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Abstract— In this paper, we propose two nonlinear discrete-
time control approaches for underactuated manipulators op-
erating in the horizontal plane which are equipped with
passive joints. The first control approach is based on an
extended linearization. It can be applied to different kinds of
underactuated systems such as a cart-pole system or a highly
underactuated manipulator. A manipulator is called a highly
underactuated manipulator if it has no braking mechanisms
and more passive than active joints. However, the control
approach mentioned above performs well only if the errors are
sufficiently small. Therefore, a discrete-time feedback controller
based on nonlinear online optimization is proposed also to
counteract large trajectory deviations. In order to reduce the
computation time, we present an initialization strategy of the
nonlinear online optimization considering the relation between
both controllers. Experimental results of both controller are
reported to demonstrate advantages and drawbacks.

I. INTRODUCTION

For more than a decade underactuated manipulators have

been under investigation. In [1], one of the first results

on these systems is presented. An underactuated system

is characterized by having more generalized coordinates

than actuators. Control of underactuated manipulators with

passive joints operating in the horizontal plane is a special

challenge. Since the dynamics of these manipulators are

not affected by gravitational terms a linearization about an

equilibrium point leads to a linear system which is not

controllable. The loss of controllability is due to the fact

that the dynamics are zero at an equilibrium point. Speaking

in physical terms, the manipulator is only controllable if the

dynamics are high enough. As a consequence the manipu-

lators mentioned above can not be asymptotically stabilized

at an equilibrium point by linear state feedback controllers.

Moreover, the same stabilization task can not be done either

using smooth nonlinear state feedback controllers, cf. [2].

As already noted, it is difficult or even not possible to

control the manipulator if the dynamics are slow. However,

typical motions sequences of these manipulators are rest

to rest motions such that we have to deal with a time

period at the end of the motion in which the dynamics are

slow or almost zero. In order to reduce this time period as
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much as possible we adopt a discrete-time control approach.

In contrast to the commonly used continuous-time control

approach with an infinite settling time a discrete-time control

approach offers the possibility to set up a controller with

finite settling time, i.e. a dead-beat controller. Due to the

finite settling time the time period in which the system is

almost not controllable can be shortened significantly.

A discrete-time control approach for an underactuated

manipulator is proposed in [3] for the first time. The same

approach is also used for the swing up problem of a cart-pole

system [4] and for a highly underactuated manipulator [5]. A

manipulator is denoted as a highly underactuated manipulator

if it is equipped with no braking mechanisms and has more

passive than active joints. Both manipulators considered in

[3] and [5] are operating in the horizontal plane. Even

though we already reported some simulation results in [5]

to our best knowledge this is the first time that experimental

results of a highly underactuated manipulator are presented.

In [6], another discrete-time control method is proposed for

underactuated manipulators that can be transformed into a so

called chained form. Nevertheless, the latter approach can be

used only for a restricted class of manipulators.

The control approach proposed first, which is applied to

a highly underactuated manipulator, is based on an extended

linearization. This approach is efficient only for small errors.

Therefore, also a feedback controller based on a nonlinear

online optimization is proposed to overcome this drawback.

The presented initialization strategy exploits the relation

between the controller based on an extended linearization

and the controller based on a nonlinear online optimization.

Furthermore, the online optimization is done on shrinking

horizons instead of a receding horizon to retain the relation

between both controllers. Experimental results concerning a

highly underactuated manipulator and a 2-DOF underactu-

ated manipulator are presented to demonstrate advantages

and drawbacks of both controllers. For the first system a

controller based on an extended linearization is applied,

whereas the second system is controlled using the approach

based on a nonlinear optimization.

The paper is structured as follows. The dynamics of the

underactuated manipulators and the discrete-time notation

are given in section II and section III, respectively. In section

IV and V the feedback controller based on an extended

linearization and on an online optimization are presented.

Finally the experimental results are given in section VI.
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II. MODEL OF MANIPULATOR

The manipulators considered in this paper are shown in

Fig. 1. All joints are rotational joints without limits, but in

both cases only the first joint is equipped with an actuator.

In addition, the manipulators operate in the horizontal plane

such that the dynamic equations do not contain gravitational

terms. The dynamic equations for both manipulators are

M(q(t))q̈(t) + c(q(t), q̇(t)) + d(q̇(t)) =
[

τ(t)
0 ∈ R

{1,2}

]
,

where q(t) ∈ R
n with n ∈ {2, 3} is the vector of generalized

coordinates and M(·) is the symmetric mass matrix. Further-

more, c (·, ·) is the vector of centrifugal and Coriolis torques,

d (·, ·) is the sum of viscous damping and dry friction torques

(cf. [5] for a detailed description of d (·, ·)), and τ(t) is the

torque applied to the active joint.

Let the state vector of the underactuated manipulators be

defined by x(t) = [xT
1 (t),xT

2 (t)]T = [qT (t), q̇T (t)]T such

that the state space representation of the manipulator is

ẋ1(t)=x2(t),
ẋ2(t)=−M−1(x1(t)) [ c (x1(t),x2(t)) + d (x2(t))] +

M−1(x1(t))
[

u(t)
0 ∈ R

{1,2}

]

with u(t) = τ(t). If a controller is applied for the accel-

eration of the active joint q̈1(t) then the input variable is

u(t) = q̈1(t) instead of u(t) = τ(t).
In general, the continuous-time nonlinear state space rep-

resentation is given by the vector notation

ẋ(t) = f c(x(t), u(t)), (1)

where f c(·, ·) : R
2n×R �→ R

2n is a real valued continuously

differentiable function.

III. DISCRETE-TIME REPRESENTATION

Since the presented approach is based on a digital con-

troller, both measurements and control actions are done at

discrete-time instants t ∈ {0, T, 2T, . . . }, where T > 0
denotes the sampling time. If a zero-order hold element is

applied the input u(t) is constant on intervals of equal length

T , i.e. u(t) = uk on intervals t ∈ [kT, (k + 1)T ). Let the

discrete-time system

xk+1 = f(xk, uk) (2)

passives Gelenk

passive joint

active joint

(a) Underactuated manipulator (one
passive joint)

passive joint

active joint

(b) Highly underactuated
manipulator (two passive joints)

Fig. 1. Underactuated manipulators operating in the horizontal plane

be the corresponding representation of the continuous-time

system given by (1). The computation of 2 is described in

detail in [3]. Performing a left-shift of (2) and substituting

xk+1 by f(xk, uk) leads to the recursive representation

xk+2 = f(f(xk, uk), uk+1) = f [2](xk,uk) with uk =
[uk, uk+1]T . In general, the state xk+m is given by

xk+m = f [m](xk,uk) (3)

with f [m](·, ·) : R
2n × R

m �→ R
2n and the input vector

uk = [uk, uk+1, . . . , uk+m−1]T .

IV. FEEDBACK CONTROL BY EXTENDED

LINEARIZATION

Consider the system given by (3). Without loss of gen-

erality we set k = 0 in this section. Suppose an input

sequence u0 is computed such that the system given by

xm = f [m](x0,u0) is steered from a desired starting

position to a desired final position. Here and throughout

this paper a hat (̂·) indicates the ideal motion. Consequently

x̂0, x̂m, and û0 = [û0, û1, . . . , ûm−1]T denote the desired

starting position, the desired final position, and the input

sequence of the ideal motion, respectively. An appropriate

path planning method to compute û0 is given in [5].

Ideally, if the system is not disturbed, the feedforward

control input sequence û0 is sufficient to steer the system

along the desired trajectory given by x̂k, k ∈ {0, 1, . . . ,m}.

In practice the system is subject to perturbations such that a

feedback controller

u0 = r[m](x0) (4)

with r[m](·) : R
2n �→ R

m is necessary to stabilize

the desired motion. The feedback controller provides the

feedforward control input sequence r[m](x̂0) = û0 =
[û0, û1, . . . , ûm−1]T if no initial errors exist, i.e. x0 = x̂0.

The control formula r[m](x0) can be derived by an extended

linearization as presented in the following.

Assume the initial errors are sufficiently small ||x0 −
x̂0|| ≈ 0. Then feasible approximations of r(x0) and the

state error em = xm − x̂m = f [m](x0,u0) − x̂m are given

by

r(x0) = r(x̂0) + R(x̂0, û0)[x0 − x̂0] (5)

and

em = [A(x̂0, û0) + S(x̂0, û0)R(x̂0, û0)]︸ ︷︷ ︸
=G(x̂0,û0)

e0 (6)

with the Jacobians A(·, ·) = ∂
∂x̂0

f [m](x̂0, û0), S(·, ·) =
∂

∂û0
f [m](x̂0, û0), and R(·, ·) = ∂

∂ x̂0
r(x̂0). Both (5) and

(6) represent a truncated Taylor series expansion of r(x0)
and em = xm − x̂m about x̂0. As indicated by the argu-

ments x̂0, û0 of the controller matrix R(·, ·) an individual

controller is necessary for each motion. Furthermore, the

matrix G(·, ·), which can be chosen arbitrarily, determines

the error dynamics, e.g. a dead-beat controller can be derived

by setting G(·, ·) = 0.
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If S(·, ·) has full row rank, solving the underdetermined

problem

min
R(x̂0,û0)e0

(mEL(R(x̂0, û0)e0)) (7)

with

mEL(R(x̂0, û0)e0) = ||em − G(x̂0, û0)e0||2 (8)

in sense of a minimum norm approach yields the controller

matrix

R(x̂0, û0) = S†(x̂0, û0) [G(x̂0, û0) − A(x̂0, û0)] (9)

where S†(·, ·) = ST (·, ·)[S(·, ·)ST (·, ·)]−1 denotes the right

pseudoinverse. Since the matrix S(·, ·) is often ill condi-

tioned or even singular we use the regularized minimization

problem

min
R(x̂0,û0)e0

(
mEL(R(x̂0, û0)e0) + µ2

EL ||R(x̂0, û0)e0||2
)

(10)

instead of (7) to derive the controller matrix. The latter

approach, which is an overdetermined least squares problem

due to the regularization, improves both the reliability (i.e.

limited amplitude) of R(·, ·)e0 and the behavior of the

closed loop. In (10) µEL > 0 characterizes the Tikhonov
regularization parameter. The solution to (10) is given by

(9) if the regularized right pseudoinverse S†
µEL

(·, ·) =
ST (·, ·)[S(·, ·)ST (·, ·) + µ2

ELI]−1 is substituted for S†(·, ·)
in (9). Note that left and right regularized pseudoinverse are

identical as long as no scaling is adopted in (10).

The working scheme of the controller given by (4) is

shown in Fig. 2 where the input sequences of the feedforward

controller û0 and the feedback controller u0 are depicted by

a solid and a dashed line, respectively. Furthermore, the circle

and the black bar indicate the measurement time instant and

the time period in which the controller is valid.

A. Tracking Controller

The controller given by (4) counteracts only initial errors

because only one measurement is done at the beginning of

the motion. Besides initial errors, further perturbations such

as measuring errors and mismatches between the mathemati-

cal model and the real system have to be taken into account.

0 T 2T 3T 4T 5T 6T

u(t)
û(t)
u(t)

t

Fig. 2. Working scheme of initial error controller r(x0)

In order to respond to state errors that arise during the time

interval t ∈ [ 0,mT ], we utilize several controllers with

shorter time periods. For each of these shorter time periods

of equal length t ∈ [ kTS, (k + mS)TS) with TS = T
a mS

,

k ∈ {0,mS, 2mS, . . . , (am−1)mS}, and a ∈ N an individual

controller r[mS](xk) is computed, which leads to a tracking

controller. This approach is illustrated in Fig. 3 with a = 1
and mS = 8. In Fig. 3 both the circles and the bar display

the same as in Fig. 2.

V. FEEDBACK CONTROL BY NONLINEAR

ONLINE OPTIMIZATION

In the following we focus on computing a controller

for one subinterval t ∈ [kTS, (k + mS)TS). Even though

the feedback controller based on an extended linearization

performs well for several kinds of underactuated systems a

significant drawback of this controller is that the state errors

have to be sufficiently small. A more general approach to

derive a feedback controller is to solve the nonlinear least

squares problem

min
r[mS](xk)

∣∣∣∣ek+mS(xk, r[mS](xk))
∣∣∣∣2 (11)

with ek+mS(·, ·) = f [mS](xk, r[mS](xk)) − x̂k+mS by a

nonlinear optimization method. The problem given by (11)

can be solved iteratively. Performing a linearization of (11)

about the current iterate ri
[mS](xk) results in

min
r[mS](xk)

(
mi

NO(r[mS](xk))
)

(12)

where

mi
NO(r[mS](xk)) =

∣∣∣∣∣∣ei
k+mS

(xk, ri
[mS](xk))+

S(xk, ri
[mS](xk))

[
r[mS](xk) − ri

[mS](xk)
]∣∣∣∣∣∣2 (13)

characterizes the quadratic model and ei
k+mS

(·, ·) =
f [mS](xk, r[mS](xk))− x̂k+mS the current state error. How-

ever, as in the case of the controller based on an ex-

tended linearization (cf. section IV) the Jacobian S(·, ·) =
∂

∂ri
[mS](xk)

f [mS](xk, ri
[ms]

(xk)) is ill conditioned. Therefore,

0 T 2T 3T 4T 5T 6T

u(t)
û(t)
u(t)

t

Fig. 3. Working scheme of tracking controller r[mS](xk), k ∈
{0, mS, 2mS, . . . , 5mS}

4381



it is necessary to stabilize the minimization problem (12)

by some kind of regularization to avoid divergence of the

iteration process due to large step sizes, cf. [7]. If a Tikhonov
regularization [7] is applied, instead of (12) the problem

min
r[mS](xk)

(
mi

NO(r[mS](xk)) + µ2
NO

∣∣∣∣r[mS](xk)
∣∣∣∣2) (14)

has to be solved in each iteration step. The latter approach

is known as Levenberg-Marquardt method (cf. [8]) and the

weighting factor µNO > 0 in (14) denotes the Levenberg-
Marquardt parameter. Solving (14) yields the next iterate

ri+1
[ms]

(xk) = ri
[ms]

(xk) −
S†

µNO
(xk, ri

[ms]
(xk))

[
ei

k+mS
(xk, ri

[mS](xk))
]

(15)

with the regularized pseudoinverse S†
µNO

(·, ·) = ST (·, ·) ×
[S(·, ·)ST (·, ·) + µ2

NOI]−1. Provided that the minimiza-

tion process converges the solution to (11) is indicated by

r̂[mS](xk) = [r̂k(xk), r̂k+1(xk), . . . , r̂k+mS−1(xk)]T .

A. Generation of Initial Values

Although it is possible to counteract large errors using a

nonlinear optimization, the major problem computing such

a feedback controller is that (11) has to be solved online.

The aim is to provide a good initial value r0
[mS](xk) such

that the calculation time can be reduced as much as possible.

Furthermore, feedback delays have to be avoided, see section

V-B.

In order to derive an initial value r0
[mS](xk) we take

advantage of the relation between the feedback controller

given by (11) and the feedback controller based on an

extended linearization, cf. (9).

In case the system is close to the desired trajectory

||xk − x̂k|| ≈ 0 the nonlinear controller r[mS](xk) can be

substituted by the truncated Taylor series expansion (5) if

we replace 0, m by k, mS. Therefore, a linearization of (11)

about x̂k yields

min
R(x̂k,ûk)ek

(mNO,L(R(x̂k, ûk)ek)) (16)

with

mNO,L(R(x̂k, ûk)ek) = ||(A(x̂k, ûk)+

S(x̂k, ûk)R(x̂k, ûk)) ek||2 . (17)

Comparing the solution to (16)

R(x̂k, ûk) = −S†(x̂k, ûk)A(x̂k, ûk) (18)

with the controller matrix given by an extended linearization

in (9) shows that both are the same if the controller based

on an extended linearization is computed using a dead-beat

approach. This relation between both controller is still valid

if the minimization problem given by (16) is stabilized by a

Tikhonov regularization using the parameter µEL. Therefore,

the controller derived by an extended linearization is a special

case of the controller based on online optimization if the

errors are small.

Due to the relation between both controllers, the controller

sequence

r0
[mS](xk) = ûk + R(x̂k, ûk)[xk − x̂k] (19)

is used as initial value of the online optimization. The

input sequence ûk and the controller matrix R(·, ·) can

be calculated offline. A similar initialization technique for

shrinking horizon problems is proposed in [9], [10] .

B. Avoidance of Feedback Delays

Despite the fact that the initialization technique proposed

by (19) is used, frequently several iterations are required to

minimize (11). This holds true especially for a system which

is subject to large errors. Thus, it is not possible to apply the

input sequence immediately to the system at the sampling

time instant t = kTS which results in a significant feedback

delay. In order to avoid feedback delays we measure xk−1

and use a prediction x̃k = f(xk−1, uk−1) to start the min-

imization process. As a result, the minimization process is

performed during the sampling interval t ∈ [(k−1)TS, kTS).

C. Online Optimization on Shrinking Horizons

In the following a prediction at an arbitrary time instant

is indicated by x̃k+j = f(xk+j−1, uk+j−1). Assume p
iterations being performed during the time interval t ∈
[(k−1)TS, kTS). The input sequence rp

[mS](x̃k) that has been

calculated after p iterations is used whether rp
[mS](x̃k) is a

solution or only a suboptimal solution to the optimization

problem given by (11). A similar approach with only one

iteration is presented in [11]. As it is common in model

predictive control (cf. [9], [10], [11]) only the first element of

rp
[mS](x̃k) is applied to the system. In most cases of model

predictive control a moving horizon approach is adopted,

which is also called a receding horizon approach.

In contrast to a moving horizon approach, which usually

applies a constant horizon with a constant dimension of

optimization variables, we use a fixed final time and re-

duce successively the dimension of optimization variables

to compute the next control input. This approach leads

consequently to a reduced horizon and is called a shrinking

horizon approach, cf. [9], [10]. A modification of (11) that

also includes the reduced optimization problem is given by

min
r[mS−j](x̃k+j)

∣∣∣∣ek+mS(x̃k+j , r[mS−j](x̃k+j))
∣∣∣∣2 (20)

with ek+mS(·, ·) = f [mS−j](x̃k+j , r[mS−j](x̃k+j))−x̂k+mS

and r[mS−j](·) : R
2n �→ R

mS−j , j ∈ {0, 1, . . . ,mS − 1}. If

j �= 0 then the initialization of the reduced minimization

problem is done by all elements but the first of the previous

suboptimal solution r0
[mS−j](x̃k+j) = [rp

k+j(x̃k+j−1), . . . ,
rp
k+mS−1(x̃k+j−1)]T .

Even though it is possible to enlarge the region of con-

vergence using this shrinking horizon approach (cf. section

VI-B) a drawback is still the limited computation time1. Due

1The manipulator is controlled by a VME-BUS computer with a 366 MHz
PowerPC CPU and 64MB RAM running the real time operating system
RTOS-UH (Real Time Operating System-University Hannover).
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kTS (k + mS)TS

u(t)

û(t)
rp
[mS](t)

rp
[mS−1](t)

rp
[mS−2](t)

...

t

Fig. 4. Working scheme using shrinking horizon

to this restriction we are not able to use this controller in

connection with the highly underactuated manipulator.

An illustration of the working scheme applying a shrinking

horizon is shown for one arbitrary subinterval in Fig. 4 with

mS = 8 and a = 1. The circles represent the sampling time

instant. Furthermore, the white bars display the time period

in which both prediction and optimization are done. The

horizon length of the corresponding optimization problem

is shown by a black bar. As in Fig. 2 and Fig. 3 the solid

line depicts the feedforward control input. The dashed line

shows the feedback input sequence that is result of the

first optimization stage using the full horizon length t ∈
[kTS, (k+mS)TS). As mentioned above only the first element

of the input sequence is applied to the system. Reducing the

horizon length leads to the second optimization stage which

considers the horizon t ∈ [(k + 1)TS, (k + mS)TS). The

resulting input sequence is given by a dotted line. In addition,

the result of the third optimization stage with the horizon

length t ∈ [(k +2)TS, (k +mS)TS) is depicted by a dashed-

double-dotted line. Note that the shrinking horizon approach

has to be done not only once but once for each time period

t ∈ [kTS, (k + mS)TS) with k ∈ {0,mS, 2mS, . . . , (am −
1)mS}.

VI. EXPERIMENTAL RESULTS

In the following we present one motion of each manipula-

tor shown in Fig. 1 to demonstrate advantages and drawbacks

of both controllers. Both motions are rest to rest motions

such that the desired velocities at the start and final position

are zero. In all figures the desired trajectories q̂{2,3}(q̂1) are

given by solid lines, feedforward trajectories q{2,3}(q1)FF

by dash-dotted lines, and trajectories q{2,3}(q1)EL using

a controller based on an extended linearization by dotted

lines. Since in Fig. 6(b) no feedforward control results are

presented the trajectory q2(q1)NO using a controller based

on a nonlinear online optimization is shown also by dash-

dotted lines. In order to keep the figures simple only the

sampling instants kT with k ∈ {0, 2mS, 4mS, . . . , 12mS}
are depicted. The sampling instants are indicated by © for

the desired trajectory, by ♦ for the feedforward trajectory, by

� for the feedback trajectory using an extended linearization

and by � for the feedback trajectory using the online

optimization in Fig. 6(b). Furthermore, we apply the sample

times T = 0.384[s], TS = T
a = 0.192[s] with a = 2 and the

error dynamics G(x̂k, ûk) = 0 for both motions.

A. Extended Linearization

The first motion is a 90◦ turn of the highly underactu-

ated manipulator depicted in Fig. 1(b) from q1(0) = 0◦,

q2(0) = 0◦, q3(0) = 0◦ to q1(mT ) = 90◦, q2(mT ) = 0◦,

q3(mT ) = 0◦. The corresponding controller based on an

extended linearization has been computed with the settings

m = 15, mS = 6, and µEL = 10−4.

As can be seen in Fig. 5(a) and Fig. 5(b) a feedforward

approach is not sufficient, since the system can not follow

the desired trajectory. Especially at the end of the motion

a feedforward approach leads to large deviations in q2(t).
The resulting errors are e1,FF(m) = 5.7◦, e2,FF(m) = 38.5◦,

and e3,FF(m) = 7.1◦ at the finial position. Implementing the

controller based on an extended linearization yields much

better results with final errors e1,EL(m) = 1.9◦, e2,EL(m) =
−1.1◦, and e3,EL(m) = 1.8◦.

B. Nonlinear Online Optimization

In contrast to section VI-A feedforward and feedback input

sequences consist of m = mS = 6 values. Furthermore,

the constants µEL = 10−6 and µNO = 0.01 are adopted.

The second motion of the manipulator depicted in Fig. 1(a)

is from q1(0) = 0◦, q2(0) = 0◦ to q1(mT ) = 90◦,

q2(mT ) = 45◦. Choosing initial errors e1(0) = 0◦ at the

active joint and e2(0) = −20◦ at the passive joint leads

to the final errors e1,FF(m) = 0.1◦, e2,FF(m) = 48.9◦ if

a feedforward controller is applied, cf. Fig. 6(a). In case

the proposed controllers are adopted to counteract the same

initial errors as for the feedforward motion in Fig. 6(a) we

get the final errors e1,EL(m) = 22.9◦, e2,EL(m) = 17.1◦

and e1,EL(m) = 1.3◦, e2,EL(m) = 0.2◦. Both the final errors

and the trajectories in Fig. 6(a) point out that the controller

based on a nonlinear online optimization is able to reduce

large errors much more efficiently than a controller based on

an extended linearization.

VII. CONCLUSIONS

Two nonlinear discrete-time controllers for underactuated

manipulators operating in the horizontal plane have been

proposed. The major benefit of a discrete-time control ap-

proach is that the time period in which the system is almost

not controllable can be shortened significantly. As has been

shown by experimental results, it is even possible to control

a highly underactuated manipulator by using a discrete-time

control approach based on an extended linearization. To our

best knowledge, this is the first time that experimental results

of such a manipulator have been presented. In addition,

a second control approach based on a nonlinear online
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Fig. 5. 90◦ turn of link 1 (highly underactuated manipulator)

optimization has been proposed concerning the problem that

the controller mentioned before is efficient only for small

errors. The efficiency of the second controller has been

demonstrated by further experimental results of an under-

actuated manipulator with 2-DOF. Since both controllers do

not exploit any structural properties of the manipulators it is

likely that they can be used for a large class of underactuated

systems.
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