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Abstract— The problem of dynamic errors-in-variable iden-
tification is studied in this paper. We investigate asymptotic
convergence properties of the previous bias-eliminating algo-
rithms. We first derive an error dynamic equation for the
bias-eliminating parameter estimates. We then show that the
asymptotic convergence of the bias-eliminating algorithms is
basically determined by the eigenvalue of the largest mag-
nitude of a system matrix in the estimation error dynamic
equation. Moreover, the bias-eliminating algorithms possess
desired convergence when all the eigenvalues of the system
matrix in the estimation error dynamic equation fall strictly
inside the unit circle. Given possible divergence of the iteration-
type bias-eliminating algorithms under very low SNR (signal-
to-noise ratio) values at the system input and output, we
re-formulate the bias-elimination problem as a minimization
problem associated with a concentrated loss function and
develop a variable projection algorithm to efficiently solve the
resulting minimization problem. Finally, we illustrate and verify
the theoretical results through stochastic simulations.

I. INTRODUCTION

Identification of dynamic errors-in-variables (EIV) sys-
tems where both input and output measurement data are
corrupted by noise is a fundamental research problem. It
has applications in many practical areas, such as, control
engineering, signal processing, image processing, time series
analysis, econometrics and so on. A number of approaches
have been developed in the fast few decades. For examples,
see [1], [2], [3], [4], [5], [6], [7], [8], [9], etc. An overview of
different identification methods for the dynamic EIV problem
can be found in a recent paper [10].

In this paper we center on the bias-eliminating least
squares (BELS) algorithms, which, with a modest com-
putational cost, usually give more accurate estimates than
standard instrumental variable (IV) methods for identification
of dynamic EIV systems. The BELS algorithms are built
upon the bias compensation principle. That is, the variances
of the input and output measurement noises are first esti-
mated and the noise-induced bias in the conventional least-
squares (LS) parameter estimate is then eliminated so as
to achieve estimation consistency. The iterative algorithmic
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structure of the BELS algorithms lends itself easily to on-
line implementation for recursive identification. Since the
BELS algorithms involve an iterative estimation procedure,
the convergence of such iterative process is necessarily
investigated. In [4], [11], attempts were made to analyze
the convergence of the BELS algorithms by means of the
contraction mapping and fixed point theory. Although the
convergence analysis given in [4], [11] is on the track, it is
not quite rigorous theoretically. Indeed, it has been observed
in practice that when the system input and output are both
corrupted by a modest amount of noise, the BELS algorithms
are able to converge rapidly. However, the algorithms may
be divergent in the presence of high input noise and/or high
output noise. Hence, convergence properties of the BELS
algorithms are an important yet open question. In this paper
we shall investigate asymptotic convergence properties of the
BELS algorithms for the case of a large number of data
samples.

The outline of the paper is as follows. Section II states the
problem of identifying dynamic errors-in-variables systems,
and also re-derives a set of key equations utilized by the
BELS algorithm in [11]. Section III deduces the error dy-
namic equation for the BELS parameter estimates. On this
basis, a study of the asymptotic convergence properties for
the BELS algorithms is presented. Section IV proposes an al-
ternative method, called the variable projection algorithm, for
identification of dynamic errors-in-variables systems. Section
V presents a numerical simulation study to demonstrate the
theoretical analysis. Finally, Section VI concludes the paper
with some remarks.

II. THE ERRORS-IN-VARIABLES PROBLEM

Let a linear system to be identified be described by the
following model

y0(t) =
B(q−1)

A(q−1)
u0(t), (1)

where
A(q−1) = 1 + a1 q−1 + . . . + ana q−na

B(q−1) = b1 q−1 + . . . + bnb q−nb.
(2)

Since the input u0(t) and the output y0(t) are usually
measured with corrupting noise, the noisy measurements u(t)
and y(t) are obtained via

u(t) = u0(t) + ũ(t)
y(t) = y0(t) + ỹ(t).

(3)

The following general assumptions are adopted:

A1. A(q−1) and B(q−1) are co-prime polynomials.

Proceedings of the
44th IEEE Conference on Decision and Control, and
the European Control Conference 2005
Seville, Spain, December 12-15, 2005

WeA04.3

0-7803-9568-9/05/$20.00 ©2005 IEEE 4263



A2. The system orders na and nb are a priori known.
A3. The noise free input u0(t) is persistently exciting of

sufficient order.
A4. ũ(t) and ỹ(t) are mutually independent white noise

sequences, of zero mean, and variances λu and λy ,
respectively. The noise signals are independent of u0(t).

The aim of the dynamic EIV identification is to estimate
the parameter vector

θ = (a1 . . . ana b1 . . . bnb)
T (4)

as well as the noise variances λu and λy from data records
of the noisy signals {u(t), y(t)}N

t=1.
Let the regressor vector ϕ(t) be defined by

ϕ(t) = (−y(t − 1) . . . − y(t − na)

u(t − 1) . . . u(t − nb))T . (5)

It is straightforward to decompose ϕ(t) into a sum of one
noise-free term and one noise term:

ϕ(t)
∆
= ϕ0(t) + ϕ̃(t)

= (−y0(t − 1) . . . − y0(t − na)

u0(t − 1) . . . u0(t − nb))T

+(−ỹ(t − 1) . . . − ỹ(t − na)

ũ(t − 1) . . . ũ(t − nb))T . (6)

We use θ0 to denote the true value of the parameter vector,
and use θ as a general notation for the parameter vector with
arbitrary values in what follows. Let the covariance matrix
and covariance vector be defined respectively by

Rϕ = E[ϕ(t)ϕT (t)], rϕy = E[ϕ(t)y(t)]. (7)

For the investigation conducted in this paper, it will suffice
to deal with the case of an infinite number of data points (i.e.,
N → ∞). Hence, there is no need to distinguish between

Rϕ and its estimate 1
N

N∑
t=1

ϕ(t)ϕT (t) from available data

points. We will also use the notations Rϕ0
, Rϕ̃, etc. which

are compatible and self-explanatory. It is evident that the
relation Rϕ = Rϕ0

+ Rϕ̃ holds. Moreover, it follows from
Assumption A4 that

Rϕ̃ = E[ϕ̃(t)ϕ̃T (t)] =

(
λyIna 0

0 λuInb

)
. (8)

The least squares estimate θ̂LS of θ can be written as the
solution to the normal equations

Rϕθ̂LS = rϕy. (9)

Since
(Rϕ0

+ Rϕ̃)θ̂LS = E[ϕ(t)y(t)]

= E[ϕ0(t)y0(t)] + E[ϕ̃(t)ỹ(t)]

= E[ϕ0(t)ϕ
T
0 (t)]θ0

= Rϕ0
θ0, (10)

it is easy to see that θ̂LS is biased. Equation (10) also shows
that if the noise variances λy and λu are known then the bias
can be estimated and eliminated:

(Rϕ − Rϕ̃)θ̂BELS = rϕy (11)

where θ̂BELS denotes the bias-eliminated least squares es-
timate. A number of algorithms have appeared to construct
such bias-elimination schemes, see [3], [4], [11], [12]. Here
we will examine the algorithm given in [11].

In order to determine λy and λu (and hence Rϕ̃), two
more relations are needed. One such relation can be derived
from the minimal value of the least squares criterion:

VLS = min
θ

E[y(t) − ϕT (t)θ]2

= E[y(t) − ϕT (t)θ̂LS ]2

= λy + E[ϕT
0 (t)θ0 − ϕT (t)θ̂LS ]2

= λy + θT
0 Rϕ0

θ0 + θ̂T
LSRϕθ̂LS − 2θ̂T

LSRϕ0
θ0.

From (9) and (10) it follows that Rϕ0
θ0 = Rϕθ̂LS , and hence

VLS = λy + θT
0 Rϕθ̂LS + θT

0 Rϕ0
θ̂LS − 2θ̂T

LSRϕ0
θ0

= λy + θT
0 Rϕ̃θ̂LS . (12)

Note that (12) can be seen as a linear equation in λy and
λu.

To get also a second relation for λy and λu, an extended
model structure has to be considered. This is similar to the
so-called Frisch scheme [3]. For this purpose we introduce
extended versions of ϕ(t), θ and θ0 as

ϕ̄(t) =

(
ϕ(t)
ϕ(t)

)
, θ̄ =

(
θ
θ

)
, θ̄0 =

(
θ0

0

)
. (13)

The model extension can, for example, mean that an
additional A parameter is appended. In that case,

ϕ(t) = −y(t − na − 1), θ = ana+1. (14)

Another possibility is to append an additional B parameter,
leading to

ϕ(t) = u(t − nb − 1), θ = bnb+1. (15)

We stick to the general case here covering (14) and (15)
as special cases. We note in passing that although we will
for simplicity assume ϕ(t) being scalar, it is possible to
generalize the analysis to ϕ(t) being a vector. The number
of new relations derived will be equal to the dimension of
ϕ(t).

Next consider least squares estimation in the extended
linear regression model

y(t) = ϕ̄T (t)θ̄, (16)

which leads to
Rϕ̄

ˆ̄θLS = rϕ̄y. (17)

Recall that y(t) = y0(t)+ ỹ(t), (3), and ϕ(t) = ϕ0(t)+ϕ̃(t),
(6). Hence

Rϕ̄
ˆ̄θLS = rϕ̄0y0

+ r ˜̄ϕỹ

= Rϕ̄0
θ̄0

= (Rϕ̄ − R ˜̄ϕ)θ̄0. (18)

Note that in the right hand side R ˜̄ϕ varies linearly with
λy and λu. Set

H = (0, . . . , 1) ∈ Rna+nb+1, (19)

J =

(
Ina+nb

0

)
, θ̄0 = Jθ0. (20)
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Recalling that Hθ̄0 = 0, we find that (18) implies

H ˆ̄θLS = HR−1
ϕ̄ (Rϕ̄ − R ˜̄ϕ)θ̄0

= −HR−1
ϕ̄ R ˜̄ϕJθ0. (21)

Set

λ = (λy λu)T . (22)

The matrix Rϕ̃ given in (8) may be denoted by Rϕ̃(λ).
Summing up so far we have derived the following equations
for determining θ and λ:

Rϕθ̂LS = [Rϕ − Rϕ̃(λ)]θ, (23)

VLS = λy + θ̂T
LSRϕ̃(λ)θ, (24)

H ˆ̄θLS = −HR−1
ϕ̄ R ˜̄ϕ(λ)Jθ. (25)

Equations (23)-(25) turn out to be bilinear in the unknowns
θ and λ. That is, they are linear in θ and linear in λ. There
are different ways to solve these equations. We examine two
different algorithms in the next two sections.

In this paper we only consider the white measurement
noise cases. For more general colored noise cases, some other
BELS algorithms have been proposed, see [5]. The basic
idea remains the same except that (24) and (25) need to be
changed by other equations.

III. THE BELS ALGORITHM

In order to remove the bias from θ̂LS , the BELS algorithm
[11], [12], [4] aims to solve the equations (23)-(25), which
consists of the following steps.

Initialization: Set

k = 0, θ̂(0) = θ̂LS . (26)

Iteration: Solve{
VLS = λy + θ̂T

LSRϕ̃(λ)θ̂(k),

H ˆ̄θLS = −HR−1
ϕ̄ R ˜̄ϕ(λ)Jθ̂(k).

(27)

with respect to λ. Denote the outcome by λ̂(k), then
compute

θ̂(k+1) = θ̂LS + R−1
ϕ Rϕ̃(λ̂(k))θ̂(k). (28)

Increase k by 1, k := k + 1, and iterate until
convergence.

It has been observed in practice that this algorithm con-
verges quickly when the amounts of noise on the input and
output sides are modest. No convergence may occur if the
amount of noise is very high. To analyze the situation we will
examine the local convergence property of the algorithm.

Due to the fact that the underlying equations are bilinear,
it is possible to write the algorithm in the following compact
form

θ̂(k+1) = c + C(λ̂(k))θ̂(k),

F (θ̂(k))λ̂(k) = f.
(29)

Explicit expressions for c, C(λ), F (θ) and f are given
in [13]. Furthermore, C(λ) and F (θ) are affine functions,
namely

C(λ) = C0 +
2∑

i=1

Ciλi,

F (θ) = F0 +
na+nb∑

j=1

Fjθj .

(30)

Introduce also the matrices

C̄(θ) = (C1θ C2θ), (na + nb)|2

F̄ (λ) = (F1λ F2λ . . . Fna+nbλ). 2|(na + nb)
(31)

It follows easily from (30) and (31) that

C(λ)θ = C0θ + C̄(θ)λ,

F (θ)λ = F0λ + F̄ (λ)θ.
(32)

The true parameter vectors θ0 and λ0 certainly form a
stationary solution of the recursion (29). Hence

θ0 = c + C(λ0)θ0,

F (θ0)λ0 = f.
(33)

Close to this stationary solution we can model the algorithm
behavior by linearization. Set

θ̃(k) = θ̂(k) − θ0, λ̃(k) = λ̂(k) − λ0. (34)

We have
θ̃(k+1) ≈ C(λ0)θ̃

(k) + C̄(θ0)λ̃
(k), (35)

F (θ0)λ̃
(k) + F̄ (λ0)θ̃

(k) ≈ 0, (36)

see appendix for details. It implies

θ̃(k+1) = Gθ̃(k), (37)

with
G = C(λ0) − C̄(θ0)F

−1(θ0)F̄ (λ0). (38)

In the above analysis, one must of course assume that the
matrix F (θ0) is nonsingular. If this is not the case one
would anyway expect great difficulties when solving the last
equation of (29).

Equation (37) represents an error dynamics equation for
the BELS parameter estimates, with G being a system
matrix. From (37) one can directly see that the algorithm
converges locally (that is, for initial values close enough
to the true values), precisely when the system matrix G in
(37) has all eigenvalues strictly inside the unit circle. The
above analysis is based on infinite data size. Since G changes
continuously when N → ∞, the conclusion of the analysis
holds also as long as N is large enough. In [13] more detailed
expressions for the system matrix G are provided. There, we
also prove the following lemma.

Lemma 1: The matrix G has always one eigenvalue equal
to zero. In case Eu2

0(t) becomes large, the eigenvalues of G
all satisfy

λj(G) = O(1/Eu2
0(t)). (39)

�
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The lemma shows that for high signal-to-noise ratios, all
eigenvalues of G will be small, and the convergence of the
algorithm will be quick.

Numerical examinations, which will partly be presented
in Section V, confirm indeed that G has small eigenvalues
for large SNR on the input and output sides. Moreover,
for moderate SNR, if the maximum absolute eigenvalue
of G is smaller than 0.9, then convergence of the BELS
algorithm can be achieved. However, there are also cases
where for very low SNR values, G can have eigenvalues
outside the unit circle. Even if the corresponding SNR values
are unrealistically small, this nevertheless shows that the
BELS algorithm does not always converge. This observation
is one of the reasons for examining alternative methods for
solving (23)-(25).

IV. A VARIABLE PROJECTION ALGORITHM

We will now derive an alternative algorithm for solving
the equations (23)-(25). We write them compactly as

M(λ)θ = m(λ), (40)

where M(λ) is an (na+nb+2)|(na+nb) matrix, and m(λ)
is an (na + nb + 2) vector. Both M(λ) and m(λ) are affine
functions of λ. For explicit expressions of M(λ) and m(λ),
please see appendix.

One way to solve (40) is to reformulate this as an
optimization problem

(θ̂, λ̂) = arg min
θ,λ

‖ M(λ)θ − m(λ) ‖2 . (41)

Assuming that M(λ) has full column rank (equal to na+nb),
the minimization with respect to θ is simple:

θ̂ = θ̂(λ̂) = M†(λ)m(λ)

= [MT (λ)M(λ)]−1MT (λ)m(λ), (42)

where M† denotes the pseudo-inverse of M . The full rank
assumption is generically fulfilled, see [13]. Inserting the
expression (42) into (41) leads to the concentrated loss
function

V (λ) = ‖ m(λ) − M(λ)M†(λ)m(λ) ‖2

= ‖ [I − M(λ)M†(λ)]m(λ) ‖2

= mT (λ)[I − M(λ)M†(λ)]m(λ). (43)

In (43), I − M(λ)M†(λ) is the orthogonal projection onto
the null space of MT (λ). To minimize V (λ) with respect
to λ is often referred to as a variable projection problem, in
particular when m(λ) does not depend on λ. Such minimiza-
tion problems occur frequently in sensor array processing as
well as in many other applications [14], [15], [16]. It has
also been proposed for an errors-in-variables problem using
a different setup [17]. Here, the algorithm will run as follows.

1. Choose an initial value of λ, say λ =

(
0
0

)
.

2. Minimize V (λ) in (43) to get

λ̂ = arg min
λ

V (λ) (44)

TABLE I

PARAMETERS FOR DIFFERENT CASES

a1 a2 b1 b2 d SNRu SNRy ϕ

S1 −0.8 1.0 −0.5 0.97 4.55 −y(t − 2)
S2 −0.8 1.0 −0.5 0.97 4.55 u(t − 2)
S3 −0.8 1.0 −0.5 10.97 14.55 −y(t − 2)
S4 −0.8 1.0 −0.5 10.97 14.55 u(t − 2)
S5 −0.8 1.0 −0.9 2.58 6.44 −y(t − 2)
S6 −0.8 1.0 −0.9 2.58 6.44 u(t − 2)
S7 −1.5 0.7 1.0 0.5 −0.5 0.97 12.65 −y(t − 3)
S8 −1.5 0.7 1.0 0.5 −0.5 0.97 12.65 u(t − 3)

3. Check that V (λ̂) ≈ 0 (within the rounding error effects),
so that the minimization has ended successfully.

4. Compute θ̂(λ̂) from (42).

V. NUMERICAL ILLUSTRATION

We now conduct some numerical investigations to further
illustrate and support the preceding theoretical analysis.

A. Eigenvalues of G and local convergence of the BELS
algorithm

Consider the linear system

A(q−1)y0(t) = B(q−1)u0(t), (45)

where the undisturbed input is modeled as an AR(1) process

u0(t) + du0(t − 1) = e(t), (46)

and e(t) is a zero mean white noise. Further let the noise
signals ũ(t) and ỹ(t) be mutually uncorrelated white noise
signals. Let λe, λy and λu be the variances of the signals
e(t), ỹ(t) and ũ(t), respectively. For each simulation 1000
realizations are done.

A number of first and second order systems with different
parameters are considered (see Table I). In each case, both
input and output noise have unit variances. System parame-
ters are estimated by using the BELS algorithm as described
in Section III.

From (37), we get

‖ θ̃(k+1) ‖ ≤ max |λk(G)| ‖ θ̃(k) ‖, (47)

where G is assumed to have precisely one eigenvalue that
is the largest in magnitude. When k is large, the equality in
(47) almost establishes, which gives

‖ θ̃(k+1) ‖

‖ θ̃(k) ‖
=

‖ θ̂(k+1) − θ0 ‖

‖ θ̂(k) − θ0 ‖
≈ max |λk(G)|, (48)

where θ̂(k+1) and θ̂(k) are the estimates of θ at iteration k+1
and k, respectively, and θ0 is the true θ. Considering that N

is finite in a realization, then θ̂
(k)
N → θ∗N �= θ0. The local

convergence speed is calculated by the ratio

α(k) =
‖ θ̂(k+1) − θ∗N ‖

‖ θ̂(k) − θ∗N ‖
, (49)

where θ∗N is evaluated as θ̂
(k)
N with large k.
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TABLE II

LOCAL CONVERGENCE RATE OF BELS ALGORITHMS AND MAXIMUM

ABSOLUTE EIGENVALUE OF G FOR DIFFERENT SYSTEMS.

System max |λk(G)| lim
k→∞

α(k) lim
k→∞

α(k)

(N = 1000) (N = 500)
S1 0.039 0.039± 0.014 0.040± 0.019
S2 0.155 0.156± 0.049 0.158± 0.076
S3 0.004 0.004± 0.001 0.004± 0.016
S4 0.018 0.018± 0.008 0.020± 0.010
S5 0.041 0.040± 0.006 0.040± 0.008
S6 0.024 0.029± 0.005 0.030± 0.007
S7 0.641 0.626± 0.074 0.685± 0.092
S8 0.652 0.611± 0.171 0.659± 0.346

For comparison we also calculate the system matrix G
by formula (38) and its eigenvalues. The maximum absolute
value of the eigenvalues of G and the stationary value of
the α(k) for different systems are shown in Table II (both
the mean and standard deviation of lim

k→∞
α(k) are listed for

the cases N = 1000 and N = 500). We can see that the
values of max |λk(G)| and lim

k→∞
α(k) are very similar for

each case, and that there is a larger spread of α(k) between
the realizations when N is decreased.

B. Behavior of eigenvalues of G

The results of Table II indicate that the larger SNR on the
input and output sides, the smaller the eigenvalues for the
system matrix G. In general, for modest SNR, max |λ(G)| ≤
0.9. However, for some low SNR cases, max |λ(G)| may be
larger than one. For example, consider a second order system
with A(q−1) = 1−1.5q−1+0.7q−2, B(q−1) = q−1+0.5q−2,
and the undisturbed input as u0(t) = 1

1−0.5q−1 e(t). When
the output SNR equals to −4dB, and the input SNR equals
0dB, the relevant max |λ(G)| is 1.308 or 1.625 for adding
an additional B parameter or an A parameter, respectively.
Both values are larger than one.

In practice, max |λ(G)| < 0.9 is needed to make the
BELS algorithm converge. In Figure 1, we plot the corre-
sponding output SNR versus input SNR curve to maintain
the max |λ(G)| = 0.9 for the same second order system as
described above. It manifests that the BELS algorithm will
keep convergent only when input SNR and output SNR are
within the marked area. Further, it is worthy to notice that, for
the same system parameters, the converging area for adding
extra A parameter is generally larger than that of adding B
parameters. This result implies that adding extra A parameter
is a better choice when using the proposed algorithms.

C. Use of the variable projection algorithm

The variable projection algorithm and the BELS algorithm
were applied to the same realization, i.e. under the same data
and noise conditions for eight systems listed in Section V-A.
In the variable projection algorithm, equation (44) is solved
by Nelder-Mead minimization method using the fminsearch
function in Matlab. The estimation results display that the
same θ̂ is achieved for each realization, and the deviation is
the same for the two algorithms.

TABLE III

PARAMETERS FOR DIFFERENT LOW SNR CONDITIONS

System SNRu SNRy λe ϕ

S9 −6.02 5.66 0.2 −y(t − 3)
S10 −6.02 5.66 0.2 u(t − 3)
S11 −9.03 2.65 0.1 −y(t − 3)
S12 −9.03 2.65 0.1 u(t − 3)

TABLE IV

ESTIMATION RESULTS BY USING THE BELS AND THE VARIABLE

PROJECTION ALGORITHMS FOR DIFFERENT LOW SNR CONDITIONS.

System max |λ(G)| ||θ̂ − θ0|| λ̂y λ̂u

S9(BELS) 0.8991 0.0587 0.9916 1.0408
S9(VP) 0.8991 0.0447 0.9908 1.0423

S10(BELS) 0.9032 252.14 0.3859 1.0809
S10(VP) 0.9032 0.0451 0.9847 0.9349

S11(BELS) 0.9469 690.38 0.0062 1.0466
S11(VP) 0.9469 0.0126 0.9419 1.0081

S12(BELS) 0.9492 144.32 0.4978 1.0659
S12(VP) 0.9492 0.0804 0.9634 0.9633

Besides, the performances of these two algorithms under
the low SNR conditions are analyzed. Consider system S9-
S12 that have the same parameters as system S7-S8, but
with much lower input signal power, see Table III. The
simulation results (see Table IV) show that for the variable
projection algorithm, the convergence is typically achieved
even if max |λ(G)| > 0.9. But this is not true for the
BELS algorithm which converge only for system S9 with
max |λ(G)| < 0.9. In short, the variable projection algorithm
is more robust (convergence is more easily achieved) than the
BELS algorithm in the low SNR case.

VI. CONCLUSIONS

In this paper asymptotic convergence properties of the
previously proposed BELS algorithms for dynamic EIV
identification have been investigated for large sample data
cases. It has been shown that the convergence of the BELS

Fig. 1. Converging area of input and output SNR for a second order system
with parameters A = [1 − 1.5 0.7], B = [1 0.5], d = 0.5 and
λe = 1. For points in the shadowed areas max |λ(G)| ≤ 0.9.
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algorithms is essentially determined by eigenvalues of a
system matrix in the estimation error dynamic equation.
When the system matrix G has all its eigenvalues well inside
the unit circle, the BELS algorithms can converge fast. This
is the case when there is high SNR on the system input and
output sides. For moderate SNR, as long as the maximum
absolute eigenvalue of G is smaller than 0.9, the convergence
of the BELS algorithm is also achieved. However, in the
presence of very low SNR, the system matrix G may have
eigenvalues outside the unit circle, leading to the possible
divergence of the BELS algorithms. To overcome this issue,
the bias-eliminating problem has been re-formulated as a
minimization problem associated with a concentrated loss
function. Subsequently, a variable projection algorithm has
been proposed to perform unbiased parameter estimation for
the dynamic EIV problem. The numerical examples have
been presented to support the theoretical analysis.

APPENDIX

A. Derivation of (35) and (36)

Using (30)-(34) we have

θ̃(k+1) = c + C(λ0 + λ̃(k))[θ0 + θ̃(k)] − θ0

= c + [C(λ0) +

2∑
i=1

Ciλ̃
(k)
i ][θ0 + θ̃(k)] − θ0

= c + C(λ0)θ0 − θ0 + C(λ0)θ̃
(k) +

2∑
i=1

Ciλ̃
(k)
i θ0

+second order term

= C(λ0)θ̃
(k) + C̄(θ0)λ̃

(k) + second order term.

(50)
f = F (θ0 + θ̃(k))[λ0 + λ̃(k)]

= [F (θ0) +
na+nb∑

j=1

Fj θ̃
(k)
j ][λ0 + λ̃(k)]

= F (θ0)λ0 + F (θ0)λ̃
(k) +

na+nb∑
j=1

Fj θ̃
(k)
j λ0

+second order term

= f + F (θ0)λ̃
(k) + F̄ (λ0)θ̃

(k) + second order term.

(51)

Neglecting the second order terms (which can be done when
the iteration is close to the true values), (50) and (51) results
in (35) and (36).

B. Expressions for M(λ) and m(λ)

From (23) it holds

θ = θ̂LS + R−1
ϕ Rϕ̃(λ)θ. (52)

From (25) it follows that

HR−1
ϕ̄ (Jyλy + Juλu)Jθ = −H ˆ̄θLS , (53)

where

Jy =

⎛
⎝ Ina

0nb

1

⎞
⎠ Ju =

⎛
⎝ 0na

Inb

0

⎞
⎠ .

While (24) can be written as

λy + λyâT
LSa + λub̂T

LSb = VLS . (54)

Putting (52), (53) and (54) together, we arrive at

M(λ) =

⎛
⎝ Ina+nb − R−1

ϕ Rϕ̃(λ)

HR−1
ϕ̄ (Jyλy + Juλu)J

(λyâT
LS λub̂T

LS)

⎞
⎠ , (55)

m(λ) =

⎛
⎝ θ̂LS

−H ˆ̄θLS

VLS − λy

⎞
⎠ . (56)
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[1] T. Söderström, “Identification of stochastic linear systems in presence
of input noise,” Automatica, vol. 17, pp. 713–725, 1981.

[2] K. V. Fernando and H. Nicholson, “Identification of linear systems
with input and output noise: the Koopmans–Levin method,” IEE
Proceedings, Part D, vol. 132, no. 1, pp. 30–36, January 1985.

[3] S. Beghelli, R. Guidorzi, and U. Soverini, “The Frisch scheme in
dynamic system identification,” Automatica, vol. 26, pp. 171–176,
1990.

[4] W. X. Zheng and C. B. Feng, “Unbiased parameter estimation of linear
systems in presence of input and output noise,” International Journal
of Adaptive Control and Signal Processing, vol. 3, pp. 231–251, 1989.

[5] ——, “Identification of a class of dynamic errors–in–variables mod-
els,” International Journal of Adaptive Control and Signal Processing,
vol. 6, pp. 431–440, 1992.

[6] J. K. Tugnait, “Stochastic system identification with noisy input using
cumulant statistics,” IEEE Transactions on Automatic Control, vol.
AC-37, pp. 476–485, 1992.

[7] J. K. Tugnait and Y. Ye, “Stochastic system identification with noisy
input-output measurement using polyspectra,” IEEE Transactions on
Automatic Control, vol. AC-40, pp. 670–683, 1995.

[8] P. Guillaume, R. Pintelon, and J. Schoukens, “Robust parametric trans-
fer function estimaton using complex logarithmic frequency response
data,” IEEE Transactions on Automatic Control, vol. 40, pp. 1180–
1190, 1995.

[9] P. Stoica, M. Cedervall, and A. Eriksson, “Combined instrumental
variable and subspace fitting approach to parameter estimation of
noisy input-output systems,” IEEE Transactions on Signal Processing,
vol. 43, pp. 2386–2397, 1995.
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