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Abstract— In this paper, the problem of optimal and robust
controller design for finite state automata is addressed. The
approach presented is based on the language measure intro-
duced in Wang and Ray. However, it differs from previous
approaches to optimal controller design by using a new
definition of the performance of the supervised automaton.
This new definition is, in our opinion, more appropriate in
cases where the performance weights are related to the relative
frequency of the events.

I. INTRODUCTION

The main motivation for the problem addressed in this
paper is the recent development of quantitative language
measures and their use in supervisor design; see [1], [2], [3],
[4], [5]. In this early work, the performance of supervised
plants was assessed by discarding the weights of the events
that were disabled by the supervisor. Algorithms for optimal
and robust supervisor design were developed based on this
way of assessing the performance of the supervised plant.

However, there are cases in which simply discarding the
weights of the disabled events is not the best approach.
Namely, if one interprets the performance weights of a given
event as being related to the relative frequency at which this
specific event occurs then, in our opinion, when an event is
disabled its weight should be “distributed” among the events
that are still enabled. In other words, to have a consistent
relation between event weights and the frequency of events,
when one event is disabled, all the weights in the language
measure should be modified accordingly.

Given the motivation above, in this paper we propose
a new way of addressing the performance of a super-
vised deterministic finite state automaton (DFSA) which
addresses cases like the one mentioned above. Also, given
that in many instances one only has estimates of the relative
frequency of events, an algorithm is presented which, given
bounds on the uncertainty of estimates, converges to the
worst–case performance. Moreover, an algorithm for opti-
mal robust supervisor design is presented; i.e, a procedure is
presented which converges to a supervisor that maximizes
the worst–case performance of the supervised plant.

A. Previous Work

The problem of robust control of discrete-event dy-
namical systems (DEDS) has been addressed by several
researchers. Park and Lim [6] have studied the problem of
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robust control of nondeterministic DEDS. The performance
measure used was nonblocking property of the supervised
plant. Necessary and sufficient conditions for existence of a
robust nonblocking controller for a given finite set of plants
are provided. However, no algorithm for controller design
is provided. The problem of designing nonblocking robust
controllers was also addressed by Cury and Krogh [7] with
the additional constraint that the infinite behavior belongs to
a given set of allowable behaviors. In this work, the authors
concentrated on the problem of designing a controller that
maximizes the set of plants for which their supervised
behavior belong to the admissible set of behaviors. Takai [8]
addresses a similar problem. However, it considers the
whole behavior (not just the infinite behavior) and it does
not consider nonblockingness. Lin [9] adopted a different
approach, where both the set of admissible plants and the
performance are defined in terms of the marked language.
Taking the set of admissible plants as the plants whose
marked language is in between two given the behaviors, the
authors provided conditions for solvability of the problem
of designing a discrete event supervisory controller such
that the supervised behavior of any of the admissible plants
contains a desired behavior K.

To address a subject related to that of this paper several
researchers have proposed optimal control algorithms for
deterministic finite state automata (DFSA) based on differ-
ent assumptions. Some of these researchers have attempted
to quantify the controller performance using different types
of cost assigned to the individual events. Passino and
Antsaklis [10] proposed path costs associated with state
transitions and hence optimal control of a discrete event
system is equivalent to following the shortest path on the
graph representing the uncontrolled system. Kumar and
Garg [11] introduced the concept of payoff and control costs
that are incurred only once regardless of the number of
times the system visits the state associated with the cost.
Consequently, the resulting cost is not a function of the
dynamic behavior of the plant. Brave and Heymann [12]
introduced the concept of optimal attractors in discrete-
event control. Sengupta and Lafortune [13] used control
cost in addition to the path cost in optimization of the
performance index for trade-off between finding the shortest
path and reducing the control cost.

A limitation of the work mentioned above is that the
controllers are designed so that the closed loop system has
certain specified characteristics. No performance measure
is given that can compare the performance of different
controllers. To address this issue, Wang and Ray [1] and
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Ray and Phoha [2] have proposed a signed real measure for
regular languages. This novel tool of addressing the perfor-
mance of DFSAs enable the developing of a new approach
to supervisor design. The design of optimal supervisor has
been reported by Fu, Ray and Lagoa in [3] and [4] for with-
out and with event disabling cost, respectively. Moreover,
the design of robust supervisors has been addressed in Fu,
Lagoa and Ray in [5]. Although based on these early results,
the approach taken in this paper differs on the way that the
performance of the supervised plant is assessed. It provides,
in our opinion, a better approach when the performance
weights are related to the relative frequency of events.

II. BRIEF REVIEW OF THE LANGUAGE MEASURE

This section briefly reviews the concept of signed real
measure of regular languages introduced in [1]. Let the
plant behavior be modelled as a deterministic finite state
automaton (DFSA) Gi ≡ (Q,Σ, δ, qi, Qm) where Q is
the finite set of states with |Q| = n excluding the dump
state [14] if any, and qi ∈ Q is the initial state; Σ is
the (finite) alphabet of events; Σ∗ is the set of all finite-
length strings of events including the empty string ε; the
possibly partial) function δ : Q × Σ → Q represents state
transitions and δ̂∗ : Q × Σ∗ → Q is an extension of δ;
and Qm ⊆ Q is the set of marked states. The set Qm

is partitioned into Q+
m and Q−

m, where Q+
m contains all

good marked states that are desired to terminate on and
Q−

m contains all bad marked states that are not desired
to terminate on, although it may not always be possible
to avoid terminating on the bad states while attempting to
reach the good states. The marked language associated with
DFSA Gi Lm(Gi) is partitioned into L+

m(Gi) and L−
m(Gi)

consisting of good and bad strings that, starting from qi,
terminate on Q+

m and Q−
m, respectively.

The language of all strings that, starting at a state qi ∈ Q,
terminates on a state qj ∈ Q, is denoted as L(qi, qj). That
is, L(qi, qj) ≡ {s ∈ L(Gi) : δ̂∗(qi, s) = qj}. Furthermore,
a consider a characteristic function χ : Q → [−1, 1]
satisfying

χ(qj) ∈
⎧⎨
⎩

(0, 1] if qj ∈ Q+
m

{0} if qj /∈ Qm

[−1, 0) if qj ∈ Q−
m

Now, the event performance weight π̃ : Σ∗ × Q → [0, 1] is
defined as

• π̃[σk|qj ] = 0 if δ(qj , σk) is undefined; π̃[ε|qj ] = 1;
• π̃[σk|qj ] ≡ π̃jk ∈ [0, 1);

∑
k π̃jk < 1;

• π̃[σk s|qj ] = π̃[σk|qj ]π̃[s|δ(qj , σk)].
Given this, the signed real measure µ of a singleton string
set {s} ⊂ L(qi, qj) ⊆ L(Gi) ∈ 2Σ∗

is defined as:

µ({s}) ≡ χ(qj) π̃(s|qi) ∀s ∈ L(qi, qj).

The signed real measure of L(qi, qj) is defined as

µ (L(qi, qj)) ≡
∑

s∈L(qi,qj)

µ ({s})

and the signed real measure of a DFSA Gi, initialized at
the state qi ∈ Q, is denoted as:

µi ≡ µ(L(Gi)) =
∑

j

µ (L(qi, qj))

Taking µ ≡ [µ1 µ2 · · · µn]T , it was proven in [1] that

µ = Πµ + X

where Π is an n × n matrix whose (j, k) entry is

πjk ≡ π(qk|qj) =
∑

σ∈Σ:δ(qj ,σ)=qk

π̃(σ|qj)

and
πjk = 0 if {σ ∈ Σ : δ(qj , σ) = qk} = ∅

and X ≡ [χ1 χ2 · · · χn]T . So that the vector µ is well
defined, it is assumed that there exist a 0 < θ < 1 such
that, for all i ∑

j

πij = (1 − θ).

The constant θ is related to the relative weight of short
and long strings. If θ is close to zero the language measure
depends mostly on “short” strings of events. The closer θ
is to one, the higher the contribution of “long” strings to
the language measure.

Remark: It should be noted that if one defines the
function (or operator) T : �n → �n

T (x) ≡ Πx + X.

finding the language measure µ is equivalent to finding the
fixed point of T . This observation plays an important role
in the proofs of the results in this paper

III. PERFORMANCE OF A SUPERVISED PLANT

The main difference between the approach taken in this
paper and previous ones resides on how one computes the
performance of a supervised plant. In [3], [4], [5], if an
event is disabled, then one would just associate the value
zero with its corresponding weight. More precisely, if event
σk is disabled when the current state of the automaton is
qj , then one would take

π̃[σk|qj ] = 0

without any modification of other event weights. However,
in the case where π̃[σk|qj ] is related to the relative fre-
quency that event σk occurs given that one has “left” state
qj , then one has to take a different approach. In this case,
when event σk is disabled, its weight should be distributed
among the events that are currently enabled. One should
note that this approach is only applicable to supervised
plants that do not have any deadlock states. Hence, we now
define the class of allowable supervisors.

A. Class of Allowable Supervisors S
Let G be the open loop plant and GS be the supervised

plant. The set of allowable supervisors is

S .= {S : GS has no deadlock states}.
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B. Performance Weights of Supervised Plant

Assume that at state qj the set of events DS
j are disabled

by supervisor S. Moreover, denote by π̃S [σk|qj ] the event
performance weights for the supervised system. Then,

π̃S [σk|qj ] =

{
0 if σk ∈ DS

j

pS
j π̃[σk|qj ] otherwise

where
pS

j =
1 − θ∑

σk /∈DS
j

π̃[σk|qj ]

The performance of the supervised plant µS is computed
using the same approach as before. More precisely,

µS = ΠSµS + X

where ΠS is an n × n matrix whose (j, k) entry is

πS
jk = πS(qk|qj) =

∑
σ∈Σ:δS(qj ,σ)=qk

π̃S(σ|qj)

and
πS

jk = 0 if {σ ∈ Σ : δS(qj , σ) = qk} = ∅
and δS is the state transition function for the supervised
system. Note that one still satisfies∑

j

πS
ij = (1 − θ).

IV. UNCERTAINTY AND ROBUST PERFORMANCE

As mentioned in Section I, in many instances, the value
of the performance weights is not exactly known. In this
section, a way of addressing this problem is presented. A
definition of the uncertainty structure addressed in this paper
is presented. Moreover, an algorithm for computing worst-
case performance is provided.

A. Uncertainty Structure

In this paper, it is assumed that one does not know the
exact value of the performance weights. Only bounds are
available. More precisely, it is assumed that

π̃[σk|qj ](∆) = π̃0[σk|qj ](1 + ∆σk|qj
)

where

π̃0[σk|qj ] =

{
> 0 if {q : δ(σk, qj) = q} 	= ∅;
= 0 otherwise.

The admissible set for the uncertainty is

∆ =

{
∆ : 0 < ∆min

σk|qj
≤ ∆σk|qj

≤ ∆max
σk|qj

and
∑
σk∑

σk

π̃[σk|qj ](∆) = 1 − θ, j = 1, 2, . . . , n

}
.

In other words, it is only known that each of the weights
belongs to a given interval and that the sum of the weights
corresponding to a given state is equal to 1 − θ.

B. Uncertain Supervised Plant

As mentioned before, when a supervisor disables a subset
of the events, the weights of the events are “distributed”
among the events that have not been disabled. Hence, given
uncertainty ∆ ∈ ∆ and a supervisor S which at state qj

disables a set of events DS
j , the performance weights of the

supervised plant are defined as

π̃S [σk|qj ](∆) =

{
0 if σk ∈ DS

j

pS
j (∆)π̃[σk|qj ](∆) otherwise

where
pS

j (∆) =
1 − θ∑

σk /∈Dj

π̃[σk|qj ](∆)

C. Additional Notation

Given a supervisor S, let Π(S, ∆) be the uncertain state
transition matrix under supervisor S, i.e., Π(S,∆) has
entries

πij(S, ∆) =
∑

σ∈Σ:δ(qi,σ)=qj

π̃S [σ|qi](∆).

For a given admissible value of the uncertainty ∆ ∈ ∆, the
performance of the plant under the supervisor S, denoted
by µ(S, ∆), is the solution of

µ(S, ∆) = Π(S, ∆)µ(S, ∆) + X.

D. Robust Performance

Consider an uncertain automaton controlled by a super-
visor S. The robust performance of supervisor S, denoted
by µ(S) is defined as the worst-case performance, i.e.,

µ(S) = min
∆∈∆

µ(S, ∆)

where the above minimum is taken elementwise. Even
though the minimization is done element by element, this
performance is achieved for some ∆∗ ∈ ∆∆∆. The precise
statement of this result is given below and its proof is
provided in Section V-B.

Lemma 1: Let S be a supervisor. Then, there exists a
∆∗ ∈ ∆∆∆ such that, for all admissible ∆ ∈ ∆∆∆,

µ(S) = µ(S, ∆∗) ≤ µ(S, ∆)

where the above inequality is implied elementwise.
An algorithm for computing µ(S) is presented below.
Algorithm 1: Computation of worst–case performance of

supervisor S.
Step 0. Let k = 0 and select ∆0 ∈ ∆. Let eps be the

desired precision level.
Step 1. Let Πi(S, ∆) denote the i-th row of the matrix

Πi(S, ∆). Find ∆k+1 such that for i = 1, 2, . . . , n1

Πi(S, ∆k+1)µ(S, ∆k) = min
∆∈∆

Πi(S, ∆)µ(S,∆k).

1Note that this such a ∆k+1 can always be found since the uncertainty
in each entry row of the matrix Π(S, ∆) is independent of the uncertainty
in the other rows.
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Step 2. If ‖µ(S,∆k+1)−µ(S,∆k)‖∞ < eps stop. Else let
k ← k + 1 and go to Step 1

E. Comments on Numerical Implementation

Note that the algorithm above requires solving several
optimization problems in Step 1. Although not convex, these
optimization problems are quasi-convex and can be easily
solved using a bisection algorithm. We now elaborate on
this.

In Step 1. of the algorithm one is required to solve a
problem of the form

min
∆∈∆

Πi(S,∆)µ.

Given the definition of Πi(S,∆) and the uncertainty admis-
sible set, this problem is equivalent to

min ν

subject to∑
j

∑
σ∈Σ,σ/∈DS

i :δ(qi,σ)=qj

π̃S [σ|qi](∆)µj

≤ ν

1 − θ

∑
σ/∈DS

i

π̃[σk|qj ](∆)

∑
σk

π̃[σ|qi](∆) = 1 − θ

π̃[σ|qi](∆) = π̃0[σ|qi](1+∆σ|qi
); ∆min

σ|qi
≤ ∆σ|qi

≤ ∆max
σ|qi

which can easily solved using a bisection algorithm to
search for ν and solving a linear inequality feasibility
problem at each of the iterations.

F. Convergence of Algorithm 1

We now establish the convergence of the algorithm for
computing worst–case performance.

Theorem 1: Given a supervisor S, Algorithm 1 con-
verges to its robust performance, i.e., µ(S,∆k) → µ(S).
Furthermore, if there exists an ε > 0 such that for i 	= j
|µ

i
(S)−µ

j
(S)| > ε then the algorithm converges in a finite

number of iterations. More precisely, it will converge to the
robust performance after at most N iterations where

N =

⌈
log ε − log(2‖µ(S,∆0) − µ(S)‖∞)

log(1 − θ)

⌉
+ 1

and x� denotes the smallest integer greater or equal to x.

V. PROOFS OF LEMMA 1 AND THEOREM 1

A. Additional Notation

Given a supervisor S and uncertainty value ∆ ∈ ∆∆∆, let
TS

∆ : �n → �n be defined as

TS
∆(µ) .= Π(S,∆)µ + X

Furthermore, let TS : �n → �n be given by

TS(µ) = min
∆∈∆∆∆

TS
∆(µ)

where the above minimum is taken entry by entry. Note that
TS

∆(·) is well-defined since, as mentioned in Section IV, the
uncertainty in each row of Π(S, ∆) is independent of the
uncertainties in all other rows. Finally, given x ∈ �n, define
the ∞-norm ‖x‖ = maxi |xi| . Given x, y ∈ �n, it follows
that x ≤ y if xi ≤ yi for all i = 1, 2, . . . , n. It also follows
that x < y if x ≤ y and xi < yi for some i.

Before providing the proofs of Lemma 1 and Theorem 1,
a number of relevant properties of the functions TS

∆(·) and
TS(·) are established. These properties are not proven since
they are a direct consequence of the fact that all the entries
of Π(S, ∆) are positive and that each row sums to 1 − θ.

Fact 1: Let S be a supervisor and ∆ ∈ ∆∆∆ be given, then
TS

∆ is a contraction. Moreover, given any vectors x, y,∥∥TS
∆(x) − TS

∆(y)
∥∥ ≤ (1 − θ) ‖x − y‖ .

Fact 2: Let S be a supervisor and let ∆,∆′ ∈ ∆∆∆
be given. If TS

∆(µ(S, ∆′)) ≤ µ(S, ∆′) then µ(S,∆) ≤
µ(S, ∆′).

Fact 3: Let S be a supervisor. Then, TS
∆(µ(S,∆′)) <

µ(S, ∆′) implies that µ(S, ∆) < µ(S, ∆′).
Fact 4: Let S be a controllable supervisor. Then, the

operator TS is a contraction. Moreover, given any vectors
x, y,

∥∥TS(x) − TS(y)
∥∥ ≤ (1 − θ) ‖x − y‖ .

Fact 5: Let S and S′ be two supervisors, if TS(µ(S′)) ≥
µ(S′) then µ(S) ≥ µ(S′). In addition, if TS(µ(S′)) >
µ(S′) then µ(S) > µ(S′).

Having these preliminary facts, one can now proceed with
the proofs of Lemma 1 and Theorem 1.

B. Proof of Lemma 1

First, note that, by Fact 4, TS is a contraction. Hence,
there exists a µ(S) such that

µ(S) = TS(µ(S)) = min
∆∈∆∆∆

TS
∆(µ(S)).

Since TS
∆(µ(S)) depends continuously on ∆ and the mini-

mization is done over the compact set ∆∆∆, then there exists
a ∆∗ ∈ ∆∆∆ such that µ(S) = TS

∆∗(µ(S)) and, therefore,
µ(S) = µ(S, ∆∗). Furthermore, TS

∆ is monotone, i.e.,

x ≤ y ⇒ TS
∆(x) ≤ TS

∆(y).

This is a consequence of the fact that all the entries of the
matrix Π(S, ∆) are positive. This implies monotonicity of
the operator TS ; i.e., one can see that

x ≤ y ⇒ TS(x) = min
∆∈∆

TS
∆(x) ≤ TS(y) = min

∆∈∆
TS

∆(y).

Now, given any ∆ ∈ ∆ and the associated performance
µ(S, ∆), the definition of TS implies that

TS(µ(S, ∆)) ≤ TS
∆(µ(S, ∆)) = µ(S, ∆).

Therefore, it follows that

(TS)2(µ(S, ∆)) .= TS
[
TS(µ(S, ∆)

]
≤ TS(µ(S, ∆)) ≤ µ(S, ∆)
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Repeating the above reasoning, for any k,

(TS)k(µ(S,∆)) ≤ µ(S,∆)

Hence, the Contraction Mapping Theorem [15] implies

µ(S) = lim
k→∞

(TS)k(µ(S,∆)) ≤ µ(S,∆)

Therefore, µ(S) = µ(S,∆∗) and the proof is complete.

C. Proof of Theorem 1

In Step 1 of Algorithm 1, we have

TS
∆k+1(µ(S,∆k)) = TS(µ(S,∆k)) = min

∆∈∆∆∆
TS

∆(µ(S, ∆k))

≤ TS
∆k(µ(S,∆k)) = µ(S,∆k)

and, hence, by Fact 2, µ(S,∆k+1) ≤ µ(S,∆k). and one
has a monotonic performance sequence. To see that one
converges to the robust performance µ(S), first note that
the monotonicity of TS

∆ implies that

µ(S,∆k+1) = TS
∆k+1(µ(S,∆k+1))

≤ TS
∆k+1(µ(S,∆k)) = TS(µ(S, ∆k)).

Hence, given the definition of robust performance µ(S), one
can see that

µ(S,∆k+1) − µ(S) ≤ TS(µ(S,∆k)) − µ(S)

= TS(µ(S,∆k)) − TS(µ(S)).

Since, both sides of the inequalities above are positive and
the fact that TS is a contraction with “contraction factor”
1 − θ, we conclude that

‖µ(S,∆k+1) − µ(S)‖ ≤ ‖TS(µ(S,∆k)) − TS(µ(S))‖
≤ (1 − θ)‖µ(S,∆k) − µ(S)‖.

Hence, ‖µ(S,∆k)− µ(S)‖ ≤ (1− θ)k‖µ(S,∆0)− µ(S)‖.
We conclude the reasoning by noting that 0 < θ < 1.

Now, consider the case where the worst-case performance
satisfies |µ

i
(S)−µ

j
(S)| > ε for i 	= j and ε > 0. To prove

that, in this case, one has convergence in a finite number
of steps note that a solution of the optimization problem in
Step 1 of Algorithm 1 can be determined in the following
way: Let j∗ be such that

µj∗(S,∆k) = min
j

µj(S,∆k).

Then, maximize over ∆ ∈ ∆ the value πS
i,j∗(∆). Now, with

πS
i,j∗(∆) fixed, maximize the value of πS

i,j∗∗(∆), where j∗∗

is such that

µj∗∗(S,∆k) = min
j,j �=j∗

µj(S,∆k).

Now, repeat the reasoning above for the remaining values
of j. Given this, one can see that one does not need to know
the exact values of the entries of µ(S,∆k) to determine
∆k+1. One only needs to know the relative order of the
entries.

Now, recall that

‖µ(S, ∆k+1) − µ(S)‖ ≤ (1 − θ)k‖µ(S, ∆0) − µ(S)‖.
Hence, if

k ≥ N =

⌈
log ε − log(2‖µ(S, ∆0) − µ(S)‖∞)

log(1 − θ)

⌉
+ 1

one has ‖µ(S, ∆k) − µ(S)‖ ≤ ε/2 and, since |µ
i
(S) −

µ
j
(S)| > ε for i 	= j, the relative order of the entries of

µ(S, ∆k) and µ
j
(S) = µ(S, ∆∗) are the same. Therefore,

given the above remarks on the algorithm, if one has a
unique minimizer, we conclude that ∆k+1 = ∆∗. If the
minimizer is not unique, then there are several solutions to
the optimization problem and one still obtains

µ(S) = µ(S, ∆k+1).

VI. OPTIMAL ROBUST CONTROLLER DESIGN

In previous sections, the problem of determining the
worst-case performance of a supervised plant was ad-
dressed. In this section, an algorithm for robust optimal
supervisor design is provided. More precisely, we present an
algorithm which converges to the supervisor which exhibits
the best worst–case performance subject to the constraint
that no state is a deadlock state.

Algorithm 2: Optimal robust supervisor design
Step 0. Let k = 0 and let eps be the desired precision

level. Let S0 be a controllable supervisor and
determine its worst-case performance µ(S0) using
Algorithm 1.

Step 1. Let j1, j2, . . . , jn be such that

µ
j1

(Sk) ≥ µ
j2

(Sk) ≥ · · · ≥ µ
jn

(Sk).

Step 2. Let Sk+1 be the supervisor that disables all con-
trollable events. For i = 1 to n do
a. Let l = 1.
b. If no events leading out of state i are enabled

enable all events from state qi to state qj1 and
go to the next step of the for loop.

c. Determine ν = min∆∈∆ Πi(Sk+1,∆)µ(Sk).
where Πi(Sk+1,∆) is the i-th row of the matrix
Π(Sk+1,∆).

d. If ν < (1−θ)µ
jl

(Sk) modify Sk+1 by enabling
all controllable events from state qi to state qjl

.
Else go to the next step of the for loop.

e. Let l = l +1, If l > n go to the next step of the
for loop. Else go to c.

Step 3. Given Sk+1, determine µ(Sk+1) using Algo-
rithm 1. If ‖µ(Sk+1)− µ(Sk)‖∞ < eps stop. Else
let k=k+1 and go to Step 1.

The result below establishes the convergence of the
design algorithm presented above.

Theorem 2: The sequence of supervisors Sk obtained by
Algorithm 2 satisfies µ(Sk+1) > µ(Sk). Moreover, denoting
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by µ∗ the optimal worst-case performance, the performance
of the supervisors obtained satisfies

‖µ(Sk) − µ∗‖∞ ≤ (1 − θ)k‖µ(S0) − µ∗‖∞
Proof: A sketch of the proof of the theorem above is

now provided. Let T : �n → �n be defined as

T (µ) .= max
S∈S

TS(µ).

Some relevant properties of T (·) are established in the
following two lemmas. The proofs are omitted since they
are similar to the proofs of the facts in Section V.

Fact 6: The transformation T is a contraction. Moreover,
given any vectors x, y, ‖T (x) − T (y)‖ ≤ (1− θ) ‖x − y‖ .

Fact 7: There exists a S∗ such that µ∗ = µ(S∗) =
T (µ(S∗)). Furthermore, for all S ∈ S, µ∗ ≥ µ(S).

A sketch of the proof of Theorem 2 is now provided.
First, note that Sk+1 in Step 2 of Algorithm 2 is such that

TSk+1
(µ(Sk)) = max

S∈S
TS(µ(Sk)).

To see this, first one should note that one can maximize each
of the entries of TS(µ(Sk)) independently since events are
enabled or disabled independently at each state. Therefore,
we now concentrate on the i-th element of TS(µ(Sk)); i.e.,
it turns out that, at each step, Sk+1 maximizes

min
∆∈∆

Πi(S,∆)µ(Sk)

where Πi(S,∆) is the i-th row of Π(S,∆). This can be
proven using the following results.

Fact 8: Each of the iterations of the subroutine in Step 2
strictly increases the value of

min
∆∈∆

Πi(Sk+1,∆)µ(Sk).
Fact 9: If a supervisor S that achieves the maximum of

min
∆∈∆

Πi(S,∆)µ(Sk)

and enables events leading from state qi to state ql, then it
also enables all events leading from state qi to states qm

that satisfy µ
m

(Sk) > µ
l
(Sk).

One is now ready to prove Theorem 2. Given the results
above, the supervisor determined in Step 2 satisfies

TSk+1
(µ(Sk)) = max

S∈S
TS(µ(Sk)) = T (µ(Sk))

> TSk

(µ(Sk)) = µ(Sk)

Hence, by Lemma 5, µ(Sk+1) > µ(Sk). Now, note that

µ∗ − µ(Sk+1) = µ∗ − TSk+1
(µ(Sk+1))

≤ µ∗ − TSk+1
(µ(Sk))

= T (µ∗) − T (µ(Sk)).

Since both sides of the inequalities above are positive and T
is a contraction with “contraction factor” 1−θ, one obtains

‖µ∗ − µ(Sk+1)‖ ≤ ‖T (µ∗) − T (µ(Sk))‖
≤ (1 − θ)‖µ∗ − µ(Sk)‖.

Hence,

‖µ∗ − µ(Sk)‖ ≤ (1 − θ)k‖µ∗ − µ(S0)‖.
The proof is concluded by noting that 0 < θ < 1.

VII. CONCLUDING REMARKS

In this paper, a new way of addressing the performance
of supervised automata is presented. The approach taken is
based on recent results on quantitative measures of regular
languages and addresses the case where the weights of the
language measure are related to the relative frequency of
events. Algorithms for worst–case performance assessment
and optimal robust supervisor design are presented. It is
shown that the algorithms have exponential convergence and
that, in many cases, the worst–case performance assessment
algorithm converges in a finite number of steps.

Effort is now being put on the case where one cannot
observe directly the current state of the automaton. Hence,
the problem of optimal observer design and its use in the
design of optimal supervisors is now being studied.
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