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Abstract— The McMillan degree of a transfer function model
is one of the most important structural characteristics of a
system. In this paper the problem of identifying the generic
McMillan degree of a rational matrix is considered. The
transfer function matrices of interest are those referred to as
Structured Transfer Function (STF) matrices and have certain
elements fixed to zero, some elements being constant and
other elements expressing some identified dominant dynamics
of the system. For the family of STF matrices the problem of
determining the generic McMillan degree is considered using
genericity arguments and an optimisation procedure based
on path properties of nonnegative integer matrices. A novel
approach is introduced that exploits the structure of integer
matrices and this leads to an efficient new algorithm for com-
putation of the generic value of the McMillan degree. Links are
made to standard problems of optimisation and in particular
to the optimal assignment problem. The problem examined here
belongs to the general area of Structural Identification where
the evaluation of structural characteristics of STF models is
under investigation with robust computational methods. Such
problems are of interest to large scale system studies.

I. INTRODUCTION

The study of system properties based on ill-defined models
is a topic of great interest especially in the context of early
design of large scale systems, such as process systems. The
main interest is to deploy the structural characteristics to
predict the true system properties which are defined on ill-
defined models [9]. The problems may be tackled in both the
frequency domain and the state-space domain. The properties
which are dependent on the structure will be referred to as
the structural or generic system properties. The structural
properties are important in that they are generically possessed
by all the systems which may have different parametric
values but share the same underlying graph structure [10]
,[4]; therefore the study of the structural properties is relevant
not only to one particular system but to a class of systems.

The subject of our investigation is the study of McMillan
degree on special types of transfer functions referred to
as Structural Transfer Functions (STF) such models are
large dimension transfer functions with certain elements
fixed to zero, some elements being constant, and other
elements expressing the dominant dynamics of the system,
which have been identified by some preliminary modelling
effort. Structural transfer function matrices frequently arise
as models in the early process design stages [3] and they
are usually of very large dimensions. Standard methods for
computing structural characteristics of these models are not
appropriate and new efficient techniques are required which
exploit the fact that numerical values of the constants are

not fixed, but only the nature of dominant dynamics. The
current paper is focused on the McMillan degree structural
characteristic, but the problem area includes other forms of
structural characteristics such as infinite pole-zero structure,
minimal indices, etc; such issues however are not considered
here.

It is a fact that in the early design stages the values
of the parameters in the elements of the transfer function
are not known exactly. Yet it is desirable to have some
knowledge on the McMillan degree since it indicates the
complexity of the system. Given the structure of the transfer
function matrix and the type of the non-zero entries of
the matrix, the evaluation of the McMillan degree of such
systems will be termed as generic evaluation of the McMillan
degree, and the McMillan degree will be termed as generic
McMillan degree of the given structured uncertain model.
The McMillan degree of a rational matrix can be calculated
from the orders of the denominators of the matrix in Smith-
McMillan form [5]. So algorithms can be designed to first
transform the rational matrix into Smith-McMillan form by
using unimodular transformations and then find the sum
of the orders of the denominators. As pointed out in [8],
this method is impractical in terms of computations to
obtain the Smith-McMillan form. An alternative has been
suggested [8], that is to obtain the pole polynomial as the
least common multiple of the minors of all orders. The order
of this common multiple gives the McMillan degree. This
may also be used for computation of the generic form of
the Smith-McMillan form of the given structure system, as
well as the unstable McMillan degree. This method does
not require the transformation of the rational matrix into
Smith-McMillan form and computationally is more practical.
An original treatment of the problem was given in [6],
where general searching methods for the maximal weight of
nonnegative, natural matrices were used. This paper develops
two methods for the study of the problem. The first uses the
reduction of the generic McMillan degree computation to
finding the maximum weight of natural matrices, and devel-
ops a structural methodology based on the new notion of
column irreducibility (motivated by the related notion of the
polynomial matrices) that leads to an efficient computational
procedure based on tests of Boolean independence of vectors
and notions of complexity of weighted Boolean matrices.
The second links the generic McMillan degree computation
problem to a standard problem of optimisation, known as the
optimal assignment problem, which is briefly discussed at the
end. Note that both approaches have strong interpretation in
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graph-theoretic terms and it is possible to combine them for
the development of more efficient computational procedures.

II. PROBLEM STATEMENT AND BACKGROUND
RESULTS

In this section we define the basic notions, state the
problem and review the basic results. The notion of the
structured transfer function is introduced below.

Example (2.1): An example of a 3 × 3 structured proper
rational transfer function matrix H(s) is given below

H(s) =

⎡
⎣ A2

1A2 A1 A3

A3 A2
2 A1A2A3

A1 A4 A2
1

⎤
⎦ (1)

where the elements Ai, i = 1, . . . , 4 are repeated patterns
representing, for instance, constant terms, the first order or
second order dynamics,

A1 =
c1

s + α1
, A2 =

c2

s2 + b1s + b2
, . . .

where the α1, b1, b2 etc are fixed and the ci are constants
which take generic values. By using partial fraction expan-
sion we can decompose the transfer function matrix in the
following manner:

H(s) =

⎡
⎣ A2

1A2 A1 A3

A3 A2
2 A1A2A3

A1 A4 A2
1

⎤
⎦

=

⎡
⎣ A2

1 A1 0
0 0 A1

A1 0 A2
1

⎤
⎦

︸ ︷︷ ︸
H1(s)

+

⎡
⎣ A2 0 0

0 A2
2 A2

0 0 0

⎤
⎦

︸ ︷︷ ︸
H2(s)

+

⎡
⎣ 0 0 A3

A3 0 A3

0 0 0

⎤
⎦

︸ ︷︷ ︸
H3(s)

+

⎡
⎣ 0 0 0

0 0 0
0 A4 0

⎤
⎦

︸ ︷︷ ︸
H4(s)

(2)

and the matrices Hi(s) will be called simple structured
matrices. In general, we define the structured and simple
structured matrix as:

Definition (2.1): The structured transfer function matrix
of a system is a transfer function matrix whose entries consist
of elementary dynamical terms. The elementary dynamical
terms represent the basic dynamics of the system which may
appear in more than one entries depending on the structure
of the system. If the structured matrix consists of entries with
the same elementary dynamical term, then it is called simple.

A structured transfer function matrix, can always be de-
composed into a set of simple structured transfer function
matrices by use of partial fraction expansion method for each
of the dynamic terms.

Remark (2.1): If {λ1, λ2, . . . , λp} are the fixed pole
locations of a structured transfer function H(s), then H(s)
may always be expressed as

H(s) = H1(s) + H2(s) + · · · + Hp(s)

where Hi(s) are simple structured transfer functions, cor-
responding to λi fixed pole. For the so-defined structured
transfer function matrices, we define the generic McMillan
degree as

Definition (2.2): The generic McMillan degree of the
structured transfer function H(s) ∈ R

m×l
pr (s) is the McMil-

lan degree when the gain parameters of the entries take
generic values.

Remark (2.2): In the computation of any minor of a
generic rational matrix there is no pole zero cancellation
occurring and this is a mere consequence of the assumption
of genericity.

By Definition (2.2) and Remark (2.1) and the definition
of the McMillan degree based on the minors, we have the
result:

Proposition (2.1): The generic McMillan degree of the
structured transfer function matrix H(s) ∈ R

m×l
pr (s) is equal

to the sum of the generic McMillan degree of the matrices
H1(s),H2(s), . . . That is, if δgm(Hi) denotes the generic
McMillan degree of a structured transfer function matrix
Hi(s), then

δgm(H) = δgm(H1(s)) + δgm(H2(s)) + . . . (3)

�
Remark (2.3): The evaluation of the generic McMillan

degree of a structured transfer function matrix H(s) is
reduced to finding the generic McMillan degrees of the
simple structured matrices Hi(s).

In the following we look into the methods of computing
the generic McMillan degree of the simple structured transfer
function matrices. First we define the concepts of order, path
and weight.

Definition (2.3): Given a simple structured matrix
Hi(s) ∈ R

m×l
pr ,m ≤ l, the order of an entry in the matrix

is the power of the fundamental dynamics; an independent
path is a sequence of m elements selected from the matrix
with no two elements from the same column or the same row.
The length of a path is the number of the elements in the
path and the weight of a path is defined to be the sum of the
orders of the elements in the path. The maximal weight of
all the independent paths of a matrix is denoted by γ(Hi).

Remark (2.4): The constant terms of the structured
transfer function matrix do not contribute to the weight and
thus do not contribute to the generic McMillan degree. �

In the following we study the simple structured matrices
Hi(s). Because only the non-zero dynamic elements need
to be considered, and the non-zero entries represent the
same dynamic unit with different orders, for simplicity of
notation, we use the orders of the dynamics of the entries
only. For the example (2.1), the matrix Hi(s) is simplified
to be

Hi(s)

⎡
⎣ A2

1 A1 0
0 0 A1

A1 0 A2
1

⎤
⎦ → I1 =

⎡
⎣ 2 1 0

0 0 1
1 0 2

⎤
⎦

In general, a map can be defined between a simple
structured matrix Hi(s) and an integer matrix Ii such that
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the entries of the integer matrix correspond to the orders
of the entries in Hi(s). The maximal weight of Hi(s), or
equivalently of Ii will be called simply the weight of the
matrix. Concerning the relationship between the generic
McMillan degree and the weight of the paths, we have [6]:

Proposition (2.2): The generic McMillan degree of the
simple structured matrix Hi(s) is equal to the maximal
weight,

δgm(Hi) = γ(Hi)

The integer matrix Ii can also be represented as a bipartite
graph and the problem of determining its maximal weight
is equivalent to a maximal weight matching problem [2].
Maximal weight matching problems in bipartite graphs are
also known as assignment problems [1]. In the sequel we are
presenting an alternative method for the computation of the
maximal weight of Ii.

III. REPRESENTATIONS, IRREDUCIBILITY AND
WEIGHT OF NATURAL MATRICES

Let A ∈ N
m×p, where N is the set of nonnegative integers.

Without loss of generality we may assume m ≥ p. The
matrix A may be expressed as:

A = [α1, α2, . . . , αp] , αi ∈ N
m, i ∈ p (4)

For every column αi we define as its content the ordered
set of distinct values of the numbers in αi as

U(αi) = {δ1i > δ2i > · · · > δσ(1)i} (5)

and δ1i is the weight of the ith column. Using this notation
we may represent the matrix A as shown below:

A = A1

⎡
⎢⎢⎢⎢⎣

δ11 0 · · · 0

0 δ12
. . .

...
...

. . .
. . . 0

0 · · · 0 δ1p

⎤
⎥⎥⎥⎥⎦ + . . . (6)

where µ = max{σ(i), i ∈ p}, the matrices A1, A2, . . . , Aµ

are Boolean matrices and in the ∆k matrices, δjk take the
kth value from U(αj) with δjk = 0 if k > σ(j). We
shall refer to the decomposition (6) as the Weighted Boolean
Representation of A; the matrices Ai are referred to as
Boolean coefficients and the ∆i as order matrices. Condition
(6) may also be rewritten as

A = [A1 . . . Aµ]︸ ︷︷ ︸
<A>

⎡
⎢⎢⎢⎢⎢⎣

∆1

· · ·
...
· · ·
∆µ

⎤
⎥⎥⎥⎥⎥⎦

(7)

and < A > is referred to as the α−Weighted Boolean
representation . Every column of < A > is Boolean and
is characterised by an index δki, where δki is the ith value
of the matrix ∆k. Alternatively, every column of A can be
written as

αi = Ãi

[
δ1i δ2i · · · δσ(i)i

]T = Ãiδ̃
T
i (8)

so A can be expressed as

A =
[
Ã1, Ã2, . . . , Ãp

]
︸ ︷︷ ︸

{A}

⎡
⎢⎢⎢⎢⎣

δ̃1 0 . . . 0

0 δ̃2
. . .

...
...

. . .
. . . 0

0 · · · 0 δ̃p

⎤
⎥⎥⎥⎥⎦ (9)

and {A} is referred to as the b−Weighted Boolean represen-
tation . It should be noted that the b−representation is more
economical since the a−representation may contain also
some zero columns. In the following, both representations
will be used.

A matrix A ∈ N
m×p is called column irreducible, if the

matrix A1 of the weighted Boolean representation, referred to
as high coefficient matrix has full structural rank; otherwise,
the matrix is called column reducible. The set of indices
{δ11, δ12, . . . , δ1p} is referred to as the set of column weight,
or column degrees and the number

δ(A) � δ =
p∑

i=1

δµ (10)

is called the complexity of A. The irreducible, reducible clas-
sification of natural matrices has the following implications.

Remark (3.1): From the definition of the weight of the
matrix we have that the complexity δ of A is always an upper
bound for the weight γ(A), i.e

γ(A) ≤ δ (11)

Theorem (3.1): Let A ∈ N
m×p, m ≤ p and assume the

representation defined by (7) . The following properties hold
true:

1) If A is irreducible, then its weight γ(A) = γ is equal
to the complexity δ(A) = δ, i.e.

γ = δ =
p∑

i=1

δµ (12)

2) If A is reducible, then γ(A) < δ. Furthermore, if

A = {Hk : Hk ∈ N
m×q, q < p}

denote the set of all submatrices of A made up from
subsets of its columns, such that Hk is irreducible, then

σ = max{δ(Hk),∀Hk ∈ A} ≤ γ(A) < δ (13)

�
We shall refer to the number σ introduced above as the

index of A.
Remark (3.2): Let us assume that the path that gives the

weight γ(A) is associated with columns {i1, i2, . . . , iµ} of
the set {1, 2, . . . , µ} and that

γ(A) = γ1i1 + γ2i2 + · · · + γµiµ (14)

Clearly, γ1i1 ∈ U(αi1), . . . , γµiµ ∈ U(αiµ) and the
Boolean matrix which is defined as the submatrix of {A}
that corresponds to indices (γ1i1 , γ2i2 , . . . , γµiµ) has full
structural rank. The search for the value of γ(A) is thus
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reduced to finding a submatrix Â of {A} which has the
properties:

1) Only one column may be possibly selected from each
of the blocks Ã1, Ã2, . . . , Ãp to form Â.

2) The resulting matrix Â has full structural rank.
3) The complexity of the matrix is maximal.

Remark (3.2) indicates the basics of a new algorithm that
leads to the computation of γ(A) in an efficient way. The
essentials of this new algorithm are given in the next section.

IV. ALGORITHM FOR DETERMINING THE
WEIGHT OF A NATURAL MATRIX

Consider the matrix A ∈ N
m×p and assume that its

columns are ordered according to descending weight and
form the table of the column contents, i.e.

col(1) col(2) · · · col(p)
δ11 δ12 · · · δ1p

δ21 δ22 · · · δ2p

...
...

. . .
...

δσ(1)1 δσ(2)2 · · · δσ(p)p

(15)

where δ11 ≥ δ12 ≥ · · · ≥ δ1p. The search for the weight
γ(A) involves the following steps:

STEP(I) (Preliminary Step)
Define the b−Boolean representation of the matrix A as
shown in (9) and test column irreducibility by finding
the structural rank of the high coefficient matrix.

a) If A is column irreducible, then

γ(A) =
p∑

i=1

δµ = δ (16)

and the search stops.
b) If A is reducible, then γ(A) < δ and compute the

index of A denoted by σ(A) � σ (eqn (13)). The
search for γ(A) then continues and involves the
following steps.

STEP(II) (Generation of Allocation Matrices)
The objective of this step is to generate the set of
all p−term sequences (x1, x2, . . . , xp) such that xi ∈
U(αi), i ∈ p. For this we will define the matrices B
and C, called allocation matrices in the contents of this
work.
Definition (4.1): Let B ∈ N

m×p be the matrix created
according to the table of column contents 15, i.e. by the
ordered set of each column:

B � [U(a1), U(a2), . . . , U(ap)]

For the determination of the independent path, we will
define the matrix C as follows:
Definition (4.2): Let C ∈ N

m×p be the row allocation
matrix or arrangement matrix, given by:

C[γij ] = [σj(i)j] i = 1, 2, . . . , m j = 1, 2, . . . , p

where σj(i)j is the arrangement of teh i−th maximal
element of the j−th column. Since we have j columns,

we will have the same number of arrangement
functions.
Remark(4.1): The matrix C denotes the row position
of the corresponding value of B in matrix A, i.e. γij

is the row position of the element bij in the j − th
column of matrix A.
Remark(4.2): Through a greedy search in matrix C we
can obtain an independent path, which will consist a
sub-optimal solution for the generic McMillan degree.
We can use however this solution as a lower bound,
and this concludes the second step of the algorithm.

If we denote by σ(A) the value for the lower
bound, we now have that the generic McMillan degree
γ(A) of A is:

δ(A) > γ(A) ≥ σ(A)

STEP(III) (Searching Routine) The objective here is to
find the McMillan degree with the minimum number
of steps. The searching routine is based on matrix D,
defined as follows:
Definition(4.3) Let D ∈ N

m×p be the loss allocation
matrix, given by:

D = [dij ] = [b1j − bij ] i = 1, 2, . . . , m j = 1, 2, . . . , p

i.e. D is the matrix that occurs when we subtract the
i−th row from the first row of B. If we include the
first row of B, then the following holds true:
Remark(4.3): There is a one-to-one correspondence
between the matrices B,C, and D. The amount dij is
the difference from the maximum complexity δ(A) if
we choose the element from the j−th column and the
γij−th row of A.

Having the matrices A,B, C, and D, the maximum
complexity of A given by δ(A), and a lower bound for
the generic McMillan degree σ(A), the search for the
generic McMillan degree γ(A) is now defined through
the following procedure:

i) Search in matrix D for the minimum amount given
by the sum:

d1 = di11 + di22 + . . . + dipp.

ii) From the matrices B and C we check if the entries
given by the coordinates {(i11), (i22), . . . , (ipp)},
correspond to a matrix with full rank.

a) If the corresponding coefficient matrix has full
rank, then the algorithm has finished and the
generic McMillan degree is given by

δ(A) − d1

and the row coordinates of the independent path
are given by:

{γi11, γi22, . . . , γipp}
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b) If the corresponding coefficient matrix is rank
deficient, then there is no independent path in A
with a complexity greater than δ(A) − d.

iii) Return to the loss allocation matrix D and find the
next minimum value d2 > d1.

The above result provides a systematic procedure that leads
to the value of γ(A) in a very small number of steps. The
above procedure uses the minimal possible number of steps
since it is based on ordering and exploits fully the property
of irreducibility which is behind the determination of γ(A).

Example (4.1): Given is the 10×5 integer matrix dimen-
sions:

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 1 2
0 2 4 10 0
4 1 8 5 9
1 0 6 6 2
8 2 9 2 1
2 1 2 3 0
1 3 1 4 0
6 4 7 5 0
3 0 0 3 0
2 1 3 5 8

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

We will create the matrices B and C and check for column
irreducibility:

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

8 4 9 10 9
6 3 8 6 8
4 2 7 5 2
3 2 6 5 2
2 1 4 5 0
2 1 3 4 0
1 1 2 3 0
1 0 1 3 0
1 0 0 2 0
0 0 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

C =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

5 8 5 2 3
8 7 3 4 10
3 2 8 3 1
9 5 4 8 4
6 3 2 10 5
10 6 10 7 2
1 10 6 6 6
7 1 7 9 7
4 4 1 5 8
2 9 9 1 9

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

STEP I (Preliminary Step):
The upper bound for the weight is given by the sum of
the elements of the first row of B :

δ(A) =
p∑

j=1

b1j = 8 + 4 + 9 + 10 + 9 = 40

We check the first row of matrix C for irreducibility.
Since we have [5 8 5 2 3], A is reducible. We check the
third column of C to find an acceptable combination.
If we replace c13 with c43, we obtain the combination:
[5 8 4 2 3], which is acceptable. Replacing in B the

corresponding entries b13 with b43 we have a lower
bound, given by the sum:

σ(A) =
p∑

j=1

b1j = 8 + 4 + 6 + 10 + 9 = 37

Therefore the condition for the maximal possible weight
of A is going to be:

37 ≤ γ(A) < 40

STEP II (Generation of the Difference Matrix):
We generate the matrix D of dimensions 10 × 5, as
follows:

D =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0
−2 −1 −1 −4 −1
−4 −2 −2 −5 −7
−5 −2 −3 −5 −7
−6 −3 −5 −5 −9
−6 −3 −6 −6 −9
−7 −3 −7 −7 −9
−7 −4 −8 −7 −9
−7 −4 −9 −8 −9
−8 −4 −9 −9 −9

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

We begin now the search for the minimum loss accord-
ing to the values of D that are closer to zero. The first
set of values is: {d22, d23, d25} = −1 = d1. Therefore
we will replace the corresponding elements in the first
row of C according to the ones indicated by the above
set.

[5 7 5 2 3] not acceptable
[5 8 3 2 3] not acceptable
[5 8 5 2 10] not acceptable

and since there are no other possible combinations with
a loss of −1, we repeat the same procedure for the next
value in D closer to zero, which is given by the set:
{d21, d32, d33, d42, d22 + d23, d22 + d25, d23 + d25} =
−2 = d2. The corresponding combinations formed by
the elements of matrix C are:

[8 8 5 2 3] not acceptable
[5 2 5 2 3] not acceptable
[5 8 8 2 3] not acceptable
[5 5 5 2 3] not acceptable
[5 7 3 2 3] not acceptable
[5 7 5 2 10] not acceptable
[5 8 3 2 10] acceptable

So after only 10 iterations we obtain an acceptable
combination. The weight γ(A) is now given by the
difference:

γ(A) = δ(A) − |d2| = 40 − 2 = 38

and the algorithm stops.
STEP III (Final Step):
The McMillan degree of A is given as the sum:

a51 + a82 + a33 + a24 + a10 5 = 38,
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which is indeed an independent path within the matrix
A.

V. THE GENERIC MCMILLAN DEGREE AND THE
OPTIMAL ASSIGNMENT PROBLEM

An alternative approach for the computation of the
generic McMillan degree may be developed by using
standard results from integer optimisation problems. Here
we provide a connection between the problem of finding
the generic McMillan degree, and a series of optimisation
problems, more known as optimal assignment problems.

Definition (5.1) [7]: The assignment problem is defined on
an integer matrix as the problem to choose n elements - one
from each row and column - of an n × n matrix C = [cij ]
so that the sum of the elements chosen is maximum.

The optimal assignment problem frequently appears in
Operational Research as the problem of having to assign
n workers to n jobs, or n machines to n tasks. A more
mathematical description can be given, if we introduce the
matrix X = [xij ], where xij = 0 if cij = 0 and xij = 1
if cij �= 0. Then the optimal assignment problem is to
maximise the expression

n∑
i=1

n∑
j=1

xijcij

by choosing the matrix X = [xij ] in such a way that
the entries are independent. It is therefore obvious that the
optimal assignment problem is equivalent to finding the
McMillan degree of an n × n matrix, or in general of any
m × n matrix, which we can transform to a square one, by
adding zero columns (or rows). The independent entries of
the matrix X will be equivalent to the independent path we
defined earlier and the optimal assignment is equivalent to
the McMillan degree.

There are known methods for solving this kind of prob-
lems, and the most popular is the Hungarian method [7] [1]
. This method involves modifying the matrix X in such a
way that it matches a permutation of the identity matrix.
Such methods provide an alternative way of looking at the
problem and their performance to the case of large dimension
systems has to be evaluated.

VI. CONCLUSIONS

The computation of the McMillan degree of a structured
transfer function matrix has been considered using properties
of column irreducibility of natural matrices. The proposed
algorithm avoids the general searching methods suggested in
[6] and determines the optimal solution in a small number
of steps. The problem considered here is equivalent to a
”maximal weight matching” problem of graph theory for
which alternative solutions exist. The alternative approach
for the study of such problems is their formulation as
”optimal assignment problems”, for which a number of
algorithms exist. The comparison of this new, algebraically

based algorithm to the standard methodologies, is under
investigation. There are strong indications that exploring
the structural criteria based on the reduceness properties of
the variants of the ”optimal assignment” algorithms may be
developed which explore the sparse structure of the matrices
and thus lead to algorithms with reduced complexity. From
the systems viewpoint, it is also interesting to explore the
link of these procedures with the graph theoretic properties
of the problem.
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