..., an], and call the Jacobian of the
function a, J(a); then this is a square n × n matrix whose
determinant is one of the coordinates of the vector Cn(J(f)),
conversely, all the coordinates Cn(J(f)) are of the form
det (J(a)) for some a. The following result provides a the
description of the compound Cn(J(f)).

Theorem (8): The Jacobian J(a) is given by:

J(a) = diag(x−1
l , x−1

2 , ...., x−1
n )I(a)diag(al, a2, ..., an)
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where the ij entry of I(a) is 1 if aj contains xi and 0
otherwise. Therefore the determinant of J(a) is :

det(J(a)) = I(a)a1, a2...an/x1x2...xn �

Every selection of p monomials a = [a1, a2...an]
corresponds to a minor Ma of P. For a given monomial
m consider the sum Pm = Σdet(I(a))Ma where the sum
is taken when a1,a2...an/x1x2...xn = m and det(I(a)�=0.
The collection of all Pm constitutes a system invariant
characterising the onto properties of the pole placement
map. In fact:

Theorem (9): The complex pole placement map is onto if
there exists m such that Pm �=0. �

VI. CONCLUSIONS

A special problem of structure assignment formulated on
matrix pencils under structured additive perturbations has
been considered and conditions for its solvability (as well
as computation of solutions) have been derived. The abstract
problem that has been considered belongs to the general
class of redesign of networks [16], by either modifying the
topology of interconnections and/or changing the type and
values of the elements. The case considered here corresponds
to the diagonal perturbations; the results can also be extended
to the structured perturbations case, since such cases can also
be handled within the current exterior algebra framework.
Structure assignment problems may be formulated on pencils
[7], [8], [10], but they may be also defined on general
polynomial models [5], [6] and are related to zeros, or other
types of invariants. The current framework is suitable for
zero assignment problems.
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