
Abstract— The problem of integrated design and control 
optimization of process plants is discussed in this paper. We 
consider it as a nonlinear programming problem subject to 
differential-algebraic constraints. This class of problems is 
frequently (i) non-convex and (ii) “costly” (i.e. 
computationally expensive to evaluate). Thus, on the one 
hand, local optimization techniques usually fail to locate the 
global solution and, on the second hand, most global 
optimization methods require many simulations of the 
model, resulting in unaffordable computation times. As an 
alternative, one may consider global optimization methods 
which employ surrogate-based approaches to reduce 
computation times, and which require no knowledge of the 
problem structure. A challenging Wastewater Treatment 
Plant benchmark model (see [1] and references therein) is 
used to evaluate the performance of these techniques. 
Numerical experiments with different optimization solvers 
indicate that the proposed benchmark optimization problem 
is indeed non-convex, and that we can achieve an 
improvement of the controller performance compared to the 
best tuned controller settings available in the literature. 
Moreover, these results show that surrogate-based methods 
may indeed reduce computation times while, at the same 
time ensuring convergence to the best known solutions.  

I. INTRODUCTION

Many optimization problems which arise during the 
design and/or operation of chemical and biochemical 
processes are frequently non-convex (also referred as 
multimodal). Thus, it is not surprising that global 
optimization (GO) has received much attention during the 
last decade from many researches in computer aided 
process engineering. In fact, many advances have been 
made regarding both deterministic and stochastic methods 
during recent years [2]. However, the current state of the 
art is far from satisfactory, especially when we consider 
the global optimization of complex process models. These 
models are typically complex due to their dynamic (non-
linear) behaviour and high number of states. Therefore 
they are typically expensive to evaluate (i.e. each 
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simulation can take minutes, or even hours, in CPU 
computation time of an ordinary PC) and , for a number 
of reasons, can only be treated as black-box models. 
Thus, several authors [3] have recently proposed the use 
of so-called surrogate models which are 
(computationally) cheaper to evaluate.  
In the area of process systems engineering, Moles et al.
[4] showed how stochastic global optimization methods 
can be applied for simultaneous design and control of 
process plants of low complexity. In this contribution, our 
aim is to apply a similar approach to more complex (and 
costly) models. In order to keep the computational burden 
acceptable, the capabilities of recent global surrogate 
model based optimization methods have been evaluated. 
Such evaluation is performed considering a challenging 
benchmark case study: the integrated design and control 
of a wastewater treatment plant (WWTP) for nitrogen 
removal, as developed by the COST 624 work group [5].  
This paper is structured as follows: in the next section, the 
general statement of the integrated design problem is 
presented. Next, we briefly review the state of the art 
regarding global optimization for such problems, and we 
present the methods selected for our research. In the 
following section, the WWTP case is outlined. Finally, 
sections with results and discussion and conclusions are 
provided. 

II. INTEGRATED DESIGN: PROBLEM STATEMENT

The general statement of the simultaneous (integrated) 
design and control problem takes into account the process 
and control superstructures indicating the different design 
alternatives [6]. This general approach results in mixed 
integer optimal control problems. 
In this work, we consider a simpler, yet non-trivial, 
subproblem, where it is assumed that the flowsheet (i.e. 
plant configuration) is given. It should be noted that this 
subproblem is challenging enough to serve as a case study 
for the comparison of surrogate-based global optimization 
methods, which is the main objective of this work. 
The aim is to simultaneously find the static variables of 
the process design, the operating conditions and the 
controllers’ parameters which optimize a combined 
measure of the plant economics and its controllability, 
subject to a set of constraints which ensure appropriate 
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dynamic behaviour and process specifications. We state 
our problem as follows: 

Find v to minimize: 

i iC w (1)
subject to 

( , , , ) 0f x x p v (2)

0 0( )x t x (3)
( , , ) 0h x p v (4)
( , , ) 0g x p v (5)
L Uv v v (6)

where v is the vector of decision variables (e.g. design 
variables, operating conditions, parameters of controllers, 
setpoints, etc.); C is the cost (objective function) to 
minimize (normally a weighted combination of capital, 
operation and controllability costs, i); f is the set of 
differential and algebraic equality constraints describing 
the system dynamics (i.e. the nonlinear process model), x
is the vector of the states, t0 the initial time for the 
integration of the ODE’s (and, consequently, x0 is the 
vector of the states at that initial time); p is the vector of 
parameters of the dynamic model; h and g are possible 
equality and inequality path and/or point constraints 
which express additional requirements for the process 
performance; finally, vL and vU are the upper and lower 
bounds for the decision variables. 
The formulation above is that of a non-linear 
programming problem (NLP) with differential-algebraic 
(DAEs) constraints. Due to the nonlinear and constrained 
nature of the system dynamics, these problems are very 
often multimodal. Further, it is known that using standard 
controllability measures such as the Integral Square Error 
(ISE) in the objective function often causes non-
convexity [6]. Therefore, if this NLP-DAEs is solved via 
standard NLP methods, such as Sequential Quadratic 
Programming (SQP), it is very likely that the solution 
found will be of local nature. To avoid this, global 
optimization (GO) should be used. 

III. OPTIMIZATION METHODS

A. Introduction 
In principle, model based optimization can be 
successfully used to improve the design and/or operation 
of single units or full process plants. Typically, most of 
the problems in process engineering applications are 
highly constrained and exhibit nonlinear dynamics. These 
properties often result in non-convexity. Furthermore, in 
many complex process models some kind of noise and/or 

discontinuities (either due to numerical methods, or to 
intrinsic properties of the model) is often present. 
Therefore, there is great need of robust global 
optimization solvers which can (i) locate the vicinity of 
the global solution in a reasonable number of iterations, 
(ii) handle noise and/or discontinuities, and (iii) use some 
sort of approximation or reduction of the original process 
model, in order to keep the computational effort 
acceptable.
In general, (iterative) gradient-based local methods for 
constrained NLP problems are very efficient, but they can 
only handle smooth nonlinear functions subject to smooth 
constraints based on a set of continuous variables. 
Additionally, only convergence to local solutions is 
guaranteed. Therefore, one must use the so-called global 
optimization (GO) methods. 
GO methods can be roughly classified as being 
deterministic [7] and stochastic [8]. Deterministic GO 
methods assure convergence to the global optimum for 
certain problems, although no algorithm can solve general 
GO problems with certainty in a finite time [8]. For these 
methods, the computational effort usually increases 
exponentially with the problem size. Further, they have 
requirements (e.g. smoothness, differentiability) which 
are rarely met in realistic applications. 
Stochastic GO methods can find solutions in the vicinity 
of the global solution in relatively short computation 
times compared to deterministic GO. Note that with GO, 
the convergence to global optimality (in finite time) is not 
guaranteed either. Another advantage of these methods is 
that they are easy to implement, and they can treat the 
objective function as a black box (i.e. a simple connection 
between inputs and outputs, with no derivative 
information needed). This feature is specially appealing in 
the case of complex dynamic systems where the objective 
function is the result of e.g. a simulation provided by a 
third party software with restricted access for the user. 

B. Surrogate-based Global Optimization 
In general, all these GO approaches require a significant 
number of evaluations of the objective function and the 
constraints. In case of realistic problems, these models are 
costly to evaluate, posing a major challenge to the 
application of GO methods. In recent years, a number of 
approaches have been proposed to obtain surrogate 
models which are cheaper to evaluate than the original 
ones and which imitate the original model based on a 
reduced number of sampled points (simulations). Hence, 
these so called surrogate model based solvers try to 
approximate the original model over a region by a model 
that is cheaper to evaluate. Provided the surrogate model 
is accurate enough, the computation times can still be 
dramatically reduced. In addition, surrogate models go 
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beyond than simply reducing computation time (e.g. 
Kriging methods provide statistical information about 
decision variables). 
In [3], surrogate based methods are classified into two 
groups: not interpolating (e.g. quadratic polynomials and 
other regression models) and interpolating methods (e.g. 
basis functions and Kriging). At the same time, both 
methods can be one-stage or two stage methods. Two-
stage methods fit first a response surface using sample 
points from the real model and then optimize an auxiliary 
function based on the fitted surface. A potential 
disadvantage of these methods is that the initial surface 
may not accurately fit the real model which can provoke 
the optimization to stop prematurely or search too locally. 
On the other hand, one-stage methods evaluate 
hypotheses about the location of the optimum. This is 
done by examining the best-fitting response surface 
passing through the observed data and another point in 
which the optimum is presumed to be located. The 
credibility of each hypothesis is evaluated and the surface 
is being constructed by evaluating the new points where 
this credibility is maximum. 
The taxonomy of these methods by Jones [3] presents an 
overview of the different approaches. Currently, the most 
promising techniques seem to be Radial Basis Functions
and Kriging. In this work, these two strategies are tested 
and evaluated. 

C. Selected Optimization Methods 
Regarding surrogate-based GO, we have considered two 
recent solvers which are Matlab  implementations of the 
two types of strategies mentioned above: 

rbfSolve: this solver, included in the Tomlab® toolbox 
[9], solves costly global optimization problems using a 
Radial Basis Function (RBF) interpolation algorithm. It 
fits a response surface (based on splines) to data collected 
by evaluating the objective function at some points and 
then applies an optimization algorithm over that surrogate 
model. The initial points to create the response surface 
may be given by the user or selected by the algorithm 
based on different strategies. 
ego: this solver, also included in the Tomlab® toolbox [9], 
solves costly global optimization problems using the 
Efficient Global Optimization (EGO) algorithm. The idea 
of the EGO algorithm is to first fit a response surface to 
data collected by evaluating the objective function at a 
few points. Then, EGO balances between finding the 
minimum of the surface and improving the approximation 
by sampling where the prediction error may be high.  

In order to critically evaluate the performance of these 
two surrogate-based strategies, we have also considered 

selected local and global solvers which only rely on 
evaluations of the original (costly) model: 

fminsearch:  a local method implemented in the Matlab
Optimization Toolbox [10] that uses the simplex method 
instead of using gradient information. Although generally 
less efficient than gradient based methods, the simplex 
method may be more robust if the problem is highly 
discontinuous or presents noise. 
fmincon: also part of the Matlab  Optimization Toolbox 
[10], this solver finds a local minimum of a constrained 
multivariable function by means of a SQP (Sequential 
Quadratic Programming) algorithm. The method uses 
numerical or, if available, analytical gradients. 
NOMADm: Nonlinear Optimization for Mixed variables 
And Derivatives-Matlab, abbreviated as NOMADm, is a 
Matlab  code that runs various Generalized Pattern 
Search (GPS) algorithms to solve nonlinear and mixed 
variable optimization problems [11]. 
Differential Evolution (DE): This method, presented in 
[12], is a heuristic population based stochastic approach 
to global optimization for minimizing possibly nonlinear 
and non-differentiable continuous space functions. 

IV. CASE STUDY: OPTIMIZATION OF CONTROLLERS
SETTINGS IN A WWT PLANT

A number of control strategies have been proposed to 
meet the strict standards that Wastewater Treatment 
Plants (WWTP) must comply with, while also trying to 
reduce costs [13]. Relevant examples from the recent 
literature of attempts to optimize the controllers of these 
plants are: 

1. ad hoc extensive simulation studies [14], 
(strictly speaking these may not be called 
optimizations, because there is no evidence that 
a locally or globally best solution is found). 

2. dynamic optimizations of control or design 
strategies using local gradient-based 
optimization methods [15], often based on 
simplified or linearized models. 

3. global optimization methods for simultaneously 
optimizing operation and design [4]. 

4. an integrated approach for the optimization of 
control strategies, where a small selection of 
global and local optimization methods was used 
[16]. 

Evaluation of these and similar strategies, either in 
practice or by simulation, is a real problem due to the lack 
of a standard with respect to evaluation criteria, process 
complexity and large variations in plant configuration. In 
order to enhance the development and acceptance of new 
control strategies, the International Water Association 
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(IWA) Task Group on Respirometry, together with the 
European COST work group, proposed a standard 
simulation benchmarking methodology for evaluating the 
performance of activated sludge plants. The COST 624 
work group defines the benchmark as “a protocol to 
obtain a measure of performance of control strategies for 
activated sludge plants based on numerical, realistic 
simulations of the controlled plant” [5]. According to this 
definition, the benchmark consists of a description of the 
plant layout, a simulation model and definitions of 
(controller) performance criteria.  
The layout of this benchmark plant combines nitrification 
with predenitrification by a five compartment reactor with 
an anoxic zone (see Figure 1). A secondary settler 
separates the microbial culture from the liquid being 
treated. A basic control strategy consisting of 2 PI 
controllers is proposed to test the benchmark. Its aim is to 
control the dissolved oxygen level in the final 
compartment of the reactor (AS Unit 5) by manipulation 
of the oxygen transfer, and to control the nitrate level in 
the last anoxic compartment (AS Unit 2) by manipulating 
the internal recycle flow rate. A detailed description of the 
benchmark can be found in [5]. In this work, a Simulink
implementation of the benchmark model by Jeppsson was 
used for the simulations [17]. Each function evaluation 
consists of an initialization period of 100 days to achieve 
steady state, followed by a period of 14 days of dry 
weather and a third period of 14 days of rainy weather. 
Calculations of the controller performance criterion are 
based on data from the last 7 rain days. 

                 Figure 1.  Benchmark Layout 

As far as we know, global optimization methods have not 
been used for the integrated design and control of 
WWTPs models of this complexity. Further, since each 
simulation of this benchmark model takes a significant 
time on a standard PC (about 3 minutes in a PC-PIII 800 
MHz), it is an illustrating example to evaluate the 
surrogate-based strategies mentioned previously. 
The control performance is tested by using the ISE 
(Integral Square Error) as a controller performance 
criterion. Both the nitrate level and oxygen level 
controllers (further referred as N- and O-controller 

respectively) are optimized with respect to their controller 
parameters, that is, the gain K, integral time constant i

and anti-windup time constant t. The problem is 
formulated as follows: 

ISEWtvJ f ),(min  (7) 
st.

),,,( dpvxfx (8)

00 )( xtx (9)
0),,( pvxh (10)
0),,( pvxg (11)

UL vvv (12)

where W 1x2 contains the weighting coefficients; ISE
2x1 contains the integral squared errors of the two PI 

controllers; f 150x1 denotes the system dynamics; h and 
g are possible equality and inequality trajectory and/or 
endpoint constraints which express additional 
requirements for the process performance. The weighting 
vector W, the integral square error ISE and the decision 
parameter vector are as follows: 
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The weighting vector is chosen such that the ISE(O) equals 
to the ISE(N) part when using the benchmark default 
settings (i.e. the tuned PI-parameters see(13)) provided by 
the COST project [5]. 
The system dynamics are described by algebraic mass 
balance equations, ordinary differential equations for the 
biological processes in the bioreactors as defined by the 
ASM1-model [18], and the double-exponential settling 
velocity function presented in [1] as a fair presentation of 
the settling process, with x nx1 the state vectors, p

px1 the system parameters and d the influent disturbance. 
Due to the complexity of the system dynamics, the 
problem cannot be solved analytically, and the optimal 
values for the decision variables v 6x1 (i.e. the PI 
controller parameters) have to be retrieved by 
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optimization techniques or open loop controller tuning. 
However, the problem remains that most tuning 
techniques are intended for linear systems so that model 
approximation by linearization around different operating 
points would be inevitable. 
In the particular case considered here, no further dynamic 
restrictions are laid on the problem, i.e. h and g belong to 
empty sets. Boundaries on the decision variables are 
chosen such that the process behavior would not show 
(exceptional) unstable behavior:  

4 4 2 4100 7.0·10 1.0·10 100 1.0·10 1.0·10Lv  (17) 

1 1 21000 7.0·10 7.0·10 50000 1.0 7.0·10Uv  (18) 

The objective function values are normalized with respect 
to the performance obtained with the tuned controller 
settings provided by the COST project [5], which are: 

3 4 2 2500 1.0·10 2.0·10 15000 5.0·10 3.0·10refv (19)

V. RESULTS AND DISCUSSION

All runs were carried out on a PC Pentium-III 800 MHz 
computer. To illustrate the non-convexity of the problem, 
we investigated the performance and robustness of the 
local solvers fminsearch and fmincon by applying a 
multistart procedure. Hence, different initial values for the 
decision variables are randomly selected within their 
range. Both solvers converged to local solutions in all the 
runs, confirming the need of using global optimization 
methods. The histogram of the solutions obtained by 
fmincon in 14 runs is presented in Figure 2. It is 
interesting to note that, despite the large computational 
effort (about 16 h of CPU time per run), none of the runs 
were able to improve the controllers default settings 
(which we have normalized to J=1.0).
As expected, the other methods performed much better 
due to their capabilities to escape from local solutions. 
Typical convergence curves (i.e. objective function value 
versus CPU time) from the same initial point are 
presented in Figure 3 (note the log scale for J). The best 
final solutions were consistently found by rbfSolve, which
also showed the best convergence rate. Both DE and 
NOMADm finally reached good values of the 
performance index, although their convergence rate was 
clearly worse than that of rbfSolve. It is somewhat 
surprisingly to the authors why the other surrogate-based 
method (ego) showed a rather good convergence rate but 
stopped prematurely in all runs. We are currently 
investigating if this behaviour can be avoided. In the 
meantime, as a preliminary conclusion, it seems that 

surrogate models based on RBFs perform better than 
Kriging.
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Figure 2.  Histogram of solutions obtained by a local method 
(fmincon) using 14 different initial decision vectors 
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Figure 3.  Convergence curves for the different optimization 
algorithm.  

The best solutions found by each solver are presented in 
Table 1, where it can be seen that several solvers were 
able to improve the controllers default settings. 
Simulations using the best solution obtained by rbfSolve
and denoted by v*, were performed to compare other 
criteria like effluent quality and pollutant violations with 
those using vref. Results are presented in Table 2, 
indicating that v* is also better than vref for those criteria 
(except in the case of pumping energy). Hence, although 
we only minimized an ISE-based objective function in 
this work, the optimized plant also performed better in 
almost all relevant issues. 
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Table 1.   Best optimization results obtained by the different optimization algorithms 
Solver PI Controller Parameter J 

  K(O) i(O) d(O) K(N) i(N) d(N)
fmincon 661.39  3.98·10-2 6.59·10-1 28478 3.74·10-1 5.85·10-2 8.6229 

fminsearch 819.08    4.87·10-1 4.51·10-1 26508 9.47·10-2 2.55·10-2 30.166
NOMADm 750.62 6.91·10-3 6.30·10-1 21175 3.07·10-2 2.97·10-3 0.8170 

DE 357.51 1.73·10-3 1.00·10-4 17876 2.00·10-2 1.00·10-4 0.6434 
rbfSolve 375.31 7.00·10-4 1.00·10-4 21018 2.71·10-2 1.46·10-2 0.5333 

ego 444.59 7.00·10-4 1.00·10-4 6129 1.00·10-2 7.00·10-2 1.4722 

Table 2.  Values of WWTP performance criteria for the reference 
and the optimized decision vector 

Criterion vref v* Units 
EQ Index 9031.7 8980.4 kg poll·units/day 
Viol. N-level 11.16 9.97 % of time 
Viol. NH4+-level 25.92 25.15 % of  time 
Aeration Energy 7172.6 7164.4 kWh/day 
Pumping Energy 1919.3 1984.6 kWh/day 

VI. CONCLUSIONS

Optimization problems which arise during an integrated 
design and control approach are frequently non-convex. 
Thus, it is not surprising to that global optimization (GO) 
has received much attention during the last decade from 
many researchers in computer aided process engineering. 
However, the current state of the art is far from 
satisfactory, especially when we consider the global 
optimization of complex process models which are 
typically expensive to evaluate.  In this contribution, we 
have considered a number of recent global optimization 
methods, including several surrogate-based approaches, 
and we evaluate their performance based on their results 
for a benchmark problem in the management of 
wastewater treatment systems. Numerical experiments 
with the different GO solvers indicate that the proposed 
optimization problem is indeed non-convex and that, as 
expected, standard (local) solvers converge to local 
optima. In contrast, the results obtained indicate that 
surrogate-based methods, and in particular the ones based 
on RBFs, can indeed reduce computation times 
significantly while ensuring convergence to the best 
known solutions. 

REFERENCES

[1] Alex, J., Béteau, J.F., Copp, J.B., Hellinga, C., Jeppsson, U., 
Marsili-Libelli, S., Pons, M.N., Spanjers, H. and Vanhooren, H. 
“Benchmark for evaluating control strategies in wastewater 
treatment plants”. Proc. ECC’99 Conference, Karlsruhe, Germany, 
August 31 –September 3, 1999. 

[2] Floudas, C.A. and P.M. Pardalos (2004).  Frontiers in Global 
Optimization. Nonconvex Optimization and its Applications, vol. 
74, Kluwer Academic Publishers. 

[3] Donald R. Jones. “A Taxonomy of Global Optimization Methods 
Based on Response Surfaces”,  Journal of Global Optimization, 
vol. 21, pp. 345-383, 2001. 

[4] C.G. Moles, G. Gutierrez, A.A. Alonso and J.R. Banga,. 
“Integrated Process Design and Control via Global Optimization: 
A Wastewater Treatment Plant Case Study”. Chemical Engineering 
Research and Design,  vol. 81(5), pp. 507-517, 2003. 

[5] COST 624. “Optimal Management of Wastewater Systems”. 
Available: http://www.ensic.inpl-nancy.fr/COSTWWTP/

[6] Schweiger, C.A. and Floudas, A., “Interaction of design and 
control: optimization with dynamic models” in Optimal Control 
Theory, Algorithms and Applications, Hager, W.W. and Pardalos, 
P. M. (eds), (Academic Kluwer, Dordrecht), 1997. 

[7] Floudas, C.A. and Pardalos, P.M., ”Recent developments in 
deterministic global optimization and their relevance to process 
design”,  AIChE  Symp Ser, 323: 84–98, 2000. 

[8] Guus, C., Boender, E. and Romeijn, H.E., “Stochastic methods”, in 
Handbook of Global Optimization, Horst, R. and Pardalos, P.M. 
(eds) (Kluwer, Dordrecht), 1995. 

[9] Holmström, K. Practical optimization with the TOMLAB 
environment in Matlab, 2001. Available: 
http://tomlab.biz/docs/sims2001_tomlab.pdf

[10] Optimization Toolbox for Use with Matlab . User’s guide. Version 
2. The MathWorks Inc. 

[11] Abramson, M.A., “Pattern Search Algorithms for Mixed Variable 
General Constrained Optimization Problems”. PhD Thesis, Rice 
University, 2002. 

[12] R. Storn and K. Price. “Differential Evolution - A Simple and 
Efficient Heuristic for Global Optimization over Continuous 
Spaces”. Journal of Global Optimization, 11: 341-359, 1997. 

[13] Jeppsson, U., Pons, M-N., “The COST Benchmark simulation 
model-current state  and future perspective”. Control
Engineering Practice, vol. 12 (Editorial), pp. 299-304, 2004. 

[14] A. Carucci, E. Rolle, and P. Smurra. “Management optimisation of 
a large wastewater treatment plant”. Water Science and 
Technology, vol. 39(4), pp. 129-136, 1999. 

[15] B. Chachuat, N. Roche, and M.A. Latifi. “Dynamic optimisation of 
small size wastewater treatment plants including nitrification and 
denitrification processes”. Computers and Chemical Engineering,
vol. 25, pp. 585-593, 2001. 

[16] M. Schütze, D. Butler, and M.B. Beck. “Optimisation of Control 
Strategies for the Urban Wastewater System - an Integrated 
Approach”. Water Science and Technology, vol. 39(9), pp. 209-
216, 1999.  

[17] Copp, J. “The COST simulation benchmark: Description and 
simulator manual”.  Office for official publications of the European 
Comunity, Luxembourg,  2002. 

[18] M. Henze, C.P.L. Grady Jr., W. Gujer, G.V.R. Marais, and T. 
Matsuo. “Activated Sludge Model no. 1”. Technical Report n 1, 
IAWQ, London, Great Brittain, 1986. 

[19] I. Takács, G.G. Patry, and D. Nolasco. “A dynamic model of the 
clarification-thickening process”. Water Research, vol. 25(10), pp. 
1263-1271, 1991.   

6904


	MAIN MENU
	PREVIOUS MENU
	---------------------------------
	Search CD-ROM
	Search Results
	Print


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (None)
  /CalCMYKProfile (None)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveEPSInfo false
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 2.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 2.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <>
    /FRA <>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <>
    /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice




