
Unified Modeling and Verification of Logic Controllers for Physical
Systems

Marcello Bonfè, Cesare Fantuzzi and Cristian Secchi

Abstract— The paper describes a modeling approach that
aims to provide a unified framework for the specification
and verification of logic controllers for multi-domain physical
systems. The proposed modeling methodology is based on the
cardinal principle of object orientation, which allows to describe
both control software and physical components using the same
basic concepts, like classes and interface ports, and the same
modeling notation, based on the UML language. Thanks to
this unified approach, it is possible to describe structural and
behavioral aspects of any multi-domain system coupled with
a logic control device. Moreover, the behavior of the closed-
loop system can be analyzed with formal verification techniques
for hybrid systems, in order to prove correctness properties
otherwise difficult to verify considering only discrete-event
models.

I. INTRODUCTION

The object-oriented approach is a cardinal principle for
many modeling, analysis and design techniques developed
for different branches of engineering, not only related to
software development. For example, emerging technologies
for industrial control systems, like the IEC 61499-1 [1]
standard for distributed controllers design, support engineers
with many features oriented to the encapsulation and reuse of
software modules. Moreover, modeling languages for com-
plex physical systems adopting object-oriented principles,
like Bond Graphs [2], are more and more popular, since they
allow to capture in a very natural way the structure of sys-
tems that contain physical components from heterogeneous
domains (mechanical, electrical, hydraulic, etc.).
Even though all the mentioned languages share the basic
principles and are well-known in their application domain,
it is hard, with the current tools, to integrate them, in order
to describe all the aspects related to the design of complex
industrial systems within a single modeling framework. A
unified language embedding structural and behavioral aspects
of control software and physical components would provide
on one hand a lingua franca for the communication between
engineers of different disciplines and, on the other hand,
the possibility to verify the actual behavior of a computer-
controlled system by considering its hybrid dynamics.
Starting from these remarks, we propose a practical approach
for object-oriented modeling of multi-domain systems in-
cluding physical components and control software, based
on an extension of the specification language UML [3] that
embeds the concepts of Bond Graphs and their mathematical

M. Bonfè is with the ENDIF, Università di Ferrara, Via Saragat 1, 44100
Ferrara, Italy (mbonfe@ing.unife.it)

C. Fantuzzi and C. Secchi are with the DISMI, Università di Modena e
Reggio Emilia, Via Allegri 15, 42100 Reggio Emilia, Italy

formalization as port-Hamiltonian systems [4]. A model
designed with the proposed language is formalized as an
hybrid dynamic system, whose behavior can be analyzed
with specific verification tools. In particular, the case of study
presented in the paper has been verified using CheckMate
[5]. The rest of the paper is organized as follows: in Sec. II
we describe the background on UML and Bond Graphs,
in Sec. III we specify the conceptual scenario of multi-
domain object-oriented systems and formalize the mapping
between Bond Graphs and UML, in Sec. IV this mapping
is described using the UML notation and in Section Sec. V
we provide an example of the application of the proposed
modeling language to an industrial case of study. The paper
ends with some concluding remarks and some directions for
future work.

II. BACKGROUND ON MODELING LANGUAGES

UML - The UML language is defined in [3] by means of an
extensible meta-model and its notation supports the specifica-
tion of functional requirements, structural properties, objects
interactions and objects’ internal behavior. Structural views
of a system are described with UML by means of Class
Diagrams, while behavioral specifications can be described
with UML by associating a State Diagram to each class of
a model. In this way, the event-driven reactive behavior of
all the instances of that class is represented exhaustively.
An interesting feature of UML is its extensibility, which
allows to model domain-specific or methodology oriented
concepts by means of stereotyped elements. A consistent
set of UML stereotypes is called a profile. A well-known
example of UML profile, called UML-RT, is the one de-
scribed in [6]. The UML-RT profile allows to model real-
time, event-driven and distributed software architectures, by
means of highly encapsulated components called capsules,
interacting with each other through well-defined ports and
protocols. A port instance can be embedded in a composite
class in order to provide controlled access to the internal
behavior of the class itself or of one of its sub-components,
according to a reference protocol. Adopting the definitions
in [7], a protocol can be formally described as a 4-tuple
P = (E ,R,B,Q), in which E is the set of events that can
be exchanged between the participants in the protocol (i.e.
operation calls, messages, etc.), R is the set of protocol roles
that the participants can play, B is the reference behavior
(i.e. the set of admissible strings from the event alphabet)
and Q is the expected quality of service of the protocol.
A port implements a given protocol role, which means that
the knowledge of the reference protocol always allows to

Proceedings of the
44th IEEE Conference on Decision and Control, and
the European Control Conference 2005
Seville, Spain, December 12-15, 2005

ThIC19.1

0-7803-9568-9/05/$20.00 ©2005 IEEE 8349



communicate correctly with a composite class including that
port, independently of the actual internal details of the class.
Bond Graphs - The modeling approach based on compo-
nents and ports is the foundation also of the Bond Graphs
formalism [2]. This language allows to model in a very
elegant and, in a sense, object-oriented way any kind of
physical systems, thanks to the fact that in every physical
domain there is a pair of variables, defined on a pair of dual
vector spaces1 Fp0 and Ep0 = F∗

p0, whose dual product is
power. The two factors of power are generically called, in the
Bond Graphs terminology, flow and effort. A power port is
defined by a pair (f, e) ∈ Fp0×Ep0 and represents the means
through which a physical system can interact with the rest
of the world. With the bond graphs modeling strategy, any
lumped parameters physical system is represented as a set
of basic elements, distinguished as energy storing elements,
energy dissipating elements and energy sources, each one
endowed with one or more power ports through which it
can exchange energy with the others. The dynamic behavior
of any physical system is due to the exchange of energy
that takes place among its constitutive elements. A bond
graph shows explicitly the network structure along which
the various elements interact, exchanging energy, by means
of connectors called bonds, which relates basic elements
and junctions, whose behavior is governed by Kirchhoff-like
laws, or power preserving transformations (i.e. transformers
and gyrators).
Each (and only) element that can store energy has states
associated to it, in a way such that each state represents the
storage of energy flowing through a power port. Even if bond
graphs are in general acausal [2], it is possible to assign a
causality to each element and thus to fix the role of input or
output for each variable in a power port. Very often, energy
storing elements have an integral causality associated and
their behavior is represented by

{
ẋi = ui

yi = ∂H
∂xi

i = 1, . . . , m (1)

where m is the number of power ports associated to the
element, H is a function of the state that represents the
energy stored in the element in a given configuration and
ui and yi are dual power variables representing the ith

power port. Dissipative elements impose an algebraic relation
between their input/output variables of the type 〈u, y〉 ≥ 0,
namely such that power is absorbed by the element. Sources
of energy can be either sources of flow (i.e. fixing an flow
to a certain value), or sources of effort (i.e. fixing an effort).
An elegant mathematical formulation of Bond Graphs is
the one described in [4]. In the reference, Bond Graphs
are mapped into port-Hamiltonian systems exploiting the
concept of Dirac structure, as explained in [8], in order
to provide a formal representation of the power-conserving
interconnection structure of a physical system. Once that a

1Given a vector space Fp0, its dual Ep0 = F∗

p0
is the vector space of the

linear operators on Fp0. Given f ∈ Fp0 and e ∈ Ep0, their dual product
is given by 〈e, f〉 = eT f

coordinate system has been fixed, several matrix representa-
tion of a Dirac structure are available [8], of which a very
effective one is the so called kernel representation. Given a
system with m power ports and the following vectors:

f =

⎛
⎜⎝

f1

...
fm

⎞
⎟⎠ ∈ Fp e =

⎛
⎜⎝

e1

...
em

⎞
⎟⎠ ∈ Ep (2)

where fi and ei are the flow and the effort associated to
the ith power port, the behavior of any power preserving
interconnection structure is defined in kernel representation
by a relation of the kind:

F (x)f + E(x)e = 0 (3)

where x ∈ X is the state of the physical system and E(x)
and F (x) are matrices such that:

E(x)FT (x) + F (x)ET (x) = 0

dim[ F (x) E(x) ] = dimFp

(4)

III. UNIFIED MODELING OF MULTI-DOMAIN SYSTEMS

In order to model, analyze and design logic control systems
for industrial processes within an object-oriented perspective,
it is necessary to remark that software and physical aspects
are tightly coupled and, therefore, they should be taken
into account at the same time. In particular, a module in a
control software will have a well-defined interface, related
to input/output electrical signals, to interact with sensors
and actuators on its physical counterpart, and an events/data
interface to interact with other control modules. The first
interface represents the hardware port of the control module,
while the second is conceptually the software port. The
aggregation of a control module, its hardware and software
ports and the related physical components is what we con-
sider as a mechatronic class, within an integrated object-
oriented approach.
Of course, within the physical domain, the bond graph mod-
eling approach is one of the most effective tool and UML,
especially including the concepts of ports and protocols,
can be easily adopted to model industrial control systems.
However, since UML can be extended to include domain-
specific concepts, it is possible to define a proper mapping
between bond graph elements and UML elements, in order
to formalize the semantics of the interaction between control
software and physical components. In particular, it is easy
to see that the inter-domain access point is represented by
the hardware port, which performs the sampling of sensor
signals and updates commands for actuators. The first kind of
operation is a measurement of either one of the state variables
of the physical system (i.e. the position of a mechanical part)
or one effort or flow variable (i.e. voltage, velocity, pressure,
etc.), while the control action is executed by modulating
either an effort/flow source or a power transformer/gyrator.
Signal ports and modulating ports, as means to define the
interaction of a physical system with a feedback controller,
are standard tools in bond graphs [2].

8350



In order to define a precise integration of bond graphs and
UML, it is necessary to give first a system theoretic descrip-
tion of a UML model. To this aim, we consider a subset
of UML which is consistent with the UML-RT profile [6],
namely we assume that the interface of a class can be defined
only in terms of ports. Therefore, we will equivalently use
the word class or capsule to refer a composite structure
having an internal behavior (i.e. the state machine), possibly
a set of lower-level components and boundary interaction
points, namely the ports. In this framework, a system made
up of p capsules and m ports can be described as a 5-
tuple (A,P, C, α, ψP), whose elements are defined in the
following. The set

A = A1 × · · · × Ap a = (a1, . . . , ap) (5)

is the set of the attributes of the overall system, in which
each set Ai represents the set of attributes of the capsule i.
Each set Ai, and consequently A, in general has no struc-
ture and it can be composed of several and etherogeneous
elements such as lists, integers, data structures, and so on.
The interaction between capsules is defined by the protocol
P = (E ,R,B,Q), as detailed in Sec. II. In particular the
event set is given by:

E =

m⋃
i=0

Ei (6)

where Ei represents the event alphabet that the ith port can
exchange in the protocol. It is possible to define the following
set:

E = E1 × · · · × Em ε = (ε1, . . . , εm) (7)

whose elements describe the events waiting to be processed
in a given ports configuration. Obviously some εi may be
empty, meaning that no message is crossing the correspond-
ing port. C represents the interconnection structure, which
is the medium over which the protocol P is implemented.
The map α : A × E → A is the attribute transition map
and it describes how the attributes of the capsules change,
according to the behavior defined by the capsules’ state
machines. The map ψP : A × E → E is the port transition
map and it describes the dynamics of events across the ports,
according to the reference protocol and to the capsules’ state
machines.
Now we can show how to map any physical system into this
modeling framework. Since a physical system is made up
by a set of basic physical elements that exchange energy, we
consider these structural components as UML capsules. Let
p be the number of capsules describing a physical system.
The attributes of each capsule are represented by the physical
states, therefore the set A becomes:

A = X1 × · · · × Xn = X x = (x1, . . . , xn) (8)

in which X is usually a differentiable manifold. In general,
n �= p, since each capsule can be characterized by several
states or by zero states (e.g. purely dissipative elements). In
order to formalize the protocol modeling the dynamics of a

physical system, we must first define which kind of informa-
tion are exchanged between its components. The fundamental
information is of course energy, which is exchanged through
power ports. For a power port, we can define as the event
alphabet the related space of power variables Fp0 × Ep0, in
which Fp0 is the space of flow vectors and Ep0 is the space
of effort vectors.
In addition, each physical capsule can have ports that are
not directly related to the exchange of energy, but they only
transmit signals related to the physical state of a component
or related to the modulation of a source or of a transformer,
which equals to modulating the exchange of energy along the
interconnection structure. In a physical system, the means
(e.g. electrical wires, pipes, etc.) through which capsules
are interconnected represente the interconnection structure
C introduced before, while the way in which the various
subsystems are joined represent the energetic paths, namely
the protocol P , implemented over the interconnection struc-
ture C. Since the behavior of physical systems is continuous,
the event set E has infinite cardinality and, therefore, we
call it event space. As efforts and flows are exchanged
through the power ports of the interconnection, the event
space contains both Fp and Ep. Once causality has been
fixed, each power port can play a specific role: it can provide
a flow and, therefore, receive an effort, or it can provide an
effort and receive a flow; we call these roles energy roles.
In general, the way in which energy is exchanged depends
on the states characterizing the interconnected capsules, as
mentioned before, thus ports that carry signals that are
used to modulate the interconnection structure play a further
role in the protocol: a modulating role. Each capsule can
participate to the protocol both by exchanging directly energy
through ports that play energy roles and by modulating the
energy transfer through ports that play a modulating role.
Therefore, the state manifold X of the physical system is
also part of the event space, which is, summarizing, given by
E = Fp ∪ Ep ∪ X . Since the dynamics of a physical system
is continuous, the protocol behavior B is continuous. The
behavior of physical protocols, which must always have the
property of being power preserving, is defined by a Dirac
structure and, for example, its kernel representation as in
Eq.(3), which allows to calculate the efforts or flows that
have to be sent to the power ports in which they appear as
received signals, using the efforts or flows incoming from
power ports in which they appear as supplied signals [8].
When modeling physical protocols, we consider meaningless
any quality of service assessment, therefore we do not
formalize Q.
Let m ≥ n be the number of power ports of the overall
system. Once causality has been assigned, it is possible to
distinguish an input signal ui and an output signal yi per
each power port. Thus, it is possible to define the attribute
transition map as a continuous function:

α : Fp × Ep ×X → X (f(t), e(t), x(0)) → x(t) (9)

The function α defines the continuous internal behavior of
each interconnected capsule. In particular, assuming integral

8351



causality, for each state we have that:

xi(t) = α(f, e, x(0)) = xi(0) +
∫ t

0
ui(τ)dτ (10)

where ui can be either fi or ei depending on the port
causality. The port transition map is given by:

ψP : Fp × Ep ×X → Fp × Ep ×X (11)

Each signal crossing the port at time t can be calculated
through the state information and the port configuration at
time t. In particular, per each power port associated to an
energy storing element we have that:

yi(t) =
∂H

∂xi

∣∣
x(t)

i = 1, . . . , n (12)

where yi can be either ei or fi depending on the port
causality. H(x) is the function that expresses the energy
stored into the system. In case of power ports associated
to energy dissipation, we have that:

yi(t) = gi(ui(t)) i = n + 1, . . . , m (13)

where gi is the algebraic function characterizing the port. In
case of signal ports, those that play the modulating role in
the communication protocol, we have that:

mi(t) = zi(t) i = 1, . . . , n (14)

in which zi can be any kind of physical variable ei, fi or
xi. Once the signals crossing the ports associated to the
output of power ports and those that cross the modulating
ports are available, it is possible to calculate, through the
protocol behavior equation, the inputs of the power ports,
thus completing the ports configuration at time t.

IV. UML STEREOTYPES FOR PHYSICAL SYSTEMS AND

HYBRID MODELS

In this section, we define UML stereotypes for physical
systems, extending those of the UML-RT profile [6], in order
to provide a unified notation to model all the components of
industrial systems with logic controllers.
In UML-RT capsules are modeled by the <<capsule>>
stereotype of class. Ports are represented by the <<port>>
stereotype of class and each capsule is in a composition
relationship with its ports. A connector is modeled by
an association between the ports that are interconnected.
A protocol is modeled by the <<protocol>> stereo-
type of Collaboration and is in a composition relationship
to each of its protocol roles that are represented by the
<<protocolRole>> stereotype of ClassifierRole.
Physical capsules, modeled with the stereotype
<<Physical>>, can interact with the other physical
capsules by means of the physical protocol, which is a
collaboration, stereotyped as <<PhysicalProtocol>>,
of physical elements. The ports collaborating in a physical
protocol can have one of the following roles: effort-
supplier/flow-receiver (ES-FR), flow-supplier/effort-receiver
(FS-ER) and modulating (M). The first two kind of roles
are related to power ports. It is important to note that a
power port always conveys two signals: effort and flow.

Therefore, we can also assume a standard textual notation
to refer these signals, with the style PortName.e and
PortName.f. Moreover, we allow a physical capsule to
have standard signal ports, like those of software capsules,
which provide information (i.e. measurements) related to
efforts, flows or states. These signal ports allow to model
the sensors used by the control software to implement
feedback strategies, representing the point of interaction
between software and physical components and, therefore,
the bridge between continuous and discrete domain. We
also assume that these ports implicitly perform operations
like time-triggered sampling or comparison of analog values
with given thresholds to generate logic signals or events.
An example of the usage of the stereotypes defined in this
section is shown in the Class Diagram of Fig. 1.

<<Physical>>

PhysicalClass
<<PhysicalProtocol>>

PhysicalProtocolA

<<port>>

portClassFS-ER

<<protocolRole>>

FS-ER
* *

* *

<<port>>

portClassM

<<protocolRole>>

M

<<port>>

portClassES-FR

<<protocolRole>>

ES-FR
* *

Fig. 1. UML representation of a physical subsystem

While in UML-RT capsules are event-driven entities, physi-
cal capsules represent time driven entities with continuous
behavior. In order to include these features in UML, we
refer to physical time as an abstract class that models
a continuous and unbounded progression of time instants,
belonging to a fully ordered dense set. Therefore, we assume
that capsules representing physical subsystems are in an
association relationship with a PhysicalTime class and that
their attributes evolve continuously in time, depending on the
energy exchanged with other physical capsules.
When we consider a physical system together with its
logic controller, the complete model described in UML will
contain a set of elements stereotyped as physical capsules,
interacting by means of a physical protocol, and a set of
elements stereotyped as software capsules, interacting with
the physical system by means of signal and modulating
ports. Assuming that the behavior of software capsules is
specified by UML State Diagrams, the dynamics of the
aggregate system has a hybrid nature. In particular, if we
focus on systems in which the interaction between hardware
and software is based on boolean signals (i.e. logic sensors
and controlled switches), the kind of hybrid systems which
is more adequate to formalize a UML model including
the proposed stereotypes is the one called Threshold-Event-
Driven Hybrid Systems (TEDHS) [9]. A TEDHS consists
of three subsystems: a Switched Continuous System (SCS),
a Threshold Event Generator (TEG) and a Finite State
Machine (FSM). The SCS interact with the FSM by means
of a piecewise constant signal u(t) taking discrete values in a
finite set U , which are assigned according to the state of the
FSM. The state transitions in the FSM are forced by events

8352



generated by the TEG according to the continuous state x(t)
of the SCS, while x(t) evolves according to the differential
equation ẋ(t) = Fu(t)(x(t)), selected by u(t) at each instant.
Within the UML-based modeling framework proposed in
the paper, signal ports connecting physical capsules and
software capsules play the role of the TEG, modulating ports
connecting software capsules and physical capsules play the
role of the switching signal u(t), while the control logic and
the complete physical system are, respectively, related to the
FSM and to the SCS. Hybrid systems of the TEDHS class are
the basis of the verification tool CheckMate [5], in which the
system is modeled by means of a Matlab/Simulink R© diagram
that contains SCS blocks, TEG blocks and FSM blocks, the
latter specified with Stateflow R© charts. This modeling front-
end allows an easy translation of UML multi-domain models,
following the conceptual mapping described before. In order
to perform state-space exploration and formal verification
of properties specified in the temporal logic ACTL [9],
CheckMate transforms the TEDHS first into an equivalent
Polyhedral-Invariant Hybrid Automaton (PIHA), which is a
hybrid automaton whose discrete locations are characterized
by a given continuous dynamics and guards for transitions
between locations are given by hyperplanes in the continuous
state-space (i.e. transitions fire when the continous state cross
the hyperplane guard). Then, the PIHA is mapped into a
Quotient Transition System (QTS), a finite state system that
is a conservative approximation of the hybrid system, in the
sense that for every trajectory of the original hybrid system
there is a trajectory in the QTS corresponding to the set of
partitions of the continuous state space that the hybrid system
passes through. The model checking problem on ACTL
formulas is finally solved in CheckMate by performing the
reachability analysis on the QTS. In next section, we will
show how to model a simple case of study with the proposed
UML extension and then how to use CheckMate for its
verification.

V. EXAMPLE

Consider the two tanks system illustrated in Fig. 2, taken
from [10]. The plant is made up of two cylindric tanks

}

m1

T1

T2

h1

m2
h2

m3

H

V̇in

V̇12

V̇out

Fig. 2. The two tanks system

T1 and T2 which are situated at different levels and that
exchange a fluid. The incoming flow, the amount of fluid

flowing along the pipe interconnecting the two tanks and
the outgoing flow are governed by the controlled valves V1,
V2 and V3 respectively. In the following, the control signal
associated to the ith valve will be called mi; a valve can
either be closed (mi = 0) or open (mi = 1). We assume
that the input volume flow V̇in is equal to a positive constant
IN , if V1 is opened, and equal to 0, otherwise. The volume
flow V̇12 in the pipe interconnecting T1 and T2 depends on
the position of V2 and on the levels of fluid in the tanks.
Thus, using Torricelli’s law, we have that:

V̇12 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

K1

√
h1 − h2 + H if m2 = 1 and h2 > H

K1

√
h1 if m2 = 1 and h2 ≤ H

0 if m2 = 0

(15)

where h1 and h2 are the levels of fluid in T1 and T2

respectively and H is the height difference between the tanks.
Finally the output volume flow V̇out is equal to K2

√
h2 if

V3 is opened and to 0 if it is closed. K1 and K2 are positive
constants that depend on the kind of fluid that is used.
Recalling that in the hydraulic domain the power variables
flow and effort are, respectively, volume flow V̇ and pressure
P and that the tanks can be modeled as elements that store
hydraulic potential energy, we can define the UML model of
the two tanks system with its logic controller as composed
of three capsules, interacting with each other: the Plant, the
Controller and PhysicalTime.
The Controller capsule represents the control logic and it
interacts with the PhysicalTime capsule, in order to measure
the progression of time, and with the Plant capsule in order
to receive the information relative to the level of the fluid
in T2, through a port which plays the slave role in the
master/slave protocol PC. The control action is transmitted
to the plant through a port which plays a modulating role
into the physical protocol Phys that governs the exchange of
energy between the physical sub-capsules that compose the
plant. The behavior of the Controller capsule is represented
by the state machine reported in Fig. 3, which has been
designed following the specification described in [10]: after
a start-up phase, lasting a given period of time, in which the
tanks are pre-filled in two steps, the level in T2 is kept within
a lower and an upper bound by opening/closing its output
valve.

- Step 1 -
____________________________

entry / m1 = 1;

after(Time1)

after(Time2)
- Step 2 -

____________________________

entry / m2 = 1;

- Step 3 -
____________________________

entry / m3 = 1;

- Step 3 -
____________________________

entry / m3 = 0;

[h2 >= L_max] [h2 <= L_min]

Fig. 3. The behavior of the Controller capsule

A detailed UML-RT class diagram of the plant is reported
in Fig. 4. The Plant capsule has five sub-capsules that

8353



Fig. 4. UML-RT diagram of the physical system

represent the two tanks (Tank1 and Tank2), which are energy
storing elements, two elements that inject/extract the fluid
in the system (Input and Output), which are sources of
flow, and an element that governs the flow along the pipe
interconnecting T1 and T2 (Valve), which is a source of
flow. Each sub-capsule has a port that implements a power
port through which it exchanges energy with the other sub-
capsules, following the protocol Phys whose behavior is
represented by the Dirac structure described by:

⎛
⎜⎜⎜⎝

m2 −m1 m1m2 0 0

m3 0 m1m3 −m1m3 −m1

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

ip1.f
vp1.f
t1p1.f
t2p1.f
op1.f

⎞
⎟⎟⎟⎠ +

+

⎛
⎜⎜⎜⎝

0 0 0 0 0

0 0 0 0 0

m1 0 −1 0 0

0 m2 1 0 m3

0 m2 1 1 0

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

ip1.e
vp1.e
t1p1.e
t2p1.e
op1.e

⎞
⎟⎟⎟⎠ = 0 (16)

Notice that also the Plant capsule participates to Phys
through the port p3 which plays a modulating role and which
represents the control action on the plant. In fact we can
see that m1, m2 and m3 appear explicitly in the protocol
behavior and that different values of the control action lead
to a different way in which energy is exchanged among the
sub-capsules.
The translation of the UML model into a CheckMate block
diagram is almost straighforward. The Controller capsule
is mapped into an FSM block, modeling the same event-
driven behavior. The events triggering the state transitions,
which are related to Controller ports p1 and p2 since they
depend from thresholds on time and level of T2, will be
generated by TEG blocks evaluating polyhedral constraints
on the continuous state space. Finally, two SCS are necessary
to simulate the dynamics of the physical system and the
progression of time. The differential equation governing
the continuous dynamics can be easily generated from the
UML model of the Plant capsule, considering that the state
variables are given by the volume of fluid in the two tanks,
which are energy storing elements and that volume flows
can be calculated from Eq.(16). Since Eq.(16) depends from
the three valve control signals m1, m2 and m3, it also
specifies the dependence of the continuous dynamics from
the switching signal generated by the Controller FSM, which
can be defined as an integer variable u that can take any of
the 23 values representing admissible configurations of the

boolean values m1, m2 and m3.
Once that the UML model has been translated in CheckMate,
it is possible to simulate its behavior and to verify its
properties. With regards to the formal verification task, an
example of the properties that can be verified on the modeled
system with the help of CheckMate is the fact that the
tank T2 never overflows, which is expressed in ACTL as
the formula AG ˜overfull, being overfull an atomic
proposition which is true if a given polyhedral constraint on
the continuous state space is satisfied (i.e. the level of T2 is
higher than 1 meter). Since the controller performs the start-
up phase only considering timing events, it may happen that
the system violates the specification because the time spent
in the pre-filling phases Step1 and Step2 of Fig. 3 is too long,
so that when the controller enters the actual regulating phase
the overflow has already occurred. With a proper setting of
the timing specifications Time1 and Time2, it is possible to
prove that the sytem verifies the desired property.

VI. CONCLUSION AND FUTURE WORK

The paper has described an extension of the modeling
language UML which can be adopted to describe com-
plex computer-controlled physical systems. The fundamental
modeling approach, which allows to unify the concepts used
in software design with those used in systems modeling, is
object-orientation. With the support of the standard notation
of UML, the proposed language aims to increase multi-
disciplinary approaches to the design of logic controllers for
industrial processes and mechatronic systems. In the future,
the authors aim to integrate the proposed concepts into a
CASE tool that can support industrial control engineers in
their design practice.

REFERENCES

[1] I.E.C., “IEC 61499-1. Function Blocks for Industrial Process Mea-
surement and Control - Part 1: Architecture,” Public Available Speci-
fication (PAS), 2000.

[2] H. M. Paynter, Analysis and Design of Engineering Systems. Cam-
bridge, MA: M.I.T. Press, 1961.

[3] O.M.G., “UML, v.1.4, OMG specification,” Document N.
formal/2001-09-67, 2001, www.omg.org/uml.

[4] G. Golo, A. van der Schaft, P. Breedveld, and B. Maschke, “Hamilto-
nian formulation of bond graphs,” in Nonlinear and Hybrid Systems
in Automotive Control, R. Johansson and A. Rantzer, Eds. Springer–
Verlag, 2003, pp. 351–372.

[5] B. Silva, K. Richeson, B. Krogh, and A. Chutinan, “Modeling and
verifying hybrid dynamic systems using CheckMate,” in Proc. 4th Int.
Conf. on Automation of Mixed Processes ADPM, 2000, pp. 237–242.

[6] B. Selic and J. Rumbaugh, “Using UML for complex real-time
systems,” IBM Rational Software Ltd, white paper, 1998, www-
106.ibm.com/developerworks/rational/library/139.html.

[7] B. Selic, “Protocols and ports: reusable inter-object behavior patterns,”
in Proc. of the 2nd IEEE Symposium on Object-Oriented Real-Time
Distributed Computing, Saint-Malo, France, 1999.

[8] A. van der Schaft, L2-Gain and Passivity Techniques in Nonlinear
Control, ser. Communication and Control Engineering. Springer
Verlag, 2000.

[9] A. Chutinan, “Hybrid system verification using discrete model ap-
proximation,” Ph.D. dissertation, Dept. of Electrical and Computer
Engineering, Carnegie Mellon University, May 1999.

[10] S. Kowalewski, O. Stursburg, M. Fritz, H. Graf, I. Hoffmann,
J. Preussig, M. Remelhe, S. Simon, and H. Treseler, “A case study in
tool-aided analysis of discretely controlled continuous systems: The
two tanks problem,” in Hybrid Systems V, ser. LNCS. Springer–
Verlag, 1999, vol. 1567, pp. 163–185.

8354


	MAIN MENU
	PREVIOUS MENU
	---------------------------------
	Search CD-ROM
	Search Results
	Print


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (None)
  /CalCMYKProfile (None)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveEPSInfo false
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 2.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 2.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
    /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice




