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Abstract— The synthesis of H∞ parameter-dependent state
feedback controllers for linear time-varying systems in poly-
topic domains is addressed by means of linear matrix in-
equalities. Differently from other gain scheduled approaches
in the literature, all the system matrices are supposed to be
affected by time-varying parameters, which have bounded rates
of variation and belong to a polytope. Moreover, there are
no assumptions on the structure of the parameters and no
gridding technique is required to determine the parameter-
dependent controller. The scheduled state feedback gain is cal-
culated through an analytical expression using the time-varying
parameters and a set of matrices obtained from the feasibility of
a linear matrix inequality problem. The proposed convex design
conditions, based on parameter-dependent Lyapunov functions,
allow to improve the H∞ performance of the system when
compared to other control strategies and also to cope with
problems of time-varying actuator failures.

I. INTRODUCTION

The H∞ norm is an important issue in system theory, with
several interpretations in terms of allowable disturbances
and robustness of uncertain linear and nonlinear systems,
time-varying and time-invariant as well [1]. In the case of
control design, the determination of a robust state feedback
gain that assures to the closed-loop system an H∞ norm
(for precisely known systems – [2]) or an H∞ guaranteed
cost (for uncertain systems – [3]) is also a relevant task.
Lyapunov-based techniques can be applied to linear systems
with parametric uncertainty and the design of H∞ controllers
based on fixed state feedback gains can be accomplished
through a convex optimization problem, expressed in terms
of linear matrix inequalities (LMIs – see [4] for details).
However, the results based on fixed gains are frequently
conservative and gain scheduled controllers [5] can be used
to improve the system performance.

Many gain scheduled strategies assume some structure for
the time-varying parameters, as the linear-fractional trans-
formation representation [6] or, in many cases, the problem
is addressed through exhaustive grid techniques that usually
demand high computational efforts [7]. The results that im-
pose a special structure to the parameters are often restrictive
and those based on gridding techniques can be unreliable
when the parameters have fast time variations [8]. When
the rates of variation of the time-varying parameters are not
known a priori or even when these parameters can vary
instantaneously as in the case of switched systems [9], the
usual gain scheduled approaches cannot be applied. In this
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situation, an important and useful tool to assure the closed-
loop stability is provided by the existence of a constant
Lyapunov function (quadratic stability). As a matter of fact,
quadratic stability has been largely used to cope with robust
control and robust filtering synthesis, for both time-invariant
and time-varying uncertain parameters, including H∞ perfor-
mance and other requirements such as pole-location (see [4]
and references therein). In [10], [11] and [12], a class of H∞
linear parameter-varying (LPV) controllers for linear time-
varying systems in polytopic domains has been investigated
through the quadratic stability approach, but only in special
cases for which some of the system matrices are not allowed
to be time-varying the design can be cast as a convex
optimization problem with no need of interpolation. More
recently, a systematic way to design LPV controllers for
systems with time-varying linear fractional parameters using
full block multipliers was proposed in [13].

Parameter-dependent Lyapunov functions have shown
good results when addressing the problem of stability of
linear time-invariant systems in polytopic domains by means
of sufficient LMI conditions [14]. The stability analysis of
linear systems with time-varying uncertainties with bounded
rates of variation was addressed by means of the multicon-
vexity in [15] and [16], but less conservative evaluations
can be obtained using affine parameter-dependent Lyapunov
functions, as pointed out in [17]. The design of gain sched-
uled controllers for polytopic systems with bounded time
derivatives on the parameters has been addressed by means of
LMIs in [7] and [18]. However, the conditions must be solved
upon a grid on the parameter space, and the stability cannot
be assured for the overall domain. Moreover, the numerical
complexity of the tests grows rapidly. When the plant and
the controller admit a linear fractional transformation, the
existence of a stabilizing control can be determined through
the feasibility of a finite set of LMIs [6], [19], but in these
cases the strategy is not suitable to cope with actuator failures
[20].

This paper addresses the problem of designing parameter-
dependent state feedback H∞ controllers for linear time-
varying systems in polytopic domains whose parameters
have bounded rates of variation. All the system matrices
are supposed time-varying and no restrictive assumptions
are made on the structure of the time-varying parameters.
Extending the results from [21] to encompass H∞ perfor-
mance specifications, sufficient LMI conditions are given
to compute parameter-dependent gains as a function of the
system parameter vector (gain scheduled strategy), supposed
to be on-line available, and of a set of fixed matrices. The
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controller is obtained from the solution of a convex problem,
with no need of gridding on the space of parameters. The
conditions proposed here can provide better results than the
ones based on quadratic stability or than gain scheduled
methods that use interpolation, being also useful to cope with
the problem of time-varying actuator failures.

II. PRELIMINARIES

Consider the linear time-varying system

ẋ(t) = A(α(t))x(t) + B1(α(t)))w(t) + B2(α(t))u(t) (1)

z(t) = C(α(t))x(t) + D1(α(t))w(t) + D2(α(t))u(t) (2)

where x(t) ∈ R
n is the state, w(t) ∈ R

r is an exogenous
input, u(t) ∈ R

m is the control input, z(t) ∈ R
p is the

controlled output, A(α(t)) ∈ R
n×n, B1(α(t)) ∈ R

n×r,
B2(α(t)) ∈ R

n×m, C(α(t)) ∈ R
p×n, D1(α(t)) ∈ R

p×r and
D2(α(t)) ∈ R

p×m are time-varying matrices that belong to
the polytope P given by

P =
{

(A,B1, B2, C,D1, D2)(α(t)) :

(A,B1, B2, C,D1, D2)(α(t)) =
N∑

j=1

αj(t)(A,B1, B2, C,D1, D2)j ,

N∑
j=1

αj(t) = 1 , αj(t) ≥ 0, j = 1, . . . , N
}

(3)

The system matrices are written as a convex combination of
the vertices of the polytope P in terms of the time-varying
parameters α(t). The time derivatives of the parameters are
subject to the bounds

|α̇i(t)| ≤ ρi , i = 1, . . . , N − 1 (4)

Notice that the constraint
∑N

j=1 αj(t) = 1 implies, without

loss of generality, α̇N (t) =
∑N−1

j=1 α̇j(t) and the bound on

this parameter can be expressed by |α̇N (t)| ≤ ∑N−1
i=1 ρi.

The aim of this paper is to investigate the existence of a
parameter-dependent state feedback control law

u(t) = K(α(t))x(t) , K(α(t)) ∈ R
m×n (5)

such that with

Acl(α(t)) � A(α(t)) + B2(α(t))K(α(t))

Ccl(α(t)) � C(α(t)) + D2(α(t))K(α(t)) (6)

the closed-loop system given by

ẋ(t) = Acl(α(t))x(t) + B1(α(t))w(t) (7)

z(t) = Ccl(α(t))x(t) + D1(α(t))w(t) (8)

has the following properties:
i) Acl(α(t)) is asymptotically stable;

ii) with x(0) = 0, for any input w(t) ∈ L2 it is possible to
determine a bound γ > 0 such that z(t) ∈ L2 verifies

‖z(t)‖2 < γ‖w(t)‖2 (9)

Any value of γ that satisfies (9) is called an H∞ guaranteed
cost of the closed-loop system (7)-(8) and it is of great
interest to determine the gain K(α(t)) which provides the
smallest γ (best attenuation of disturbances w(t)). Although
the choice of a robust state feedback gain (through quadratic
stability as, for instance, in [3]) simplifies the problem to be
solved and does not demand the on-line availability of the
time-varying parameters α(t), there are some systems that
do not admit a fixed quadratically stabilizing state feedback
gain, or, which occurs quite frequently, the system admits a
fixed quadratically stabilizing feedback control but this fixed
gain does not provide an adequate H∞ attenuation level for
the closed-loop system.

In the sequel, a sufficient condition for the existence of
a parameter-dependent state feedback gain is given. The
condition is formulated as a set of LMIs involving only
the vertices of the polytope P and the bounds on the time
derivatives of the parameters (4), encompassing the results
from quadratic stability in the sense that a feasible solution
is obtained whenever the system is quadratically stabilizable
by fixed gains.

III. PROPOSED CONDITIONS

Next theorem provides a systematic way to determine an
H∞ state feedback gain scheduled controller based on the
parameter-dependent Lyapunov function

v(x) = x′P (α(t))x (10)

with

P (α(t)) =
N∑

j=1

αj(t)Pj , Pj = P ′
j > 0 ,

N∑
j=1

αj(t) = 1 , αj(t) ≥ 0 , j = 1, . . . , N (11)

Theorem 1: For given real scalars parameters ρi ≥ 0,
i = 1, . . . , N − 1, if there exist symmetric positive definite
matrices Wj ∈ R

n×n and matrices Zj ∈ R
m×n, j =

1, . . . , N , such that1

Hj �

⎡
⎣ T1 B1j WjC

′
j + Z ′

jD
′
2j

� −I D′
1j

� � −µI

⎤
⎦ < 0 ,

j = 1, . . . , N

(12)

T1 � AjWj +WjA
′
j +BjZj +Z ′

jB
′
j +

N−1∑
i=1

±ρi(Wi −WN )

(13)

Hjk �

⎡
⎣ T2 B1j + B1k T3

� −2I D′
1j + D′

1k

� � −2µI

⎤
⎦ < 0 ,

j = 1, . . . , N − 1 , k = j + 1, . . . , N

(14)

1The LMIs must be implemented with all the combinations ±.
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with

T2 = AjWk + WkA′
j + AkWj + WjA

′
k

+BjZk +Z ′
kB′

j +BkZj +Z ′
jB

′
k +2

N−1∑
i=1

±ρi(Wi−WN )

(15)

T3 � WjC
′
k + WkC ′

j + Z ′
jD

′
2k + Z ′

kD′
2j (16)

then the parameter-dependent gain

K(α(t)) = Z(α(t))W (α(t))−1 (17)

with

(Z,W )(α(t)) =
N∑

j=1

αj(t)(Z,W )j ,

N∑
j=1

αj(t) = 1 , αj(t) ≥ 0 , j = 1, . . . , N (18)

assures the stability of the closed-loop system with an H∞
guaranteed cost given by γ =

√
µ and the Lyapunov function

(10)-(11).
Proof Define2

v̇ + µ−1z′z − w′w � β′M(α)β (19)

with β′ = [x′ w′],

M(α) =
[

M1 P (α)B1(α) + µ−1Ccl(α)′D1(α)
� µ−1D1(α)′D1(α) − I

]
(20)

and

M1 � Acl(α)′P (α) + P (α)Acl(α) + Ṗ (α)

+ µ−1Ccl(α)′Ccl(α) (21)

Using Schur complement, expression (20) can be rewritten
as

M(α) =

⎡
⎣ M2 P (α)B1(α) Ccl(α)′

� −I D1(α)′

� � −µI

⎤
⎦ (22)

with

M2 � Acl(α)′P (α) + P (α)Acl(α) + Ṗ (α) (23)

Multiplying M(α) at left by T (α), at right by T (α)′, with

T (α) �

⎡
⎣ P (α)−1 0 0

0 I 0
0 0 I

⎤
⎦ (24)

using Acl(α) and Ccl(α) given by (6), and taking into
account the variable transformations P (α)−1 = W (α),
Z(α) = K(α)W (α) one has

H(α) =

⎡
⎣ H1 B1(α) W (α)C(α)′ + Z(α)′D2(α)′

� −I D1(α)′

� � −µI

⎤
⎦
(25)

2The time dependency of the variables is omitted until the end of the
proof, for sake of simplicity.

with

H1 � A(α)W (α) + W (α)A(α)′

+ B2(α)Z(α) + Z(α)′B2(α)′ + W (α)Ṗ (α)W (α) (26)

Since P (α)−1 = W (α) one has

P (α)W (α) = I , Ṗ (α) = −W (α)−1Ẇ (α)W (α)−1 (27)

which leads to

H(α) =

⎡
⎣ H2 B1(α) W (α)C(α)′ + Z(α)′D2(α)′

� −I D1(α)′

� � −µI

⎤
⎦
(28)

with

H2 � A(α)W (α) + W (α)A(α)′

+ B2(α)Z(α) + Z(α)′B2(α)′ − Ẇ (α) (29)

Notice that

Ẇ (α) =
N∑

j=1

α̇jWj =
N−1∑
i=1

α̇i(Wi − WN ) =

( N∑
j=1

α2
j + 2

N−1∑
j=1

N∑
k=j+1

αjαk

) N−1∑
i=1

α̇i(Wi − WN ) (30)

Using expression (3) for (A,B2)(α), and (18) for Z(α),
W (α), and taking (30) into account, one can write

H(α) =
N∑

j=1

α2
jHj +

N−1∑
j=1

N∑
k=j+1

αjαkHjk (31)

with Hj given by (12) and Hjk given by (14)-(15). Theo-
rem 1 imposes Hj < 0 and Hjk < 0, which is sufficient to
assure H(α) < 0 for all α defined in (3), thus guaranteeing
the closed-loop stability with γ =

√
µ attenuation level. �

Some remarks about Theorem 1 are now in order. First, if
a feasible solution exists for a given set of bounds (4), then
the gain K(α(t)), analytically determined through (17)-(18),
assures the system stability with a γ disturbance attenuation.
Notice that there is no need of grids on the parameter space
neither restrictive assumptions on the parameter structure
to determine K(α(t)). The number of LMIs to be solved
in this case is N + N2N−1 + N(N − 1)2N−2 (including
Wj > 0 , j = 1, . . . , N ) and, although this number increases
rapidly with N , there are polynomial time based algorithms
available to solve the problem [4], [22]. Second, if the
conditions of Theorem 1 are feasible for arbitrarily high
values of ρi, i = 1, . . . , N − 1, they lead to the solution
W1 � W2 � . . . WN and the system is quadratically stable.
This can be viewed from the fact that, since the LMIs (12)-
(16) must be fulfilled for +ρi(Wi − WN ) as well as for
−ρi(Wi − WN ), the only possible feasible solution in this
case will be such that W1 � · · · � WN in order to annihilate
the influence of the terms ±ρi(Wi − WN ) for high values
of ρi (reducing their contribution as much as possible by
making W1 � · · · � WN ). Notice that the resulting gain
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(17) will be almost LPV in this case. Third remark, when
the bounds on the time derivatives ρi, i = 1, . . . , N − 1 are
not known a priori, it is possible to use line searches to
find bounds ρi for which Theorem 1 ensures the closed-loop
stability with an H∞ guaranteed performance. Finally, note
that time-varying systems are frequently represented with
an affine dependence on the parameters. In this case, it is
possible to rewrite the system into the polytopic form since
there exists a linear relationship between the parameters in
each representation.

A. Actuator failures

Actuators of physical systems suffer from deterioration
that comes from aging, malfunction etc. Actuator failures
can be modeled as control inputs given by F (t)u(t), F (t) ∈
R

m×m, with F (t) = diag[f1(t) f2(t) . . . fm(t)]. The
parameters are such that 0 ≤ fi(t) ≤ 1, i = 1, . . . , m,
|ḟi(t)| ≤ βi, i = 1, . . . , m and they describe the degree
of failure of each actuator ui(t), i = 1, . . . , m. For instance,
if f1(t) = 1, actuator u1(t) works with no failure and if
f1(t) = 0, this actuator fails completely. The bounds βi,
i = 1, . . . , m, give information about how fast an actuator
loses its strength during operation. One can model reliable
actuators as having slow rates of variation (small values for
βi) and unreliable or critical actuators as having high rates
of variation (high values for βi). It is also possible to assume
arbitrarily high values for βi in order to model instantaneous
failures. The conditions from Theorem 1 can be directly
applied to this problem, dealing with the matrix products
B2(α(t))F (t) and D2(α(t))F (t), and thus representing the
original system (1)-(2) with N vertices by means of a
polytopic system with 2mN vertices, as shown in the third
example.

IV. NUMERICAL EXAMPLES

Consider system (1)-(2) with randomly generated vertices
given by

A1 =
[

10.9 1.0
10.0 18.0

]
, B11 =

[ −0.1
−0.5

]
, B21 =

[
2.1
1.1

]

(32)

C1 =
[

1 0 1 0
]
, D11 =

[
0
0

]
, D21 =

[
0
1

]

(33)

A2 =
[ −19.1 1.0

−10.0 −14.0

]
(34)

B12 = B11, B22 = B21, C2 = C1,

D12 = D11, D22 = D21 (35)

This system is quadratically stabilizable through the fixed
gain

K =
[ −8.5616 −48.4999

]
(36)

with an H∞ guaranteed cost given by γQ = 0.9427 (for
arbitrary rates of parametric variations).

Assuming bounded rates of parametric variations given by
|α̇1(t)| ≤ ρ1 (recall α2(t) = 1 − α1(t)), Theorem 1 allows

0 0.5 1 1.5 2 2.5 3
0.7

0.75

0.8

0.85

0.9

0.95

1

γ

ρ1

QS

T1

Fig. 1. H∞ guaranteed costs γ for system (1)-(2) with vertices (32)-(35)
as a function of the bound on the rates of parametric variations ρ1 using
a robust control gain obtained from quadratic stability (QS) and scheduled
gains from Theorem 1 (T1).

to obtain gain scheduled controllers that reduce the values
of H∞ guaranteed cost, as shown in Fig. 1. Observe that for
each value of ρ1 in Fig. 1, the conditions from Theorem 1
provide a gain scheduled controller that ensure the closed-
loop stability with values of H∞ guaranteed costs that are
always smaller or equal to the value from quadratic stability
with the gains given in (36). The lowest value obtained
through (12)-(16) is γ = 0.7397, for ρ1 = 0 (time-invariant
case) and as ρ1 increases, the values of γ obtained from
Theorem 1 tend to γQ = 0.9427 from quadratic stability
with a fixed gain.

The entries of the parameter-dependent gain

K(α1(t)) =
[

k11(α1(t)) k12(α2(t))]
]

provided by Theorem 1 for ρ1 = 0 and ρ1 = 3 are shown
in Fig. 2. Observe the nonlinear behavior of k11(α1(t)) and
k12(α1(t)) for ρ1 = 0 and how these entries tend to the fixed
values obtained through the quadratic condition, given by
(36), when ρ1 = 3. The better performances (lower values of
γ, better rejection of disturbances) are assured by Theorem 1
at the price of implementing a gain scheduled strategy, as
shown in Fig. 2, at left.

As a second example, consider system (1)-(2) with ran-
domly generated vertices

A1 =
[

0.7 0.5
0.9 0.5

]
, B11 =

[
0.9
0.1

]
, B21 =

[
7
9

]
(37)

C1 =
[

3 2
]

, D11 =
[

0.6
]

, D21 =
[

0.8
]

(38)

A2 =
[

0.3 0.3
0.1 0.2

]
, B12 =

[
0

0.4

]
, B22 =

[
6
2

]
(39)

C2 =
[

0 4
]

, D12 =
[

0.1
]

, D22 =
[

1
]

(40)

This system is not quadratically stabilizable through fixed
gains [4] but the conditions of Theorem 1 allow stabilization

5009
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−10

0

0 0.2 0.4 0.6 0.8 1
−50

−45

−40

−35

−30

−25

−20

−15

−10

−5

K
(α

1
(t

))

K
(α

1
(t

))

α1(t)α1(t)

k11k11

k12

k12

Fig. 2. Behavior of the entries of the parameter-dependent gains K(α1(t))
given by Theorem 1 for ρ1 = 0 (left) and ρ1 = 3 (right) assuring closed-
loop system stability with an H∞ guaranteed cost for system (1)-(2) with
vertices given by (32)-(35).

0 0.01 0.02 0.03 0.04 0.05
0

20

40

60

80

100

120

140

γ

ρ1

Fig. 3. H∞ guaranteed costs provided by parameter-dependent gains
obtained through the conditions of Theorem 1 for system (1)-(2) with
vertices given by (37)-(40).

through parameter-dependent control gains with H∞ guar-
anteed costs shown in Figure 3.

Assume that the system is affected by the disturbance
signal

w(t) = exp(−0.01t) (41)

with the uncertain parameter given by

α1(t) = 0.5 + 0.5 sin(2λt) (42)

which leads to |α̇1(t)| ≤ λ. Using the conditions (12)-(14)
for ρ1 = λ = 0.01, one has that this system, not quadratically
stabilizable through fixed gains, can be stabilized through
parameter-dependent gains, with an H∞ guaranteed cost
given by γ = 22.7882 and with the closed-loop time
response shown in Figure 4.

As a final example, consider a design example applied to a
single flexible link studied in [8] and [12]. Here, the model is
slightly modified to address the problem of actuator failures,
being described by the following equations

ẋ(t) = Ā(θ(t))x(t) + B̄1w(t) + B̄2(f(t))u(t) (43)

z(t) = C̄x(t) + D̄1w(t) + D̄2(f(t))u(t) (44)

0 20 40 60 80 100 120 140 160 180 200
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

t

z(t)

w(t)

Fig. 4. Output z(t) of system (1)-(2) with vertices given by (37)-(40) for
the control gains calculated through the conditions of Theorem 1 with ρ1 =
0.01, for uncertain time-varying parameters given by (42), with λ = 0.01
and with the disturbance signal (41).

Ā(θ(t)) = Āo + θ(t)Ā1 (45)

B̄2(f(t)) = f(t)B̄2 , D̄2(f(t)) = f(t)D̄2 (46)

The system matrices are given by

Āo =

⎡
⎢⎢⎣

0 0 1 0
0 0 −1 1
0 1 0 0
0 −1 0 0

⎤
⎥⎥⎦ , Ā1 =

⎡
⎢⎢⎣

0 0 0 0
0 0 9.8 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦
(47)

B̄1 =

⎡
⎢⎢⎣

1 0
0 0
0 0
0 0.01

⎤
⎥⎥⎦ , B̄2 =

⎡
⎢⎢⎣

0
0
0
1

⎤
⎥⎥⎦ (48)

C̄ =
[

1 0 0 0
0 0 0 0

]
, D̄2 =

[
0

0.01

]
(49)

Matrix D̄1 is supposed equal to zero, and the focus is on
the design of H∞ controllers considering that the system is
subject to the time-varying parameters θ(t) and f(t) (which
models failures of the actuator) lying in the intervals

θ(t) ∈ [0, 0.5] , f(t) ∈ [0.1, 1] (50)

For instance, when f(t) = 0.1, the actuator operates with
10% of its full strength.

This system can be represented by a four-vertex polytope,
obtained from all possible combinations of maximum and
minimum values of (θ(t), f(t)), yielding

|θ̇(t)| ≤ 0.5(ρ1 + ρ2) � δ1 , |ḟ(t)| ≤ 0.9(ρ1 + ρ3) � δ2

(51)
The linear relationships between the bounds on the rates of
parametric variations of the original affine system δ1, δ2,
and the bounds ρ1, ρ2, ρ3 in its polytopic representation is
apparent.

The quadratic stability condition allows to determine a
robust state feedback gain that stabilizes system (43)-(50)
with an H∞ guaranteed cost given by γQ = 0.7720, for
arbitrary rates of parametric variations θ̇(t), ḟ(t).
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TABLE I

REDUCTION ON THE H∞ GUARANTEED COSTS GIVEN BY (52) FOR

SYSTEM (43)-(50) WITH |θ̇(t)| ≤ δ1 , |ḟ(t)| ≤ δ2 . THE SYMBOL ∞
DENOTES ARBITRARILY HIGH VALUES.

δ1 δ2 ∆γ(%)
0 0 18.4
0 ∞ 18.4
∞ 0 16.9
1 1 14.8
10 10 9.2

It is possible to improve the performance of the system
using the gain scheduled strategy proposed in Theorem 1. A
performance comparison is summarized in Table I, where
each row provides the bounds on |θ̇(t)| and |ḟ(t)|, the
corresponding value of reduction in the H∞ guaranteed
costs of the closed-loop system provided by Theorem 1 with
respect to the results of robust H∞ quadratic stabilizing
gains, defined as

∆γ =
γQ − γT1

γQ
(52)

The first three rows of Table I show that when at least one
of the parameters θ(t), f(t) is time-invariant, the reductions
on the H∞ guaranteed costs provided by Theorem 1 are
higher. Particularly, the second row indicates that the perfor-
mance assured by Theorem 1 does not depend on how fast
the failures on the system actuator f(t) may occur when θ(t)
is considered as time-invariant. The last two rows of Table I
point out that when both parameters are considered as time-
varying, the values of ∆γ decrease as the bounds on the rates
of parametric variations δ1 and δ2 increase. When δ1 and δ2

are arbitrarily high, Theorem 1 provides an almost LPV gain
(as stated in the second remark of Theorem 1) with an H∞
guaranteed cost given by 0.7052.

Finally, it is important to stress that conditions from the
literature that consider fixed time-invariant control matrices
cannot cope with the problem of control under actuator
failures studied in this example. On the other hand, the con-
ditions from Theorem 1 can handle this problem efficiently.

V. CONCLUSION

This paper has presented sufficient convex conditions
to design H∞ state feedback gain scheduled controllers
for linear time-varying systems with parameters that have
bounded rates of variation and lie inside a polytope. If the
rates of variation are known a priori, a convex test based
on LMIs allows to determine the stabilizing H∞ parameter-
dependent gain, that always provides a better performance
than fixed gains given by quadratic stability. Differently
from other gain scheduled approaches in the literature, all
the system matrices are supposed to be time-varying here,
which allows to address problems of actuator failures, for
instance. Moreover, there is no need of grids on the space of
parameters neither restrictive assumptions on the parameter
structure. Numerical examples including an application of
control subject to actuator failures illustrate the efficiency

of the proposed conditions in the design of H∞ parameter-
dependent state feedback controllers.
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