
Control of unreliable cooperative multi-site production systems

Mauro Boccadoro, Francesco Martinelli and Paolo Valigi

Abstract— In this paper we consider a two site, cooperative,
failure prone production system. The failure/repair process of
each site is an independent Markov process. Each site may
comply with possible shortage of the other site by sending to
it a given quantity of products, with a penalty, modeling for
example a transportation cost. General properties of the optimal
policy are derived through the Hamilton Jacobi Bellman (HJB)
equations, according to which the backlog/inventory space of
the system is partitioned in regions, each characterized by a
constant production rate. A general numerical procedure, which
could be also exploited to face several problems approached
through a HJB formulation, is developed and applied to the
problem considered in this paper to derive the optimal policy
and the corresponding optimal cost. An analysis of the effect of
system parameters on the optimal policy as well as a comparison
with analytical results known for the single site problem are
also included in the paper.

I. INTRODUCTION

The problem considered in this paper is in the context of
multi-site production factories, where the sites have similar
production characteristics and each of them attracts a terri-
torial portion of the demand. Fluctuations in the production
(as for example failures) or in the demand may force one of
the sites to receive items from other sites, with some penalty,
which may be imputed, for example, to transportation costs.
Here, we consider the optimal production control of two
cooperative sites producing the same kind of goods, where
each site is subject to failure according to an independent
Markov process. There is cooperation in the sense that each
site can comply with possible shortages of the other by
supplying it with its own production, but a reduced profit
is made by selling goods not produced in site.

A large literature deals with single unreliable production
sites. Usually, the common approach is the use of Hamilton
Jacobi Bellman (HJB) equations to prove the optimality
of some candidate policies. Analytical results have been
obtained in some particular cases, starting with [8], [3] and
[1] where it has been proved that, under a Markov descrip-
tion of the failure repair process of the system, the policy
minimizing a long term, average, expected cost penalizing
both the inventory surplus and the backlog is the hedging
point policy, according to which the system is operated at
full capacity until the inventory level hits a non negative
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safety stock, called hedging level, which is then maintained
until the next failure event occurs.

This approach, if the number of system states is larger
than two and/or the number of part types is larger than one,
becomes intractable, and several numerical approaches have
been considered. Among others, in [9] the solution of the
HJB equations has been approximated through a quadratic
function, in [14] the optimal policy is found by restricting
the class of policies considered, in [12] the optimal policy is
investigated under some assumptions on the shape of optimal
switching surfaces, in [16] properties of the optimal control
policy are identified that can be used to help formulate
heuristic policies. A similar approach is used here for the
problem considered here: the HJB equations are used to gain
insight on the shape of the optimal policy.

The problem considered in this paper in fact presents
many similarities with the multi-part multi-state single site
problem, since the backlog/inventory state is not unidimen-
sional and the presence of different sites can be described
by a multi-state Markov chain, equivalent to the chain of
a multi-state single site system. So, also in this case, the
problem of finding the general solution of the HJB equations
is intractable.

Usually, different approaches have been used to face the
problem of multi-site cooperating systems. Among many
others, we cite [4], where autonomous agents and holarchy
concepts are used to integrate the activities of a supply chain
and [11], where autonomous agents and Petri Nets are used
to control a distributed system.

In this paper, on the contrary, we pursue a HJB approach.
As stated above, we use this method to identify properties
of the optimal policy, which allows, for a bounded back-
log/inventory system, to apply numerical methods to derive
the optimal control law and the corresponding optimal cost.
To this end, a two-phases algorithm is developed, which in
the first phase computes the optimal steady state cost J∗, a
quantity which is needed in order to evaluate (second phase)
the optimal feedback control law.

The HJB equations have been applied to a multi-site
problem in [15] and in [7]. However, in these cases, a master
production site exploits the production facilities of a number
of slave sites, which are always available. The state space
for those problems is unidimensional, and this allows to suc-
cessfully apply the HJB approach. The problem considered
in this paper deals with independent sites where, at each
moment of time, depending on the joint backlog/inventory
level, one may become subcontractor for the other. So, even
if the formulation is similar to those presented in [15] and
[7], the solution complexity and approach resembles those
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presented in [9] and [16].
The contribution of this paper follows this baseline:

• First, general properties of the optimal policy are pro-
vided through the inspection of the HJB equations,
yielding, for each operative state of the two sites, a par-
tition of the state space defining regions characterized
by a constant production control.

• We develop a numerical procedure to solve the HJB
equations which allows to derive the optimal cost and
the corresponding optimal control. This algorithm is
general and could be exploited for optimization prob-
lems based on the HJB approach.

• The numerical procedure above, applied to the consid-
ered problem, allows to determine the optimal policy
which is characterized by a positive hedging level when
both sites are operative. An interesting and intuitive
dependence of this hedging level and of the total cost
on the transportation costs will be illustrated.

The paper is organized as follows: in Section II we
introduce the notation and formulate the problem. In Section
III the HJB equations are presented and the optimal policy
is characterized in terms of switching regions. In Section IV
we present the numerical methods adopted to evaluate the
optimal production control and the corresponding optimal
cost. Some examples are reported in Section V. Section VI
concludes the paper.

II. PROBLEM FORMULATION

According to a standard notation, let xi(t), i = 1, 2, denote
the buffer content of site i at time t, assumed unbounded,
with xi(t) > 0 representing an inventory surplus and xi(t) <
0 a backlog of −xi(t). The up and down times of both sites
are exponentially distributed random variables with average
values 1/qd and 1/qu, respectively. As each site can produce
for its own customers or for the other site, the production
rate for site i is given by uii(t)+uij(t), j �= i, where the first
subscript denotes the producing site and the second denotes
the destination site (e.g., site 1 produces at rate u11(t) for
itself and at rate u12(t) for site 2) and the total production
capacity for both sites is µ, i.e., uii(t)+uij(t) ≤ µ, i = 1, 2,
j �= i. Adopting a fluid approximation model, for both sites
it is assumed a constant demand rate d. The buffer level of
site i, i = 1, 2, obeys the differential equation:

ẋi = uii(t) + uji(t) − d (1)

Let s = [i, j]T , i, j ∈ {0, 1} be the discrete state1 of the
system indicating the up/down state of each site, with 0 (1)
standing for machine/site being down (up). Denoting by x :=
[x1, x2]T the continuous state, u(·) the 2 × 2 matrix with
entries uij(t), i, j = 1, 2, and using d also for the column
vector [d, d]T (the ambiguity being solved by the context)
the dynamics of the cooperative system can be written as:

ẋ = uT s − d (2)

1This terminology, which refers to the state of a system as a combination
of discrete – or logical – and continuous states is common in the literature
of hybrid systems, see e.g. [2].

The scheduling problem considered in this paper is the
determination of the optimal controls u which minimizes the
following long term, average, expected cost:

J = lim
T→∞

1
T

E

[∫ T

0

g(x(t), u(t))dt

]
, (3)

where g(x(t), u(t)) =
∑

i=1,2 cpx
+
i + cmx−

i + a(u12(t) +
u21(t)), x+

i = max{0, xi}, x−
i = max{0,−xi} and cp,

cm, a are non-negative constants. For ease of notation, the
shorthand c(x) :=

∑
i=1,2 cpx

+
i + cmx−

i will be used in the
following for the inventory/backlog costs of the cooperative
system. The term a(u12(t) + u21(t)) in (3) models the
reduced profit made by selling goods not produced in site,
which may be due, for example, to transportation costs.

The problem will be studied under the following Assump-
tion.

Assumption 1: The system has enough capacity to meet
demand2: µqu − d(qd + qu) > 0.

Notice, also, that heretofore a symmetric system was im-
plicitly assumed, i.e., characterized by the same production
capacities, demand rate, backlog and inventory costs. So, the
problem will be formally stated as follow:

Problem 1: For the two-site cooperative, failure prone
system described above, determine under Assumption 1 the
production control u∗(·) minimizing (3).

III. HJB EQUATIONS AND CHARACTERIZATION
OF THE OPTIMAL POLICY

Recall that for a single machine manufacturing system
subject to a Markovian failure/repair process, i.e. each site of
our problem if non interacting with the other, with dynamics
ẋ(t) = u(t)− d, the optimal control is a hedging policy [3]:

u∗(x) =

⎧⎨
⎩

µ x < z∗

d x = z∗

0 x > z∗
(4)

The procedure that leads to this result is well established and
based on suitable regularity conditions on the control (see for
example [13]), which guarantee that the optimal feedback
control of the system is stationary and characterized by the
HJB equations reported in [3]. If J∗ denotes the optimal
cost for Problem 1 (i.e. the minimum value of (3)), for
system dynamics (2), following the procedure presented in
[5], yields the following HJB equations:

J∗ = c(x) + (V01(x) − 2V11(x) + V10(x))qd

−
(∂V11(x)

∂x1
+

∂V11(x)
∂x2

)
d

+ min
u∈U11

(
∂V11(x)

∂x1
(u11 + u21)

+
∂V11(x)

∂x2
(u22 + u12) + a(u21 + u12)

)
(5)

2Notice that the stability requirements for the cooperative system are the
same as for a single site.
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for both sites/machines operative,

J∗ = c(x) − V01(x)(qu + qd) + V11(x)qu + V00(x)qd

−
(∂V01(x)

∂x1
+

∂V01(x)
∂x2

)
d

+ min
u∈U01

((∂V01(x)
∂x1

+ a
)
u21 +

∂V01(x)
∂x2

u22

)
(6)

when site 1 is down and site 2 is up (similar equations hold
for the symmetric situation);

J∗ = c(x) + (V01(x) + V10(x) − 2V00(x))qu

−
(∂V00(x)

∂x1
+

∂V00(x)
∂x2

)
d (7)

when both machines/sites are down. As in [3] for the single
site problem, if it is possible to find a J∗, a control policy
u∗(·) and four C1 functions Vij(·), i, j = 0, 1, such that the
HJB equations (5)-(7) are satisfied, then u∗(·) is optimal and
J∗ is the optimal cost.

Unfortunately, as mentioned above, the solution of these
equations (i.e. the determination of the functions Vij(·)) is
not an easy task, even for quite small problems, and in
particular if one wants to extend the results to more than two
production sites. The first problem is that in general J∗ is not
known and its value depends on the optimal control which
in turn could be derived if the Vij(·) functions were known.
For this reason, the usual way to use the HJB equations
is to prove the optimality of a tentative candidate policy
or, alternatively, the HJB equations are used under some
assumptions or approximations on the optimal control. We
pursue a different approach and provide in Section IV a
numeric procedure to approach the HJB equations which will
allow, for a bounded problem, to compute J∗ and the optimal
control. In this section we provide some preliminary general
properties of the optimal control based on the inspection of
the HJB equations (5)-(7). This analysis will be necessary to
develop the numeric procedure described in Section IV.

It is convenient to analyze first Eq. (6); there the optimal
control actions are easily characterized in terms of the
signs or the relative ordering of v1 := ∂V01(x)

∂x1
and of

v2 := ∂V01(x)
∂x2

. Indeed, vi > 0 implies u2i = 0, whereas
v1 + a < min{v2, 0} implies u21 = µ and u22 = 0
(conversely v2 < min{v1 + a, 0} implies u21 = 0 and
u22 = µ). Similar considerations hold when site 1 is up, site
2 is down. The conditions outlined above, for s = [0, 1]T ,
partition the state space of the operative machine into three
regions each characterized by a typical “behavior”. In the
first region the site idles, in the second it produces for itself
at full capacity, in the third it produces at full capacity for
the other site.

When both sites are operative, the system behavior is
characterized by (5), and in particular by the terms inside
the min operation, which we rewrite for convenience as

v1u11 + (v1 + a)u21 + v2u22 + (v2 + a)u12, (8)

where v1 and v2 are used in this case for the partial
derivatives of V11, i.e., v1 = ∂V11(x)

∂x1
and v2 = ∂V11(x)

∂x2
.
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µ
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0
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Fig. 1. Optimal control of the cooperative system at state s = [1, 1]T as
a function of the partial derivative terms of V11.

When vi > 0, u1i = u2i = 0, in other words, site i needs not
any productive supply. Such situation may be associated to a
buffer level of site i which is above a certain “security” level.
Such a security level turns out to be dependent on the degree
of cooperation between the two sites, and when a → ∞
this is equivalent, for each site, to the hedging point for a
single site unreliable system, as the following Section will
illustrate. For this reason, the security level evaluated when
both sites are operative is defined, for a generic value of a, as
the cooperative hedging level, and denoted as z∗c . Due to the
symmetry of the system, the point Z11 := [z∗c , z∗c ], is defined
the cooperative hedging point for the system in consideration.
When −a < v1 < 0 and v2 > 0 the optimal control action is
to set u11 = µ and u21 = u12 = u22 = 0. In this case, while
the buffer of site 2 is above its security level, the buffer
of site 1 needs replenishment, but not so urgently to pay
the additive costs associated to production coming from the
other site, hence u21 = 0. Finally, if v1 < −a, the emergency
makes the additive transportation costs appealing/affordable
but in this case the state of the other site must be checked:
cooperation takes place only when v1 + a < v2, and in this
case site 2 devotes its whole production capacity to site 1.
By the symmetry in system parameters a similar analysis
is valid relatively to site 2; the behavior of the system is
depicted in figure 1, which shows the optimal u matrix for
each region in the (v1, v2) space. Notice that such regions
have slight relationships with those in the space of the joint
inventory/backlog level; such result will be presented in the
next Section (see Figs. 2,3).

The analysis above identifies the possible optimal control
actions for each discrete state, restricting them to six possible
choices for s = [1, 1]T (i.e., those illustrated in figure 1), and
three for each discrete states s = [0, 1]T and s = [1, 0]T .
Denote by Uopt

ij , i, j ∈ {0, 1}, such possible optimal control
actions at state s = [i, j]T . The sets Uopt

ij , i, j ∈ {0, 1}, will
be used in the numeric procedure defined in the following
section.
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IV. NUMERICAL METHODS

As discussed in the Introduction, the characterization of
the optimal control policies of the system is carried through
numerical integration of the HJB equations (5)-(7). This will
be performed assuming a bounded backlog/inventory space.

Assumption 2: The backlog/inventory space of each site
is bounded, i.e. there exist two positive constants L− and
L+ such that −L− ≤ xi ≤ L+, i = 1, 2. We will denote the
bounded space by XL := [−L−, L+] × [−L−, L+].
With a bound on the backlog/inventory space we also in-
troduce a cost associated with rejected demands, so that
an additional contribute R · 1(xi = −L−), where 1 is the
indicator function, is added to the instantaneous cost g(x, u).

Remark 1: If the bounds are large enough (and the system
is stable as assumed in Assumption 1), the optimal policy
near the origin and the optimal cost are as in the unbounded
case. This observation is based on experimental results of
this case and also on the analytical studies [10] of a single
site system. For this reason, the considered bounded problem
and the numerical approach to solve it provide a satisfactory
approximation also for the original problem, i.e. Problem 1.

Now, for the original unbounded system, we know that,
if the Markov chain characterizing the joint operating state
of the two sites is irreducible and a stationary policy keeps
the state bounded (as it is possible in this case thanks to
Assumption 1), then the process x(t) is ergodic and the
limit value for (3) is well defined. This also holds for the
bounded system. The limit value of (3), independent of
initial conditions, can also be seen (see [5]) as the steady-
state expected value of the instantaneous cost g(x, u) when
a stationary stable policy is applied, i.e. J = E[g(x, u)].
Then, given a stable stationary policy starting from any given
state s and buffer level x, it is possible to define as in
[5] a differential cost Vs(x) which gives the deviation of
the cost from its expected value J , in such a way that the
corresponding long run expected (but not average) cost in
[0, T ] can be written as J ·T +Vs(x). So, Vs(x) can also be
seen as the transient cost incurred by the considered policy
from the initial state (s, x) to carry the system at steady state
and can be written as follows:

Vs(x) = lim
T→∞

E

∫ T

0

[g(x(t), u(t)) − J ] dt|x(0)=x,s(0)=s.

(9)
Clearly this differential cost depends on initial conditions.
To solve the problem for the bounded system (hence to
obtain indications on the original Problem 1), we write the
discrete dynamic programming equations corresponding to
the two cost criteria defined in (3) and (9) and solve them
numerically. To this purpose, the state space XL is mapped
into a set of N2 points XD

L := {xlm : l, m = 0, 1, . . . , N −
1} equally spaced by ∆x = (L+ + L−)/(N − 1), i.e.,
xlm = (−L− + l∆x,−L− + m∆x). Setting vgcd as the
greatest common divisor of {d, µ−d, 2µ−d} i.e., all possible
“velocities” of the system, identifies ∆t = ∆x/vgcd as the
time step for the numerical integration of (2), given by:

x(u)′ = B(x + (uT s − d)∆t) (10)

where the operator B bounds the state inside the limited
state space XL, e.g. B(x) = [b(x1), b(x2)]T , b(xi) =
min{max{xi,−L−}, L+}. Notice that x ∈ XD

L implies
x′(u) ∈ XD

L for any possible control action u, by the choice
made for ∆t. In the following we will always consider states
belonging to the discretized state space, which implies that
functions of x are represented by N × N matrices. Define
J

(k)
s (x) as the minimum average expected cost on a time

horizon of length k∆t, incurred by the system if starting
from the (hybrid) state (s, x). Then we can write:

J (k+1)
s (x) =

1
k + 1

min
u∈Uopt

s

{g(x, u)+
∑
s′

pss′ k J
(k)
s′ (x′(u))}

(11)
where J

(0)
s (x) = 0 for all s and x, and pss′ are the

probability of going from s to s′. It is possible to verify
that as k → ∞, a limit value of J

(k)
s (x) which is constant

with respect to (s, x) satisfies (11). Actually, the iterative
equation (11) converges with k to J∗ (in fact (11) is nothing
but a numerical integration of (3) when the optimal policy
is applied).

Once J∗ has been evaluated, the discrete dynamic pro-
gramming iterative equation for the index (9) can be written
by introducing a function V

(k)
s (x) which represents the

minimum long term expected (non average) cost Vs(x) on a
time horizon [0, k∆t]. We have:

V (k+1)
s (x) = −J∗ + min

u∈Uopt
s

{g(x, u) +
∑
s′

pss′ V
(k)
s′ (x′(u))}

(12)
with the same meaning for variables as in (11) and V

(0)
s (x) =

0 for all s and x. It is important to remark that the iterative
equation (12) does not converge to a constant value for all x
and s: a different transient cost is paid from different initial
conditions. In this case, the functions V

(k)
s (x) converge to

non constant functions from which it is straightforward to
get the optimal production rates at each (hybrid) state (s, x).
We also remark that, as ∆t → 0, the iterative equations in
(12) provide the HJB equations (5)-(7). This was expected
according to the analysis reported in [5].

It is possible to characterize the convergence of (12) in
terms of the difference ∆V

(k)
s (x) := V

(k+1)
s (x) − V

(k)
s (x),

and in particular for those s and x which give the difference
with largest absolute value. Denote this quantity by (the
scalar) e(k), i.e., if (s̄(k), x̄(k)) := arg maxs,x |∆V

(k)
s (x)|,

then e(k) := ∆V
(k)
s̄(k)(x̄(k)). If a wrong estimate of J∗ is

used in (12), convergence of V
(k)
s (x) is not achieved, and in

particular, e(k) tends to a negative (resp. positive) constant
if J > J∗ (resp. J < J∗). This fact could be exploited to
define a fast procedure to evaluate the optimal J∗ if an upper
bound JM and a lower bound Jm of J∗ are available. This
procedure is a bisection algorithm which evaluates e(k) after
a large number of iterations for a tentative Ĵ∗ = Jm+JM

2 .
If this is positive, we set Jm = Ĵ∗ otherwise we set
JM = Ĵ∗. Due to the slow convergence rate of J

(k)
s (x)

to J∗, this procedure could provide a faster approach to
evaluate J∗. The numerical optimization is formally stated
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X1

X2

Z11

(a) s = (1, 1)T

X2

X1

Z01

(b) s = (0, 1)T

Fig. 2. Optimal control of the cooperative system as a function of the joint
backlog/inventory level. Arrows define the flow of the optimal feedback
system (a = 50)

in the following Algorithm.

Algorithm 1: Select N to perform the time-state dis-
cretization of XL described above. Select a small quantity
ε and a large integer K. Let Jm and JM be a lower bound
and an upper bound on J∗, respectively. For all x ∈ XD

L and
s ∈ {0, 1} × {0, 1} initialize V

(0)
s (x) = 0

While JM − Jm > ε,

1) Let Ĵ∗ = Jm+JM

2 .
2) Evaluate K times (12) with Ĵ∗ in place of J∗.
3) If e(K) > 0, set Jm = Ĵ∗, else set JM = Ĵ∗. �
Clearly a proper selection of the constants in Algorithm

1 should be performed. The constant ε gives the accuracy
in the computation of J∗. Such accuracy, however, also
depends on N , which cannot be increased too much, being
the complexity of the algorithm proportional to N2. The
choice of K should also be performed as a tradeoff between
the computation time and the minimum number of iterations
which allows to understand if the considered Ĵ∗ is larger or
smaller than J∗.

X1

X2

Z11

(a) a = 10

X1

X2

Z11

(b) a = ∞

Fig. 3. Optimal control in state (1, 1) of the cooperative system as a
function of the joint backlog/inventory level. Arrows define the flow of the
optimal feedback system

V. EXPERIMENTAL RESULTS

Consider a system with the following parameters: R =
2500, µ = 5, d = 4, qu = 1, qd = 0.01, cm = 50,
cp = 1 and a defined below. The system is feasible according
to Assumption 1. Applying algorithm 1 (with N = 400,
ε = 0.02 and K = 800) to the considered system with
a = 50, L− = L+ = 20 gives the results reported in
Fig. 2 for the production control in state (1, 1) and (0, 1)
respectively. The dimension of the arrows is proportional to
the optimal flow rate (i.e. u∗(·)− d). In the figures it is also
reported the limit point for each state which is the hedging
point Z∗

11 = (3.95, 3.95) for s = (1, 1)T and the point Z∗
01 =

(−19.9, 5.05) for s = (0, 1)T . Observe that in the state
(0, 1), which is not feasible, the limit point is on the border
of the state space (the trajectory would go to −∞ if no bound
was effective). Also observe that, according to intuition and
to the discussion in Section III, one site helps the other if its
inventory level is large enough and the other site has a very
large backlog (see the up-left and the down-right areas in Fig.
2(a)). As the transportation cost a is reduced, in particular
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Fig. 4. Optimal safety stock z∗c and cost J∗ derived through the numerical
procedure of Algorithm 1 for the system in Section V as a function of a
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Fig. 5. The difference e(k) as a function of the last iterations of (12) for
the a = 50 example

a = 10, the collaborative area of the state space increases
and the optimal safety stock Z∗

11 = (2.35, 2.35) is reduced
(see Fig. 3(a)). On the contrary, if a → ∞, the collaborative
area vanishes, according to intuition and a larger safety stock
Z∗

11 = (4.15, 4.15) and cost J∗ = 15.57 is found (see
Fig. 3(b)). According to [10], with the same parameters, the
optimal safety stock is given by z∗ = 3.8 (close to the value
obtained considering the approximation introduced, indeed it
was observed z∗c = 3.95 for N = 800) and J∗ = 7.73 (very
close to one half of the J∗ obtained for the two site system).

In other words, if the transportation cost goes to infinity,
the sites become isolated and the considered problem be-
comes equivalent to the replication of single-site problems
with the cost for the two site system twice the cost of the
single site system. As a validation of the numerical methods
proposed in this paper, observe that in such case they provide,
for each site, a good approximation to the optimal analytical
solution computed in [10] for the single site system.

Fig. 4 illustrates z∗c and J∗ as a function of a ranging in
[0, 100]. Both increase with a meaning that the collaboration
of the two sites, when not too expensive, gives robustness to
the whole system against failures. Finally, we also report, in
Fig. 5, the value of the differences e(k) as a function of the
last iterations of (12) for the a = 50 example.

VI. CONCLUSIONS

We have considered a two-site, cooperative, failure prone,
Markov production system. General properties of the optimal
policy have been highlighted while the optimal solution

has been evaluated through a general numerical procedure
developed in this paper. Such numerical methods may find
possible applications to other problems tackled by the HJB
approach. A set of examples to illustrate this procedure and
to analyze the effects of some system parameters are included
in the paper and compared with known analytical results for
the single site problem. As future research the extension of
the results obtained to systems comprising more than 2 sites
could certainly be considered as well as a strategy to select
in a proper manner the constants used in Algorithm 1.
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