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Abstract— This paper addresses the problem of stabilization
for systems presenting nested saturations and L2 limited dis-
turbance. The L2 performance design problem of the system
are studied. LMI conditions and associated convex optimization
problems are proposed in order to determine both an inner
and an outer ellipsoids. Indeed, the closed-loop trajectories
remain bounded in the outer ellipsoid despite the action of the
disturbance provided that the initial states are starting from the
inner ellipsoid. In addition, it is also derived a condition which
allows to synthesize the saturating gains in order to minimize
the L2 gain from the disturbance to the controlled output by
the solution of an LMI optimization problem.

I. INTRODUCTION

This paper focuses on the class of nonlinear systems
resulting from nested saturations. This kind of systems can
be used to represent the behavior of nonlinear actuators, and,
therefore, to study the stability of control systems subject
to both amplitude and dynamic actuator saturations (see,
for example, [9], [7], [1]). On the other hand, analysis
and design methodologies for systems presenting nested
saturations can be useful to address stability issues of more
general classes of nonlinear systems. For instance, the use of
nested saturations becomes very interesting when one uses
forwarding techniques for cascade systems with linear part
[14], [17], [18].

Hence, the system under consideration in this paper has
the following form:

ẋ = Apx+Bpsatp (Ap−1x+Bp−1satp−1 (Ap−2x
+ · · ·(A1x+B1sat1(Fx)) · · ·)+Bww

z = Cx+Dsatp (Ap−1x+Bp−1satp−1 (Ap−2x
+ · · ·(A1x+B1sat1(Fx)) · · ·)+Bzw

(1)

where x ∈ ℜn is the state of the system, w ∈ ℜq is the
disturbance and z ∈ ℜl is an auxiliary performance vec-
tor. For all j ∈ {1, . . . , p}, A j, B j and F are matrices of
appropriate dimensions (eventually having different dimen-
sions depending on the index j). Bw, C, D and Bz are
given matrices of appropriate dimensions. Furthermore, sat j
is a componentwise saturation map ℜm j → ℜm j defined
as: (sat j(v))(i) = sat j(v(i)) = sign(v(i))min(u j(i), |v(i)|), ∀i =
1, ...,m j where u j(i), u j(i) > 0, denotes the ith bound of the
saturation function.

S. Tarbouriech and C. Prieur are with LAAS-CNRS, 7 Avenue du
Colonel Roche, 31077 Toulouse cedex 4, France. tarbour@laas.fr,
cprieur@laas.fr

J.M. Gomes da Silva Jr. is with UFRGS - Department of Electrical
Engineering, Av. Osvaldo Aranha 103, 90035-190 Porto Alegre-RS, Brazil.
jmgomes@eletro.ufrgs.br

C. Prieur’s research is partly done in the framework of the HYCON
Network of Excellence, contract number FP6-IST-511368.

The disturbance vector w is assumed to be limited in
energy, that is w ∈ Lq

2 and for some scalar δ, 0 < 1
δ < ∞,

one gets:

‖ w(t) ‖2
2=
Z t

0
w(τ)′w(τ)dτ≤ δ−1,∀t > 0 (2)

One of the classical way to measure the disturbance
tolerance should consist in computing the L2 gain, which
corresponds to the largest ratio between the L2-norms of the
controlled output z and the disturbance w. Note that due to
the presence of nested saturations, a large disturbance can
lead system (1) to have unbounded trajectories. In this case,
the L2 gain will be not well defined. Hence, it is of major
importance to ensure that the trajectories of the system are
bounded for any w satisfying (2), provided that the initial
condition belongs to a certain admissible set. Furthermore, in
order to ensure the asymptotic stability when the disturbances
are vanishing one has to guarantee that the state of the system
does not leave the basin of attraction of the origin. Based
on these considerations, in the current paper, the class of
disturbance under consideration are those bounded in energy,
as defined in (2).

The problem we intend to solve can therefore be summa-
rized as follows.

Problem 1: Determine the gains A j, j = 1, ..., p− 1 and
F , two sets E0 and E1 such that the following properties are
satisfied with respect to the resulting closed-loop system:

1) Internal stability: when w = 0, for any x(0) ∈ E0
the closed-loop trajectories asymptotically converge
towards the origin;

2) Input-to-State stability: when w 6= 0, the closed-loop
trajectories remain confined in E1 for any x(0) ∈E(0)
and any disturbance satisfying (2).

We want to address the problem above defined by ex-
ploiting some properties of the nested saturation functions.
Hence, the current paper can be viewed as an extension of the
results developed in [16], since here we consider additional
disturbances and the L2-performance design problem. Dif-
ferently from [1], considering the modeling of the saturated
systems by a polytopic differential inclusion, it should be
pointed out that we do not consider particular assumptions
about the structure and the dimensions of matrices involved
in the description of the system. Furthermore, our results
allow also to address global stability issues, which is not
possible with the approach proposed in [1].

Moreover, the problem to be treated consists in taking into
account the disturbance, which enters the system indepen-
dently from the nested inputs, in order to ensure a certain
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disturbance tolerance of the closed-loop system. Such a study
is in the same line as the works [8], [12], [3], [13], [6] (which
consider only systems presenting single saturation terms) but
for more complex systems as those described in (1). Note
that in the present paper, the additive disturbance is not input
additive as studied, for example, in [10].

Notations. For any vector x ∈ ℜn, x º 0 means that all the
components of x, denoted x(i), are nonnegative. For two vectors x,
y of ℜn, the notation xº y means that x(i)−y(i) ≥ 0, ∀i = 1, . . . ,n.
1 and 0 denote respectively the identity matrix and the null matrix
of appropriate dimensions. The elements of a matrix A ∈ℜm×n are
denoted by A(i, j), i = 1, ...,m, j = 1, ...,n. A(i) denotes the ith row
of matrix A. |A| is the matrix constituted from the absolute value
of each element of A. For two symmetric matrices, A and B, A > B
means that A−B is positive definite. A′ denotes the transpose of A.
1m

4
= [1 . . .1]′ ∈ℜm.

II. THEORETICAL CONDITIONS
A. Preliminaries

For j = 1, . . . p, define the following nonlinearities:

φ1(x) = sat1(Fx)−Fx
φ2(x) = sat2 ((A1 +B1F)x+B1φ1(x))

− [(A1 +B1F)x+B1φ1(x)]
...

φp(x) = satp ((Ap−1 +Bp−1 (Ap−2 +Bp−2 (Ap−3
+ · · ·+B2(A1 +B1F))))x

+Bp−1φp−1(x)+Bp−1Bp−2φp−2(x)+ · · ·
+Bp−1Bp−2 · · ·B1φ1(x))
− [(Ap−1 +Bp−1 (Ap−2 +Bp−2 (Ap−3
+ · · ·+B2(A1 +B1F))))x

+Bp−1φp−1(x)+Bp−1Bp−2φp−2(x)+ · · ·
+Bp−1Bp−2 · · ·B1φ1(x)]

(3)

Define now the following p matrices:

A1 = A1 +B1F
A2 = A2 +B2(A1 +B1F)
...
Ap = Ap +Bp (Ap−1 +Bp−1 (Ap−2 + · · ·

+B2(A1 +B1F)))
C = C +D(Ap−1 +Bp−1 (Ap−2 + · · ·

+B2(A1 +B1F)))

(4)

From (3) and (4), system (1) can be re-written as

ẋ = Apx+Bpφp(x)+BpBp−1φp−1(x)+ · · ·
+BpBp−1 · · ·B1φ1(x)+Bww

z = Cx+Dφp(x)+DBp−1φp−1(x)+ · · ·
+DBp−1 · · ·B1φ1(x)+Bzw

(5)

Note that in the absence of saturation one gets φ j(x) = 0,
j = 1, ..., p.

Lemma 1: [16] If v and ω are elements of S(v0):

S(v0) = {v ∈ℜm,ω ∈ℜm;−v0 ¹ v−ω¹ v0} (6)

then the generic nonlinearity ϕ(v)satv0(v)− v satisfies the
following inequality:

ϕ(v)′T (ϕ(v)+ω)≤ 0 (7)

for any diagonal positive definite matrix T ∈ℜm×m.

B. Main results

Let us define the following matrices

G j−1 = G j−1 +B j−1 (G j−2 +B j−2 (G j−3 + · · ·
+B2(G1 +B1G0))) , j = 2, ..., p (8)

The following proposition provides theoretical sufficient
conditions to address Problem 1.

Proposition 1: If there exist a symmetric positive defi-
nite matrix W , matrices Z j j, j = 1, ..., p, Yjl , j = 2, ..., p,
l = 1, ..., p− 1, j 6= l, j > l, Gk, k = 0, ..., p− 1, diagonal
positive matrices S j, j = 1, ..., p, of appropriate dimensions
and positive scalars µ and δ satisfying1:




L+L′ BpBp−1...B1S1−Z′11 BpBp−1...B2S2−Z′22
? −2S1 −Y ′21
? ? −2S2
...

...
...

? ? ?
? ? ?

... BpSp−Z′pp Bw

... −Y ′p1 0

... −Y ′p2 0
...

...
...

? −2Sp 0
? ? −1




< 0

(9)[
W G′

0(i)−Z′11(i)
? µu2

1(i)

]
≥ 0, i = 1, ...,m1 (10)




W Z′11 Z′22 ... Z′j−1 j−1
? 2S1 Y ′21 ... Y ′j−11
? ? 2S2 ... Y ′j−12
...

...
...

...
...

? ? ? ? 2S j−1
? ? ? ? ?
G′j−1(i)−Z′j j(i)

S1B′1...B
′
j−2B′j−1(i)−Y ′j1(i)

S2B′2...B
′
j−2B′j−1(i)−Y ′j2(i)

...
S j−1B′j−1(i)−Y ′j j−1(i)

µu2
j(i)




≥ 0

i = 1, ...,m j, j = 2, ..., p

(11)

δ−µ≥ 0 (12)

with

L = ApW +BpGp−1 + ...+BpBp−1...B2(G1 +B1G0) (13)

then the gains A j−1 = G j−1W−1, j = 2, ..., p and F = G0W−1,
are such that:
• when w 6= 0, the closed-loop trajectories remain

bounded in the set E1 = {x∈ℜn;x′W−1x≤ µ−1} for any

1The symbol ? stands for symmetric blocks.
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x(0) ∈ E0 = {x ∈ℜn;x′W−1x≤ β} with β = µ−1−δ−1,
and any disturbance satisfying (2).

• when w = 0, the set E0 = E1 = {x∈ℜn;x′W−1x≤ µ−1}
is included in the basin of attraction of the closed-loop
system (1) and is contractive.

• matrix Ap is Hurwitz.
Proof. Consider matrices E11, E22, E21, . . . Epp, Epp−1, . . .,
Ep1, matrices of appropriate dimensions to be determined.
According to the definition of nonlinearities φ j, j = 1, ..., p,
by applying Lemma 1 p-times, it follows:
• Firstly, in the case ϕ = φ1, relation (7) applies with

T = T1; v = Fx; ω = E11x; v0 = u1

• Secondly, in the case ϕ = φ2, relation (7) applies with

T = T2; v = (A1 +B1F)x+B1φ1(x);
ω = E22x+E21φ1(x); v0 = u2

• . . .
• Finally, in the case ϕ = φp, relation (7) applies with

T = Tp;
v =
(Ap−1+Bp−1(Ap−2+Bp−2(Ap−3+· · ·+B2(A1+B1F))))x
+Bp−1φp−1(x)+Bp−1Bp−2φp−2(x)+ · · ·
+Bp−1Bp−2 · · ·B1φ1(x);
ω = Eppx+Epp−1φp−1(x)+ · · ·+Ep1φ1(x);
v0 = up

where matrices T1, T2, . . ., Tp are p diagonal and positive
definite matrices.

Consider now

E j j = Z j jW−1, j = 1, ..., p
E jl = YjlS−1

j , j = 2, ..., p, l 6= j, j > l

The satisfaction of relations (10) and (11) implies that the set
E1 is included in ∩p

j=1S(u j) [16]. Hence, the nonlinearities
φ j, j = 1, ..., p, associated to the appropriate v and ω defined
above, satisfy the sector conditions (7) for all x ∈ E1.

Consider now the quadratic Lyapunov function V (x) =
x′Px, with P = P′ > 0. The time-derivative of V (x) along
the trajectories of closed-loop system (5) reads:

V̇ = x′(A′pP+PAp)x+2x′PBpφp
+2x′PBpBp−1φp−1
+ · · ·+2x′PBpBp−1 · · ·B1φ1 +2x′PBww

Define L = V̇ −w′w. Since (10) and (11) are satisfied, sector
conditions (7) hold ∀φ j, j = 1, . . . , p, ∀x ∈ E1, considering
the vectors v and ω defined from the matrices E ji and Tj.
Hence, ∀x ∈ E1 it follows that

L ≤ x′(A′pP+PAp)x+2x′PBpφp
+2x′PBpBp−1φp−1
+ · · ·+2x′PBpBp−1 · · ·B1φ1
−2φ′1T1(φ1 +E11x)
−2φ′2T2(φ2 +E22x+E21φ1)−·· ·
−2φ′pTp(φp +Eppx+Epp−1φp−1 +Epp−2φp−2+
...+Ep1φ1)
+2x′PBww−w′w

Considering ξ =
[

x′ φ′1 φ′2 ... φ′p w′
]′, the inequal-

ity above can be re-written as V̇ −w′w≤ ξ′M ξ with

M =


A′pP+PAp ? ? · · · ? ?
B′1 · · ·B′p−1B′pP−T1E11 −2T1 ? · · · ? ?

B′2 · · ·B′p−1B′pP−T2E22 −T2E21 −2T2 · · · ? ?

B′3 · · ·B′p−1B′pP−T3E33 −T3E31 −T3E32 · · · ? ?
...

...
... · · · ? ?

B′pP−TpEpp −TpEp1 −TpEp2 · · · −2Tp ?
B′wP 0 0 · · · 0 −1




By recalling that W = P−1, S j = T−1
j , j = 1, ..., p, by using

the change of variables A j−1 = G j−1W−1, j = 2, ..., p and
F = G0W−1 and by pre- and post-multiplying the matrix

M above defined by




W 0 0 0 0 0
? S1 0 0 0 0
? ? S2 0 0 0
...

...
...

...
...

...
? ? ? ? Sp 0
? ? ? ? ? 1




, it follows

that, if relation (9) is satisfied, one has

V̇ (x)−w′w < 0, (14)

Therefore, integrating (14), it follows

V (x(t)) < V (x(0))+ ‖ w(t) ‖2
2≤V (x(0))+δ−1

Hence, provided that x(0) ∈ E0, since the satisfaction of
relation (12) means that the scalar β = µ−1 − δ−1 is non-
negative, it follows that V (x(t)) ≤ µ−1, ∀t ≥ 0 and for any
disturbance satisfying (2). Hence, the satisfaction of relations
(9), (10), (11) and (12) means that the trajectories of the
closed-loop system (1) remain bounded in E1, ∀x(0) ∈ E0
and any disturbance satisfying (2). This completes the proof
of the first point.

By considering w = 0, it follows directly that V̇ (x) < 0,
for all x(0) ∈ E1 and the second point is proven. The third
point is then a direct consequence. 2

Remark 1: The reachable set of the closed-loop sys-
tem (1), given by [2] W0 = {x(t) ∈ ℜn ; x(0) =
0 and

R t
0 w(τ)′w(τ) dt ≤ 1

δ}, is included in the ellipsoid
E1.

Remark 2: The results in [12] appears as a particular case
of Proposition 1 since just a single saturation is considered
(that is, p = 1 and m1 = m). Moreover in [12], φ1(x) satisfies
the ”classical” sector condition: φ1(x)′T (φ1(x)+ ΛFx) ≤ 0,
∀x ∈ {x ∈ℜn;−u1 ¹ (1−Λ)Fx¹ u1}, where Λ is a positive
diagonal matrix. This ”classical” sector condition can be
deribed from relation (7) by choosing v = Fx and ω = ΛFx
(or equivalently E11 = ΛF). Following a similar procedure to
the one applied in the proof of Proposition 1, the following
conditions, in plus of (12), are obtained




WA′1 +A1W +B1G0 +G′
0B′1 B1S1−G′

0Λ Bw
? −2S1 0
? ? −1




< 0
(15)
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[
W (1−Λ(i,i))G′

0(i)
? µu2

1(i)

]
≥ 0, i = 1, ...,m (16)

Note that these matrix inequalities are bilinear in variables
G0 and Λ.

Proposition 1 presents a local stabilization condition for
the nested saturated system (1). On the other hand, in the
case where Ap is Hurwitz the global asymptotic stabilization
of the system can be obtained using the following result.

Corollary 1: If there exist a symmetric positive definite
matrix W , Gk, k = 0, ..., p−1, and diagonal positive matrices
S j, j = 1, ..., p, of appropriate dimensions satisfying:




L+L′ BpBp−1...B1S1−G′
0

BpBp−1...B2S2
−(G1 +B1G0)′

? −2S1 −S1B′1
? ? −2S2
...

...
...

? ? ?
? ? ?

... BpSp−G′p−1 Bw

... −S1(Bp−1...B1)′ 0

... −S2(Bp−1...B2)′ 0
...

...
...

? −2Sp 0
? ? −1




< 0

(17)
where Gp−1 and L are defined in (8) and (13), respectively,
then the system (1) with A j−1 = G j−1W−1, j = 2, ..., p and
F = G0W−1, is such that
• ∀w ∈ Lq

2 and ∀x(0) ∈ ℜn, the closed-loop state tra-
jectories are bounded. An estimate to the reachable
region in the state space is given by the set E1 where
µ−1 = β+δ−1, β = x(0)′W−1x(0) and δ−1 = ||w(t)||22.

• when w = 0, the closed-loop system (1) is globally
asymptotically stable.

Proof. Associated to the sets S(u j) as defined in proof of
Proposition 1, it suffices to consider E11 = F , E22 = A1 +
B1F , ..., Epp = Ap−1 + ... + Bp−1...B2(A1 + B1F) = Ap−1,
E21 = B1, Epp−1 = Bp−1, ..., Ep1 = Bp−1Bp−2...B2B1. In this
case, S(u j) = ℜn, j = 1, . . . , p and it follows that the sector
conditions (7), applied p-times to the nonlinearities defined
in (3), are globally satisfied, i.e. they are satisfied ∀x ∈ℜn.
2

Remark 3: The application of Proposition 1 in the case
where the disturbance satisfies (2) and is vanishing (that is,
after some t = t f it is equal to zero), allows to conclude that
the corresponding system trajectory will converge asymptot-
ically to the origin after time t f , provided that x(0)∈E0. On
the other hand, if the condition of Corollary 1 is verified, the
asymptotic convergence of the trajectories to the origin, after
some time t f , is ensured for any initial condition x(0) ∈ℜn

and any vanishing disturbance w(t) ∈ Lq
2 .

Similar conditions to those of Proposition 1 and Corollary
1 could be obtained in a context of analysis, that is when all
the gains A j, j = 1, ..., p−1, and F are a priori given.

C. L2 gain from w to z

In addition to the guarantee of the disturbance tolerance,
which can be achieved by using the conditions stated in
Proposition 1, it is also interesting to compute the gains in
order to ensure an upper bound on the L2 gain from w to
z. The following proposition provides theoretical sufficient
conditions to address this last case when x(0) = 0.

Proposition 2: If there exist a symmetric positive definite
matrix W , matrices Z j j, j = 1, ..., p, Yjl , j = 2, ..., p, l =
1, ..., p−1, j 6= l, j > l, Gk, k = 0, ..., p−1, diagonal positive
matrices S j, j = 1, ..., p, of appropriate dimensions, and
positive scalars η, µ and δ satisfying relations (10), (11),
(12) and: [

M C ′
? −η1

]
< 0 (18)

where matrix M corresponds to the matrix of relation (9) and
C is defined by

C =
[
CW DBp−1...B1S1 DBp−1...B2S2
... DBp−1Sp−1 DSp Bz

] (19)

then the gains A j−1 = G j−1W−1, j = 2, ..., p and F = G0W−1,
are such that the L2 gain from w to z is less than or equal
to
√

η.
Proof. The proof follows the same lines than those
of the proof of Proposition 1. By considering ξ =[

x′ φ′1 φ′2 ... φ′p w′
]′, one can write z as:

z =
[
C DBp−1...B1 DBp−1...B2
... DBp−1 D Bz

]
ξ

Thus, one proves that the satisfaction of relation (18) implies,
∀w satisfying (2): V̇ + 1

η z′z−w′w < 0 with V (x) = x′Px, P =
P′ > 0. Thus, by noting that one considers x(0) = 0 and that
V (x) ≥ 0 it follows that ‖ z ‖2≤ √

η ‖ w ‖2. Any positive
scalar satisfying the two above inequalities is called an H∞
guaranteed cost for the closed-loop system (1). 2

Remark 4: In the case x(0) 6= 0, one considers
Z t

0
z′(τ)z(τ)dτ < ηV (x(0))+η

Z t

0
w′(τ)w(τ)dτ

or equivalently

‖ z ‖2≤ β̄+
√

η ‖ w ‖2

for any x(0) ∈ E0. The scalar β̄ is a bias depending on the
initial condition.

D. Disturbance Rejection

In a similar context to that one of Problem 1, it is natural
to investigate the disturbance rejection. The problem of
disturbance rejection is considered in [1], but in the case
of amplitude limited disturbances.

Let us denote by α the disturbance rejection level. Thus,
mimicking Proposition 1, the disturbance rejection problem
is tackled by satisfying:

V̇ (x)−αw′w < 0
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Integrating this above inequality it follows:

V (x(t)) < V (x(0))+α
Z t

0
w′(τ)w(τ)dτ≤V (x(0))+αδ−1

In this case, the (p + 2, p + 2)-block (namely −1) of the
matrix in relation (9) is changed by −α1, whereas relations
(10), (11) and (12) are kept unchanged. Thus, the inner set
E0 is defined with β = µ−1−αδ−1, whereas the definition
of the outer set is unchanged.

Note that the difference of the radius of the inner ellipsoid
E0 and the outer ellipsoid E1 is equal to αδ−1. A good way
to state the disturbance rejection consists in minimizing the
distance between the outer and the inner sets, in other words
in minimizing the level α.

E. Possible Extension

In the control design, the designer is often faced to model
uncertainty. In order to capture better the system behavior,
it is well-known that, in addition to a good nominal model,
we need also to describe, in a convenient way, the involved
uncertainties.

Thus, the results presented in the previous sections could
be extended by considering that system (1) is subject to
uncertainties of norm-bounded type. Hence, nominal ma-
trices Ap, Bp, C and D are replaced by the following
ones: (Ap +N1I M1), (Bp +N1I M2), (C +N2I M1) and (D+
N2I M2) where matrices N1, N2, M1 and M2 are constant
matrices of appropriate dimensions defining the structure of
the uncertainty. Matrix I ∈ SI with

SI = {I : ℜ+ →ℜl×q;I ′I ≤ Iq,∀t ≥ 0} (20)

is the uncertainty parameter (which can depend on the time),
frequently considered in the robust control literature (see, for
example, [5], [15] and references therein).

The following proposition provides theoretical sufficient
conditions to address Problem 1.

Proposition 3: If there exist symmetric positive definite
matrices W , R1, matrices Z j j, j = 1, ..., p, Yjl , j = 2, ..., p,
l = 1, ..., p− 1, j 6= l, j > l, Gk, k = 0, ..., p− 1, diagonal
positive matrices S j, j = 1, ..., p, of appropriate dimensions,
and positive scalars µ and δ satisfying relations (10), (11),
(12) and: [

M̃ C̃′
? −R1

]
< 0 (21)

where matrix M̃ is defined by

M̃ = M +




N1
0
...
0


R1

[
N1 0 ... 0

]
(22)

with M matrix of relation (9), and C̃ is defined by

C̃ =
[

L̃ M2Bp−1...B1S1 M2Bp−1...B2S2
... M2Bp−1Sp−1 M2Sp 0

]
L̃ = M1W +M2Gp−1 + ...+M2Bp−1...B2(G1 +B1G0)

(23)

then the gains A j−1 = G j−1W−1, j = 2, ..., p and F = G0W−1

are such that:
• when w 6= 0, the closed-loop trajectories remain

bounded in the set E1 for any x(0) ∈ E0 and any
disturbance satisfying (2).

• when w = 0, the set E0 = E1 is included in the basin
of attraction of the closed-loop system (1) and is con-
tractive.

• matrix Ap +N1I (M1 +M2(Ap−1 + ...+B2(A1 +B1F)))
is Hurwitz, ∀I ∈ SI .

Proof. The proof mimics that one of Proposition 1 and is
omitted for reasons of place. 2

Results for computing an upper bound on the L2 gain from
w to z (section II-C) or a disturbance rejection level could
be addressed similarly (section II-D).

III. NUMERICAL ISSUES
A. Optimization Issues

Let us stress that the conditions of Propositions 1 or 2 are
LMIs in the decision variables. Note that by using the mod-
eling of the saturation terms given in [1] to solve Problem 1,
LMI conditions could be also derived. Nevertheless, as soon
as the numbers n and m1 = m2 = · · · = mp are sufficiently
large, it leads to solve an LMI condition with more lines and
more variables than the conditions of Propositions 1 or 2 (see
the discussion in [16] in an analogous context). Therefore,
by invoking [4], the LMI conditions of Propositions 1 and 2
lead to an optimization problem which is numerically easier
to solve than the optimization problem obtained with the
method of [1].

Depending on the energy bound on the disturbance, δ,
is given by the designer or not, the following optimization
problems can be considered:
• given δ, we want to optimize the size of the set E0. This

case can be addressed if we consider a set Ξ0 with a
given shape and a scaling factor τ. For example, let Ξ0
be defined as a polyhedral set described by its vertices:
Ξ0 = Co{vr; r = 1, ...,nr,vr ∈ ℜn}. We want then to
satisfy τ Ξ0 ⊂ E0. The goal consists in maximizing τ,
which corresponds to define, through Ξ0, the directions
in which we want to maximize E0.

• δ being a decision variable, we want to minimize it.
Such a problem can be reinterpreted as the problem to
find the largest disturbance tolerance.

1) Proposition 1 with given δ:

minζ1µ−ζ2γ
subject to relations (9),(10),(11),(12)[

1− µ
δ γv′r

? W

]
≥ 0,r = 1, ...,nr

(24)

where ζi, i = 1,2 are tuning positive parameters. Note that the
satisfaction of the last constraint in (24) allows to guarantee
the inclusion τ Ξ0 ⊂ E0 with τ = γ√

µ .
2) Proposition 1 with unknown δ:

minδ
subject to relations (9),(10),(11),(12) (25)
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3) L2 gain from w to z:

minη
subject to relations (18),(10),(11),(12) (26)

4) Disturbance Rejection: Let us consider the value δmin
obtained from (25).

minα
subject to relations (9−α),(10),(11),(12)

δ≥ δmin

(27)

where (9-α) corresponds to (9), in which −α1 replaces −1.

B. Numerical Example

Consider the longitudinal dynamics of the F-8 aircraft
borrowed from [19]. System (1), in the case p = 3, m3 =
m2 = 2, m1 = 1 and n = 4, is described by the following
data:

A3 =




−0.8 −0.006 −12 0
0 −0.014 −16.64 −32.2
1 −0.0001 −1.5 0
1 0 0 0




B3 =




−19 −3
−0.66 −0.5
−0.16 −0.5

0 0


 ;Bw =




1
0
0
0


 ;B2 =

[
1 −1
0 1

]

B1 =
[

0.1
0.1

]
;u3 = u2 =

[
15
15

]
;u1 = 15

Note that, since m3,m2 6= m1, the approach of [1] cannot be
applied. By applying Proposition 1 and by considering the
optimisation issue of III-A.2, one obtains:

A2 =
[

0.1050 −0.0096 −0.5484 0.6687
0.0119 −0.0048 0.0507 −0.0238

]

A1 =
[ −0.0112 −0.0013 0.1303 −0.1347

0.0329 −0.0048 −0.1179 0.1619

]

F =
[

0.0144 −0.0016 −0.0666 0.0841
]

eig(A3 +B3(A2 +B2(A1 +B1F)))
= {−1.1595± j3.4520;−0.5983± j0.2754}

δ = 0.0434

IV. CONCLUSION

This paper addressed the problem of stabilizing gains de-
sign for systems presenting nested saturations and L2 limited
disturbance. Given δ an energy bound on the disturbance,
LMI conditions were given to compute the inner ellipsoid
(the set of initial conditions) and the outer ellipsoid (the
set bounding the closed-loop trajectories). With the same
approach, some connected problems was also considered.

Many issues remain open. In particular we conjecture that
it can be a great help to combine our approach with [11],
where the problem of tracking trajectories of feedforward
systems is solved by the construction of a strict Lyapunov
function. Moreover, some other class of nested nonlinearities,
as slope restricted nonlinearities, could be studied in order
to deal with various nonlinear actuators.
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