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Abstract— In this paper, we clarify the notion of architecture
in decentralized control, in order to investigate the realizability
problem: given a discrete-event system, a desired behavior and
an architecture for a decentralized control, can the desired be-
havior be achieved by decentralized controllers in accordance
with the given architecture? We consider the problem for any
mu-calculus definable behavior and for classic architectures
from the literature. The method consists in compiling in a
single formula both the desired behavior and the architecture.
Applications of this approach are a single synthesis algorithm
of decentralized controllers (with full observation) for the
whole considered family of architectures, and the development
of a convenient mathematical framework for a theory of
decentralized control architectures.

I. INTRODUCTION

The Decentralized Control Problem is a challenging
topic in the discrete-event systems theory. In this setting,
decentralized (or local) controllers supervise the global
behavior of a component-based system on the basis of
partial observation of its moves. The controllers might
collaborate to disallow moves of the components they are
in charge of, in order to ensure a behavioral property of the
(global) system. The desired behavior can be a set of finite
sequences of reactions, defined by a regular language, or as
we do here, by a temporal logic formula.

Classically, a decentralized control problem relies on
a predefined architecture of control which specifies how
the criteria for the local decision rules and the criterion
for the global decision rule (the collaboration between the
controllers). Obeying its local decision rule, each controller
makes a local decision to select the transitions it allows in
the current state of the global system, and by the global
decision rule, the local selections are fused to deliver the
set of transitions that finally can be fired. For example, in
the (conjunctive permissive) architecture of [13], the local
decision rule amounts to allow any uncontrollable transition,
while the global decision rule keeps only those transitions
that are allowed by all the controllers. As explained by
[13], most of the works in the literature on decentralized
control are based on a conjunctive architecture (see the
pioneer works of [3] and [12]): However, a few works
investigate other decisions criteria: [8] have studied rules
where a transition is allowed provided a majority of con-
trollers have selected it, and [13] have proposed a so-called

general architecture where the global decision rule relies
on a disjunctive fusion of the local decision rules; also a
combination of a conjunctive fusion and a disjunctive fusion
is studied in details.

In this paper, we make clear the central notion of ar-
chitecture by considering a logical framework: the local
decision rules are formulas which characterize the class
each controller belongs to, and the global decision rule
is a set of formulas indexed by the set of events of the
global system; the latter formulas will be embedded in
the logical formula describing the desired behavior. As a
consequence, the essential issue of Realizability, stated as
“given a discrete-event system, a desired behavior and an
architecture for a decentralized control, can the desired
behavior be achieved by decentralized controllers obeying
the given architecture?” can be turned into the model-
checking of some second order formula on the global
system.

Realizability have already been investigated for a behav-
ior which is some regular language K , as proposed by
the Ramadge and Wonham control theory [9]. Since [3]
and [12], followed by [13], the co-observability property of
K is commonly accepted as the algebraic characterization
of its realizability. Moreover, the co-observability property
is known to be decidable, with established computational
complexity results, and synthesis algorithms exist in this
successful case. Unfortunately, sticking to the conjunctive
architecture while relaxing the class of behavior leads
to undecidability: [2] showed that the undecidable Post
Correspondence Problem [7] reduces to a Realizability
Problem for the conjunctive architecture and for a very
simple temporal logic definable behavior.

In this paper, we investigate the Realizability Problem
where the desired behavior can be any propositional Mu-
calculus formula [5] and where the family of architectures
is comes from the literature. The principle of our approach
relies on a second order extension of the Mu-calculus, in the
spirit of [11]. For lack of space, we demonstrate the correct-
ness of our logic-based approach for convincing cases of
the conjunctive-permissive and disjunctive-antipermissive
architectures of [13].

As expected, by [2], our verification problem is necessari-
ly undecidable in general, but a uniform synthesis procedure

Proceedings of the
44th IEEE Conference on Decision and Control, and
the European Control Conference 2005
Seville, Spain, December 12-15, 2005

MoA01.3

0-7803-9568-9/05/$20.00 ©2005 IEEE 12



can be exhibited in the restricted case of total observation;
this is a strong result, since in general, the local controllers
are not entitled to take the same kind of local decisions,
and the synthesis procedure is not trivial.

The paper is organized as follows: Section II presents the
Mu-calculus Lµ and its interpretation over discrete-event
systems, called processes. In Section III, we recall the state
the art on decentralized control architectures and we define
the Realizability Problem for Mu-calculus definable desired
behaviors. A second order extension of the Mu-calculus
is proposed in Section IV, by allowing for quantifications
on propositions. In Section V, we revise the Realizability
Problem by introducing the notion of logically defined
architectures; we prove the correctness of the approach
by a comparing it with the original approaches for the
conjunctive-permissive and the disjunctive-antipermissive
architectures. In Section VI, for the favorable case of
total observation, a uniform synthesis procedure solving the
Realizability Problem is explained.

II. MU-CALCULUS AND PROCESSES

We assume given finite sets Ev = {σ, σ1, σ2, . . . } and
V ar = {X, Y, . . . }, respectively of events and variables.

Definition 1: Syntax of the Mu-calculus. The set of
formulas of the Mu-calculus, written Lµ, is defined by the
following grammar:

Lµ(� ϕ, ϕ′) ::= � |¬ϕ |ϕ ∨ ϕ′ | <σ>ϕ |X |µX.ϕ(X)

where σ ∈ Ev and X ∈ V ar.
Technically, fix-points formulas µX.ϕ(X) can properly

be interpreted (Def.3) whenever each occurrence of X in
ϕ(X) is under an even number of negation symbols ¬; see
[1]. We respectively use [σ]ϕ, ϕ ∧ ϕ′, and νX.ϕ(X) for
¬ <σ>¬ϕ, ¬(¬ϕ ∨ ¬ϕ′), and ¬µX.¬ϕ(¬X), moreover,
[ ]ϕ is a notation for

∧
σ∈Σ[σ]ϕ. Formulas where each

occurrence of a variable X is binded by a fix-point symbol
µ or ν are called sentences.

The Mu-calculus is interpreted over traces ofprocesses.
Formally,

Definition 2: Processes and their Traces. A process
with type Σ ⊆ Ev is a tuple S = 〈S, s0,−→〉, where S is a
set of states, s0 ∈ S is the initial state, and −→: S×Σ → S
is a partial function called the transition function. A process
S is finite if S is finite; and it is complete if −→(s, σ) is
defined for all s ∈ S and σ ∈ Σ. We use typical elements
S,S1,S2,R, for processes.

We write Σ(S) for the type of S, or simply Σ when it is
clear from the context. Also, we introduce intuitive notation-
s: s

σ−→ s′ is an intuitive notation whenever −→ (s, σ) = s′,
s −→ s′ means that s

σ−→ s′ for some σ, and s
σ−→ means

that s
σ−→ s′ for some s′.

An execution π of S is a finite sequence of the form
s0s1...sk where s0 = s0 and sj−1 −→ sj for all 0 < j ≤ k;
|π| = k is the length of π, and π(j) = sj , hence π(|π|)
is the last state of π. Strongly related to executions, traces

put the emphasis on events rather than states: a trace of S
is a finite sequence θ = σ1 . . . σk such that there exists an
execution π of S with |π| = k where π(j − 1)

σj−→ π(j)
for all 1 ≤ j ≤ k; clearly, via the transition function of
S, there is a one-to-one correspondence between traces and
executions. Each trace θ defines a unique execution, written
πθ . Hence, by abuse of vocabulary, we speak about the last
state of a trace θ, and write it state(θ); it is the last state
of πθ . We write Tr(S) the set of traces of S, and denote
by ε the empty trace; clearly πε = s0. In the following, θσ
denotes the sequence obtained by concatenating σ at the
end of the sequence θ; θσ ∈ Tr(S) whenever θ ∈ Tr(S)
and state(θ) σ−→.

Now, given a process S, a formula ϕ ∈ Lµ is interpreted
as a subset of Tr(S), those traces which satisfy ϕ. As the
semantics will be given by induction over ϕ, we need to fix
an interpretation for the atomic variable formulas X ∈ Var;
we will consider a valuation val, namely a function val :
V ar → 2Tr(S), for the interpretation of each X ∈ Var.

The Mu-calculus formulas’ semantics is defined by the
following:

Definition 3: Semantics of the Mu-calculus. Given a
process S = 〈S, s0,−→〉 and a valuation val : V ar →
2Tr(S), the interpretation of the formula ϕ is � ϕ �val

S ⊆
Tr(S) inductively defined by:

� � �val
S = Tr(S) � ¬ϕ �val

S = Tr(S) \ � ϕ �val
S

� ϕ ∨ ϕ′ �val
S = � ϕ �val

S ∪ � ϕ′ �val
S

� <σ>ϕ �val
S ={θ ∈ Tr(S)|state(θ) σ−→ and θσ ∈ � ϕ �val

S }
� X �val

S = val(X)
� µX.ϕ(X) �val

S =
⋂{T ⊆ Tr(S) |� ϕ �

val(T/X)
S ⊆ T }

Since for a sentence ϕ any variable is bounded by a
fix-point operator, the interpretation of ϕ is independent
of the valuation val; we then simply write � ϕ �S , and we
use S |= ϕ to express that ε ∈ � ϕ �S , and we read it “the
process S satisfies the sentence ϕ”.

The reader might wonder why our interpretation of the
Mu-calculus formulas is not standard, as in general, see for
example [1], the interpretation is a set of states rather than
a set of traces. The reason is that we aim at comparing
formulas and local/global decision rules of controllers,
and the latter rely on executions (traces). However, the
standard definition is retrieved by considering the set
state(� ϕ �val

S ) ⊆ S.

For any sentence ϕ, Inv(ϕ) is a notation for
νX.([ ]X ∧ ϕ). The statement Inv(ϕ) intuitively means
that “from now on, the property ϕ always holds”. Namely,
S |= Inv(ϕ) if and only if for all θ ∈ Tr(S), θ ∈ � ϕ �S .
Clearly, Inv(ϕ ∧ ϕ′) is equivalent to Inv(ϕ) ∧ Inv(ϕ′),
for any sentences ϕ and ϕ′.
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III. THE DECENTRALIZED CONTROL PROBLEM
WITH ARCHITECTURE

The natural framework for decentralized control
problems is based on a conjunctive architecture ([3],[12]),
followed by [8], [13] who proposed other constructions.
We recall these recent approaches and formalize them in a
unified mathematical setting, for the sake of clarity.

Let us write I for the finite set {1, ..., n}, to name n
controllers we shall explain now. Each controller i ∈ I is
represented by a partial function fi : Ev∗ → 2Ev, called a
local decision rule, with particular properties according to
two subsets of events: Σc,i and Σo,i respectively denoting
the events the controller i has control on, and the events
the controller can observe. Events in Σuc = Ev\⋃

i∈I Σc,i

are said to be uncontrollable. Although not explicit, e.g. in
[13], the Σc,i’s should be assumed pairwise disjoint.

We preliminarily introduce some convenient technical
definitions and notations. Given, i ∈ I, the projection
Pi : Ev∗ → Σ∗

o,i forgets all events outside Σo,i. Henceforth,
Pi(θ) is what the controller i observes from a trace θ. We
say that two traces θ and θ′ are indistinguishable for i,
written θ ∼i θ′, whenever Pi(θ) = Pi(θ′).

We can now formalize the notion of decision rules
as the basis of the notions of decentralized control and
architecture. We assume fixed a process S with type Σ,
and 2 ∗ n sets Σc,i and Σo,i (with i ∈ I).

Definition 4: Decision Rules, Decentralized Control
and Type of Architecture. A decision rule is a function
f : Ev∗ → 2Ev, with Σuc ⊆ f(θ) for all θ ∈ Ev∗.
The f -control of S is the process S|f = 〈Tr(S), ε,−→〉
where θ

σ−→ θσ whenever σ ∈ f(θ) (hence state(θ) σ−→).
A decision rule f is i-local if moreover θ ∼i θ′ implies
f(θ) = f(θ′)

A decentralized control is a pair F = ({fi}i∈I , f), where
each fi is an i-local decision rule and f is a decision rule
called the global decision rule. The F -control of S is the
process S|f , also written S|F . In general, f is strongly
related to the fi’s, as we will see bellow.

An architecture is a (possibly infinite) family of decen-
tralized controls. We use Arch for a typical architecture.

Architectures can be specified by stating constraints
on the local and the global decision rules of its ele-
ments, as in [8] and [13]. For example, we specify the
conjunctive-permissive architecture by Eq.(CP), and the
dual disjunctive-antipermissive architecture by Eq.(DA).

∀θ ∈ Tr(S), f(θ) =
⋂

i∈I fi(θ)
∀k �= i, Σc,k ⊆ fi(θ)

(CP)

∀θ ∈ Tr(S), f(θ) =
⋃

i∈I fi(θ)
∀k �= j, Σc,k ∩ fj(θ) = ∅ (DA)

The mixed architecture of [13] (called general archi-
tecture in their paper) combines Eq.(CP) and Eq.(DA),

according to two groups of controllers arranged respectively
in a conjunctive and disjunctive manner, the result obeys a
disjunctive fusion. Formally, given a subset I ⊆ I, and its
complementary set Ī = I \ I , the CPDA(I)-architecture
is defined by Equation (CPDA(I)), for any θ ∈ Tr(S):

⎧⎨
⎩

Σc,k ⊆ fi(θ) ∀i ∈ I, ∀k �= i
Σc,k ∩ fj(θ) = ∅ ∀j ∈ Ī , ∀k �= j
f(θ) = (

⋂
i∈I fi(θ)) ∪ (

⋃
j∈Ī fj(θ))

(CPDA(I))

In a slightly different spirit, [8] propose a global decision
which rules out an event σ whenever there is at least a fixed
number kσ ≤ |I| of controllers which disallow σ. Dually, σ
is globally allowed whenever for any possible subset J ⊆ I,
with |J | = kσ , there is at least one controller j ∈ J which
allows σ. This is formalized by the Equation (K) (where
K = {kσ}σ∈Σ is a fixed parameter) giving the Below-K
global decision rule: for all θ ∈ Ev∗,

f(θ) =
⋃

σ∈Σ

⋂

J ⊆ I
|J | = kσ

(
⋃
j∈J

fj(θ) ∩ {σ}) (K)

Consider now the Realizability Problem (RP): Given
a process S = 〈S, s0,−→〉, a sentence ϕ ∈ Lµ, and an
architecture Arch, Compute, when it exists, a decentralized
control F ∈ Arch s.t. S|F |= ϕ. We then say that ϕ ∈ Lµ

is Arch-realizable on S
From [13], we know that the RP is decidable when

we stick to formulas which characterize regular languages,
and to the architectures of Eq.(CPDA(I)). On the contrary,
by [2], the RP becomes undecidable even for the single
case of the conjunctive architecture, if additionally |Σc,i \
Σc,j|, |Σc,j \ Σc,i| ≥ 1, for some i, j ∈ I.

IV. ADDING QUANTIFIED PROPOSITIONS TO
THE MU-CALCULUS

We add propositions to the logic and its models to encode
the decision rules. In the following, (the last state of) a trace
carries the proposition cσ whenever the controller allows σ
to occur after the trace. For this, we assume fixed an infinite
set AP = {p, cσ, cσ

1 , cσ
2 , . . . } of atomic propositions, and we

allow any p ∈ AP to be a sentence of Lµ.
We say that a sentence is propositional if it is composed

of symbols �, p, ¬, or ∨.
The interpretation of the propositions is obtained by

considering labeled processes: a process S = 〈S, s0,−→〉
is labeled over P ⊆ AP if it is provided with a function
λ : S → 2P ; we write S = 〈S, s0,−→, λ〉. We take the
convention that λ(θ) = λ(state(θ)), for any trace θ. We
interpret the proposition p on S according to � p �val

S =
{θ ∈ Tr(S) |p ∈ λ(θ)}.

Labeled processes are combined by means of a syn-
chronous product as follows:

Definition 5: Synchronous Product. The synchronous
product of S1 = 〈S1, s

0
1,−→1, λ1〉 and S2 = 〈S2, s

0
2,−→2

, λ2〉, with Σ1 = Σ(S1) and Σ2 = Σ(S2), is the process
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S1 ⊗ S2= 〈S1 × S2, (s0
1, s

0
2),−→〉, with Σ(S) = Σ1 ∪ Σ2,

where (s1, s2)
σ−→ (s′1, s′2) whenever either:

• σ ∈ Σ1 ∩ Σ2 and s1
σ−→ s′1 and s2

σ−→ s′2, or
• σ ∈ Σ1 \ Σ2 and s1

σ−→ s′1 and s′2 = s2, or
• σ ∈ Σ2 \ Σ1 and s2

σ−→ s′2 and s′1 = s1.
and where λ((s1, s2)) = λ1(s1) ∪ λ2(s2), that local labels
of the components are merged in the product.

The traces of the process S are meant to be labeled, which
technically amounts to compose S with a labeling process
E :

Definition 6: Labeling Process. Given a set C =
{cσ}σ∈Σ of atomic propositions, a C-labeling process is
a process E = 〈E, e0,−→, λ〉 labeled over C, and which is
complete (over its type). For Σ ⊆ Ev, we let LProcΣ(C)
be the set of C-labeling processes with type Σ, and we use
E , Ei for typical elements.

A C-labeling of S, is a product S ⊗ E where E ∈
LProcΣ(C) and Σ ⊆ Σ(S).

Remark that Tr(S) = Tr(S ⊗E), up to the labels, since
Σ(E) ⊆ Σ(S) and E is complete. Remark also that given
Ci-labeling of S, Ei ∈ LProcΣo,i(Ci) (for each i ∈ I),
where Ci = {cσ

i }σ∈Σ, a unique i-local decision rule fi is
derived: σ ∈ fi(θ) if and only if cσ

i ∈ λ(θ), in S ⊗ Ei.
Actually, the RP amounts to state the existence of labeling

processes Ei ∈ LProcΣo,i (Ci). We add logical constructs to
the Mu-calculus in order to state this existence as ∃Ci(Σo,i).
We obtain a second order logic, that will be called the
second order Mu-calculus and we write SOLµ, defined as
follows:

SOLµ(� α, α′) ::= ϕ | ∃C(Σ).α | ¬α |α ∨ α′

where ϕ is Lµ sentence, C is a short abstract notation
designating a set {cσ}σ∈Σ of fresh atomic propositions and
Σ ⊆ Ev. Remark that a quantification ∃ cannot occur inside
fixed-point terms of Mu-calculus formulas.

The semantics of α ∈ SOLµ is a subset � α �S ⊆ Tr(S)
inductively defined by:

• � ϕ �S is given by Def.1;
• � ¬α �S and � α ∨ α′ �S are standard;;
• θ ∈ � ∃C(Σ).α �S whenever θ ∈ � α �S⊗E for some

E ∈ LProcΣ(C).
The interpretation of ∃C(Σ).α needs some more expla-

nation: Σ represents the set of observations. A trace θ
is labeled by cσ when the underlying controller locally
decides to allow σ after θ. As local decision rules must
be consistent with the observation of the controller, any
two indistinguishable traces θ, θ′ should then be either both
labeled by cσ or both not labeled by cσ. If cσ holds in θ, it
should hold in θσ′, if σ′ is not observed (σ′ �∈ Σ). By the
interpretation of ∃C(Σ).α, the propositions cσ ∈ C come
from labeling process which type is Σ; henceforth, by the
synchronous product, on the occurrence of the event σ′, the
labeling process E does not change its current state carrying
the label cσ , which entails that cσ also holds at θσ′.

In the next section, we explain how the logic SOLµ can
express the RP.

V. REVISING THE REALIZABILITY PROBLEM

Consider a set Ci = {cσ
i }σ∈Ev of atomic propositions for

each controller i ∈ I.
We now revise the notion of architecture in a correct

manner as stated by Theo.10. We prefix the logic-based
definitions by “L-” to distinguish them from the original
ones (of Sec.III).

Definition 7: L-Architecture. A logically defined archi-
tecture is a structure LArch = ({ϕi}i∈I , B) where
each ϕi is sentence, called the i-local decision formula,
and B = {Bσ}σ∈Ev is a set of propositional formulas,
where each Bσ is build upon a set of fresh propositions
{cσ

i }i∈I ⊆ AP , and is called the σ-global decision formula.
We first combine the σ-global decision formulas Bσ

with the desired behavior ϕ ∈ Lµ, using the notion of
adjustment:

Definition 8: Adjustment. Given a set B = {Bσ}σ∈Ev
of global decision formulas, and ϕ ∈ Lµ, the B-adjustment
of ϕ, written ϕ ∗ B is defined by induction on ϕ by:
� ∗ B = �, p ∗ B = p, X ∗ B = X
(ϕ ∨ ϕ′) ∗ B = (ϕ ∗ B) ∨ (ϕ′ ∗ B), (¬ϕ) ∗ B = ¬(ϕ ∗ B)
(<σ>ϕ) ∗ B = Bσ ∧ (ϕ ∗ B), (µX.ϕ) ∗ B = µX.(ϕ ∗ B)

Realizability can now be revised;
Definition 9: L-Realizability. Given a sentence ϕ ∈

Lµ and an logically defined architecture LArch =
({ϕi}i∈I , B), we say that ϕ is LArch-realizable on S if

S |= ∃C1(Σo,1)...∃Cn(Σo,n).(
∧
i∈I

ϕi) ∧ (ϕ ∗ B) (REAL)

Example 1: Examples of architectures from [13], [8] are:

1) Conjunctive-Permissive LArchCP

ϕP
i = Inv(

∧
σ �∈Σc,i

cσ
i )

Bσ =
∧

i∈I cσ
i

(L-CP)

ϕP
i expresses that the propositions cσ

i ’s always hold
provided σ is not controlled by i.

2) Disjunctive-Antipermissive LArchDA

ϕA
i = Inv(

∧
σ �∈Σc,i

¬cσ
i )

Bσ =
∨

i∈I cσ
i

(L-DA)

3) Mixed LArchCPDA(I)

ϕi = ϕP
i if i ∈ I, ϕA

i otherwise
Bσ = (

∧
i∈I cσ

i ) ∨ (
∨

j �∈I cσ
j ) (L-CPDA(I))

4) Below-K LArchK

Bσ =
∧
J

(
∨
j∈J

cσ
j ) where J ⊆ I and |J | = kσ

(L-K)
The correctness of the logical approach is stated by the
following theorem:

Theorem 10: Given ϕ ∈ Lµ, for all process S, we have:
ϕ is Arch-realizable on S if and only if ϕ is LArch-
realizable on S, where Arch ranges over the architectures
presented in Sec.III and LArch is its logically defined
counterpart given in the Ex.1.
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The rest of the section is dedicated to the proof of
Theo. 10; because of a lack of space, we will only dis-
cuss the cases of conjunctive-permissive and disjunctive-
antipermissive architectures.

Definition 11: B-Pruning. Given a set B = {Bσ}σ∈Ev
of global decision formulas (each Bσ based on the propo-
sitions cσ

i ’s), and given a process R = 〈R, r0,−→, λ〉
labeled over {cσ

i }Ev,I , the B-pruning of R is the pro-
cess RB�

= 〈R, ε,−→
B

, λ〉 where r
σ−→
B

r′ whenever r ∈
� Bσ �R and r

σ−→ r′

Now, combining Def.8 and Def.11 leads to the following
fundamental proposition:

Proposition 12: Given a sentence ϕ ∈ Lµ, a process R,
and a set B = {Bσ}σ∈Ev of global decision formulas. Then,
θ ∈ � ϕ �RB�

if and only if θ ∈ � ϕ ∗ B �R.
Proof: By induction over ϕ, where the only interesting

case is the one of <σ>ϕ: assume θ ∈ � <σ>ϕ �RB�

, we
prove that θ ∈ � (<σ>ϕ) ∗ B �R = � Bσ∧ <σ>(ϕ ∗ B) �R,
that is θ ∈ �Bσ �R and θ ∈ �<σ>(ϕ∗B) �R . By definition,
if θ ∈ � <σ>ϕ �RB�

, then θ′ = θσ is a trace of RB�
s.t.

θ′ ∈ �ϕ �RB�

. Because θ′ is a trace of RB�
, by Def.11, we

necessarily have θ ∈ � Bσ �R. Moreover, by induction on
ϕ, θ′ ∈ �ϕ �RB�

implies θ′ ∈ � ϕ ∗B �R, which concludes.
The reciprocal is similar.

We now prove Theo.10 for the conjunctive-permissive
architecture:

Assume ϕ is LArchCP -realizable on S. Then there exist
Ei ∈ LProcΣo,i(Ci), (i ∈ I), s.t. S⊗E1⊗ . . .⊗En satisfies∧

i∈I Inv(
∧

σ �∈Σc,i
cσ
i ) ∧ (ϕ ∗ {∧i∈I cσ

i }σ∈Ev).
From S ⊗ E1 ⊗ . . . ⊗ En |= Inv(

∧
σ �∈Σc,i

cσ
i ) for each

fixed i ∈ I, and by the semantics of Inv(.), we have θ ∈
� cσ

i �S⊗E1⊗...⊗En , for any θ ∈ Tr(S) and all σ �∈ Σc,i,.
Now, define the decision rule fi : Ev∗ → 2Ev by: for all

σ ∈ Ev, σ ∈ fi(θ) iff θ ∈ � cσ
i �S⊗E1⊗...⊗En . Henceforth,

fi is conform to the i-local decision rule of Eq.(CP).
Moreover, since Ei ∈ LProcΣo,i(Ci), fi is consistent
with ∼i (the observation equivalence of the controller i).
Finally, by Prop.12, (S ⊗ E1 ⊗ . . . ⊗ En)B�

|= ϕ. Now,
using the fact that the processes (S ⊗ E1 ⊗ . . . ⊗ En)B�

and
S⊗(E1 ⊗ . . . ⊗ En)B�

are isomorphic, we define the global
decision rule f : Ev∗ → 2Ev by: for all σ ∈ Ev, σ ∈ f(θ) iff
θσ ∈ Tr(S ⊗ (E1 ⊗ . . . ⊗ En)B�

). It is easy to prove that
f is a global decision rule satisfying Eq.(CP).

As S|f and S ⊗ (E1 ⊗ . . . ⊗ En)B�
have the same set

of traces, S|f |= ϕ, leading to the conclusion that ϕ is
ArchCP -realizable on S.

Conversely, assume that ϕ is ArchCP -realizable on
S. Then, there exists some decentralized control F =
({fi}i∈I , f) ∈ ArchCP where f(θ) =

⋂
i∈I fi(θ), for all

trace θ ∈ Tr(S), s.t. S|F |= ϕ. For each i ∈ I, define
Ei = 〈Tr(S), ε,−→i, λi〉 the complete process of type Σo,i

with λi(θ) = {cσ
i |σ ∈ fi(θ)}. By construction, Ei ∈

LProcΣo,i(Ci) with possibly unreachable states; notice that
Ei can be made finite provided f−1

i (Σ′) is a regular sub-
language of Ev∗, for all Σ′ ∈ 2Ev, or equivalently if the

local decision rule fi has a bounded memory.
Because the label cσ

i comes from Ei, �cσ
i �S⊗E1⊗...⊗En =

� cσ
i �S⊗Ei , for any i and σ. By definition of Ei, each θ ∈

Tr(S ⊗E1⊗ . . .⊗En) is labeled by cσ
i whenever σ �∈ Σc,i,

since σ ∈ fi(θ). As a conclusion, S ⊗ E1 ⊗ . . . ⊗ En |=∧
i∈I Inv(

∧
σ �∈Σc,i

cσ
i ).

Now, for each event σ, define Bf
σ =

∧
i∈I cσ

i if σ ∈
Σ(S), and by ¬� otherwise. We prove that for all ϕ ∈ Lµ

(not only sentences),

θ ∈ � ϕ �val
S|f implies θ ∈ � ϕ ∗ Bf �val

S⊗E1⊗...⊗En
(1)

which, when θ = ε and when ϕ is a sentence, entails S ⊗
E1 ⊗ . . . ⊗ En |= ϕ ∗ Bf .
The proof of (1) is conducted by induction over ϕ; the only
difficult cases are formulas <σ>ϕ and ¬ϕ.

Remark that θ ∈ � <σ>ϕ �val
S|f means on the one hand,

σ ∈ Σ(S) and θσ ∈ Tr(S|f ) (2)

and on the other hand,

θσ ∈ � ϕ �val
S|f (3)

From (2), σ ∈ f(θ) =
⋂

i fi(θ), and by definition of the
labelings λi’s,

θ ∈ �
∧
i∈I

cσ
i �val

S⊗E1⊗...⊗En
= � Bf

σ �val
S⊗E1⊗...⊗En

(4)

Finally, by applying the induction hypothesis on (3),

θσ ∈ � ϕ ∗ Bf �val
S⊗E1⊗...⊗En

(5)

Now, from (5) and (4), θ ∈ � (<σ>ϕ) ∗ Bf �S⊗E1⊗...⊗En
.

The case of ¬ϕ needs being check carefully as (1) is
not an equivalence, but we omit the proof here, but ¬
symbols should be pushed innermost in order to consider
propositions and their negations.

We now consider the disjunctive-antipermissive architec-
ture and we sketch the proof that ϕ is ArchDA-realizable on
S if and only if ϕ is LArchDA-realizable on S. The proof
follows the same line as for the conjunctive-permissive case.

First, we derive a decentralized control F =
({fi}i∈I , f) ∈ ArchDA from a logically defined
architecture LArchDA = ({ϕi}i∈I , B), where
the ϕi’s and B respect Eq.(L-DA), s.t.S |=
∃C1(Σo,1) . . . ∃Cn(Σo,n).(

∧
i∈I ϕi) ∧ ϕ ∗ BD. Define

the j-local decision rules fj’s by σ ∈ fj(θ) iff θ ∈
� cσ

j �S⊗E1⊗...⊗En . Now by Eq.(L-DA), for all θ ∈ Tr(S),
θ ∈ � cσ

j �S⊗E1⊗...⊗En whenever σ ∈ Σuc, which makes fj

a decision rule. Moreover, since for all σ ∈ Σc,k (k �= j),
we have θ ∈ � ¬cσ

j �S⊗E1⊗...⊗En , we obtain σ �∈ fj(θ),
and prove Eq.(DA). Defining fB by fB(θ) =

⋃
j∈I fj(θ)

renders a decision rule s.t. S|fB |= ϕ.
Secondly, from the assumption that some solution F =

({fi}i∈I , f) ∈ ArchDA exists for ϕ and S, we can build
labeling-processes Ei’s, and formulas ϕi (i ∈ I) and Bσ

(σ ∈ Ev) so that Eq.(REAL) holds.
The proofs for the Mixed and the Below-K architectures

are very similar.
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VI. CONCLUSION AND DISCUSSION

We have presented a second order logic to specify
the Realizability Problem of a decentralized control with
architecture. A strong point in favor of the approach are
clear definitions for both the notion of architecture and the
statement of the problem.

The logically defined architectures rely, on the one hand,
on branching-time formulas which characterize the local
decision rules of the controllers, and on the other hand,
on propositional formulas which denote the global decision
rule. The logical view enables us to reduce the Realizabil-
ity Problem to a verification problem of a second order
formula over the process under control; this was proved for
standard architectures of the literature [3], [12], [8], [13],
which logical counterparts emerge in a very natural and
uniform manner. It is worthwhile noting that new kinds of
architectures can be directly specified in the logic, and we
believe it is very natural.

Since by [2], the Realizability Problem for the
conjunctive-permissive architecture is undecidable, as it
reduces to the Post Correspondence Problem [7]. An im-
mediate corollary of Theo.10 is the undecidability of the
model-checking of ObsLµ statements, as already noticed
by [6]. Nevertheless, we can take advantage of the logical
framework to derive a decision procedure for the Realizabil-
ity Problem, provided the controllers can observe all event
from the system, but whatever the architecture can be.

Theorem 13: [10] Realizability and Synthesis. Given
any architecture LArch = ({ϕi}i∈I , B), any process S of
type Σ, and any sentence ϕ ∈ Lµ, it can be decided whether

S |= ∃C1(Σ) . . . ∃Cn(Σ).(∧i∈Iϕi) ∧ (ϕ ∗ B) (FullObs)

In the affirmative, we can synthesize a finite solution,
namely finite processes E1, . . . , En s.t. S⊗Ei |= ϕi, (i ∈ I),
and S ⊗ (E1 ⊗ . . . ⊗ En)B�

|= ϕ.
The arguments are the following: the formula in

(FullObs) belongs to the logic of [10] which model-
checking is decidable; we briefly explain the principles
of the algorithm. According to [4], from any Mu-calculus
sentence, we can construct a parity tree automaton which
accepts all processes satisfying this formula; moreover, if a
process is accepted by an automaton, then a finite process is
also accepted by this automaton. Consider the automaton of
the formula (

∧
i∈I ϕi) ∧ (ϕ ∗B) - remark the propositions

cσ
i ’s. By [10], this automaton can be projected to abstract

from the cσ
i ’s, so that the resulting accepts the models of

(FullObs). Still from [10], a {cσ
i }Ev,I-labeling finite process

E of type Σ can be synthesized s.t. S ⊗ E |= (
∧

i∈I ϕi) ∧
(ϕ ∗ B).

As far as we are concern in Theo. 13, this computation
amounts to synthesize in a single step the process E =
E1 ⊗ . . . ⊗ En with S ⊗ E |= ϕi, ∀i and S ⊗ EB�

|= ϕ.
By defining Ei as the process E where the cσ

j ’s (j �= i)
are removed, and because the propositions in ϕi range over
{cσ

i }σ∈Σ, we get the right objects E1, . . . , En to conclude.

Complexity of (FullObs) is EXPTIME-complete: the
synthesis procedure of [10] based on parity tree automata is
EXPTIME. The algorithm is optimal: indeed, (FullObs) is
EXPTIME-hard because the Realizability Problem for the
universal process under control with the trivial architecture
of a single controller contains the satisfiability problem of
Mu-calculus sentences [4].

Future work mainly will focus on investigating the logi-
cally defined architectures and their properties: for example
their expressiveness, their comparison, preorders between
them s.a. independence. Notice that the framework is very
easy to use; for example, general kinds of architectures can
be considered, with global decision formulas being temporal
rather than only propositional, e.g. expressing that a given
event cannot be disallowed twice in a row by the same
controller. We expect a generalization of Theo.10 for which
we already know that a single general proof can be given,
provided the decision rules have some “regular” feature.

REFERENCES

[1] A. Arnold and D. Niwinski, Rudiments of mu-calculus. North-
Holland, 2001.

[2] A. Arnold, A. Vincent, and I. Walukiewicz, “Games for synthesis of
controllers with partial observation,” Theoretical Computer Science,
vol. 1, pp. 7–34, 2003.

[3] R. Cieslak, C. Desclaux, A. S. Fawaz, and P. Varaiya, “Supervisory
control of discrete-event processes with partial observations,” IEEE
transactions on automatic control, vol. 33, no. 3, pp. 249–260, 1988.

[4] E. A. Emerson and C. S. Jutla, “Tree automata, mu-calculus and
determinacy,” in Proceedings 32nd Annual IEEE Symp. on Founda-
tions of Computer Science, FOCS’91, San Jose, Puerto Rico, 1–4
Oct 1991. Los Alamitos, California: IEEE Computer Society Press,
1991, pp. 368–377.

[5] Kozen, “Results on the propositional µ-calculus,” Theoretical Com-
puter Science, vol. 27(3), pp. 333–354, 1983.

[6] S. Pinchinat and S. Riedweg, “A decidable class of problems for con-
trol under partial observation,” to appear in ”Information Processing
Letters”, vol. 95, pp. 454–460, 2005.

[7] E. Post, “A variant of a recursiveley unsolvable problem,” Bulletin
of the American Mathematical Society, vol. 53, pp. 264–268, 1946.

[8] J. H. Prosser, M. Kam, and H. G. Kwatny, “Decision fusion and
supervisor synthesis in decentralized discrete-event systems,” Pro-
ceedings of the American control conference, pp. 2251–2255, 1997.

[9] Ramadge and Wonham, “The control of discrete event systems,” in
Proc. of the IEEE, vol. 77(1), 1989, pp. 81–98.

[10] Riedweg and Pinchinat, “Quantified mu-calculus for control synthe-
sis,” in Mathematical Foundations of Computer Science, ser. LNCS,
vol. 2747, 2003, pp. 642–651.

[11] S. Riedweg and S. Pinchinat, “A decidable class of problems for
control under partial observation,” in Proc. 2005 American Control
Conference., Portland, Oregon, jun 2005.

[12] K. Rudie and W. M. Wonham, “Think globally, act locally : decentral-
ized supervisory control,” IEEE transactions on automatic control,
vol. 37, no. 11, pp. 1692–1708, 1992.

[13] T.-S. Yoo and S. Lafortune, “A general architecture for decentral-
ized supervisory control of discrete-event systems,” Discrete event
dynamic systems : theory and applications, 2002.

17


	MAIN MENU
	PREVIOUS MENU
	---------------------------------
	Search CD-ROM
	Search Results
	Print


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (None)
  /CalCMYKProfile (None)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveEPSInfo false
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 2.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 2.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <>
    /FRA <>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <>
    /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice




