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Abstract— This paper is concerned with an iterative linear
matrix inequality (LMI) approach to the design of a structurally
constrained output feedback controller such as decentralized
control. The structured synthesis is formulated as a novel rank-
constrained LMI optimization problem, where the controller
parameters are explicitly described so as to impose structural
constraints on the parameter matrices. An iterative penalty
method is discussed to solve the rank-constrained LMI problem.
Numerical experiments and comparisons with previous works
are performed to illustrate the practicality of the proposed
method.

I. INTRODUCTION

Structurally constrained control is the problem of de-

signing a linear time-invariant controller that has structural

constraints on its parameter matrices. It is sometimes called

fixed-structure control or structured synthesis. Structured

control problems have long been recognized as practically

important control problems because structural constraints are

inevitable in many fields of control and system engineering.

Decentralized control is a typical example. In industrial

plants, the design of a proportional-integral-derivative (PID)

controller is the most frequent application. Moreover, static

output feedback (SOF) stabilization belongs to this class of

synthesis problems since it can be regarded as an unstruc-

tured fixed-order control problem.

Despite its usefulness in practical control applications,

structured controller synthesis is a challenging task due to

its inherent non-convexity [1]. No complete solution to this

synthesis is found yet. Nonetheless, SOF controller design

is a well-studied field in the linear matrix inequality (LMI)

framework [2], [3]. The coupled LMI formulation by using

the celebrated elimination lemma (see, for example, [4])

leads the SOF synthesis to the well-known rank-constrained

LMI problem, which can be solved in a relatively efficient

manner by numerous iterative methods [5], [6], [7], [8],

[9]. However, when it comes to general structured control,

we need a different LMI formulation other than the one

using the elimination lemma so that the controller parameters

can be directly manipulated. Several such LMI formulations

along with numerical methods were proposed in the literature
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[10], [11], [12], [13], and this paper also discusses another

heuristic algorithm.

In this paper, motivated by [10] and [12], we first propose

a unified LMI representation for the design of structurally

constrained controllers. The synthesis is characterized as a

rank-constrained LMI optimization problem that is different

from the coupled LMI formulation. Then, the problem is

solved iteratively by using a penalty function method [14].

Our method can find a suboptimal solution without using

a less efficient bisection method. Furthermore, no specific

initialization procedure is required. The solution of our algo-

rithm moves towards the region satisfying the rank condition

as the penalty parameter increases.

In Section II, a basic lemma for the new LMI formulation

is presented. Section III describes an LMI representation for

structured synthesis by using the lemma in Section II. Section

IV states the penalty function method for rank-constrained

LMI problems, and practical implementation of the algo-

rithm is given. Section V shows numerical experiments to

demonstrate the performance of the proposed method.

We use the following notation. In denotes the n × n
identity matrix, but the dimension n may be omitted if it can

be inferred from the context. For a matrix A, its transpose,

trace, and rank are denoted by AT , tr(A), and rank(A),
respectively. If A is a symmetric matrix, A � 0 (respectively,

A � 0) means that A is positive definite (respectively,

semidefinite). For a rectangular matrix A, A⊥ stands for an

orthogonal complement of A, i.e., A⊥A = 0, A⊥A⊥T �
0. For long matrix expressions, (�)T AX means XT AX .

Finally, Tzw means the transfer function from w to z.

II. PRELIMINARIES

This preliminary section describes a basic tool for fixed-

structure controller problems. In this framework, all LMI

variables are explicitly expressed in the LMIs at the expense

of an increase in the decision variables and a non-convex

rank condition. The following lemma establishes the basis

of our method. Similar formulations can be found in [10],

[15].

Lemma 1: For a symmetric matrix Q ∈ R
n×n and a

matrix B ∈ R
n×m with rank(B) < n, the following

statements are equivalent.

(i) xT Qx < 0 for all x ∈ R
n satisfying BT x = 0, x �= 0.

(ii) There exists a scalar σ such that Q − σBBT ≺ 0.

(iii) B⊥QB⊥T ≺ 0.

(iv) There exist a matrix W ∈ R
(n+m)×(n+m),W � 0 and
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a scalar μ > 0 such that

[
Q B
BT μIm

]
≺ W (1)

rank(W ) = m. (2)

Proof: Statements (i), (ii) and (iii) are equivalent to

each other due to Finsler’s Lemma (see, for example, [2]).

By applying congruence transformation on (1), condition (iv)

can be equivalently described as the existence of W̃ � 0 and

μ > 0 such that

T

[
Q B
BT μI

]
TT =

[
M 0
0 μI

]
≺ W̃ (3)

rank(W̃ ) = m (4)

where

T =
[

I −μ−1B
0 I

]
, W̃ = TWTT

M = Q − μ−1BBT .

First, it is immediate that condition (ii) implies the existence

of μ > 0 and W̃ � 0 satisfying (3) and (4). If condition (ii)

holds for some σ, there exists a μ > 0 such that M ≺ 0.

Consequently, we can select W̃ in (3) as

W̃ =
[

0 0
0 μ̃I

]
, μ < μ̃.

Note that W̃ � 0 and rank(W̃ ) = m. To prove the converse,

suppose there exist μ > 0 and W̃ � 0 such that (3) and (4)

hold. Partition W̃
[

M 0
0 μI

]
≺ W̃ =

[
W̃1 W̃2

W̃T
2 W̃3

]
. (5)

From μ > 0 and rank(W̃ ) = m, the following hold

μI ≺ W̃3 ⇔ μ−1I − W̃−1
3 � 0

W̃1 = W̃2W̃
−1
3 W̃T

2 .

Also, it follows that

(W̃3 − μI)−1 = W̃−1
3 + W̃−1

3 (μ−1I − W̃−1
3 )−1W̃−1

3 .

Now applying Schur complement to (5), we obtain

0 � M − W̃1 + W̃2(W̃3 − μI)−1W̃T
2

= M + W̃2W̃
−1
3 (μ−1I − W̃−1

3 )−1W̃−1
3 W̃T

2

� M.

This ends the proof.

In the next section we shall show that the structurally

constrained controller synthesis can be described in the form

of LMI (1) subject to the rank condition (2).

III. RANK-CONSTRAINED LMI FORMULATION OF

STRUCTURED SYNTHESIS

Since general structured synthesis can be reduced to a

structurally constrained SOF problem by using a system

augmentation technique (for example, [6]), this section be-

gins with discussing the SOF stabilization problem. Then,

its extension to SOF optimal control satisfying generalized

quadratic performance is described.

Consider the linear time-invariant (LTI) system repre-

sented by
ẋ = Ax + Bu
y = Cx,

(6)

where x ∈ R
n is the state, u ∈ R

m is the control input,

and y ∈ R
p is the output. A, B, and C are given system

matrices with appropriate dimensions. Although we deal with

continuous-time systems, our method is also applicable to

discrete-time systems.

The goal of SOF stabilization is to find a static output

control law

u = Ky (7)

that places all the eigenvalues of the closed-loop system in

a stability region described by

D(p, q, r) = {s ∈ C : p + qs + q∗s∗ + r|s|2 < 0}, (8)

where C denotes the set of complex numbers and ∗ represents

the complex conjugate of a complex number. For example,

the region D(0, 1, 0) corresponds to the open left-half com-

plex plane for continuous-time systems, and D(−1, 0, 1) to

the open unit circle for discrete-time systems. The following

lemma provides a necessary and sufficient condition for the

existence of an SOF controller.

Lemma 2: The following statements are equivalent.

(i) The closed-loop poles of system (6) for the static output

control (7) are located in the complex region (8).

(ii) There exist P ∈ R
n×n, P � 0, W ∈ R

3n×3n,W � 0,

and a scalar μ > 0 such that⎡
⎣ pP qP (A + BKC)T

q∗P rP −In

A + BKC −In μIn

⎤
⎦ ≺ W (9)

rank(W ) = n. (10)

Proof: From Lyapunov stability theory [16], statement

(i) is equivalent to the existence of a positive definite matrix

P ∈ R
n×n such that

(�)T

[
pP qP
q∗P rP

] [
In

A + BKC

]
≺ 0. (11)

Applying Lemma 1 to (11) yields (9) and (10).

Since (9) is affine in the variables μ, P , K and W , we can

easily impose structural constraints on K.

Now, let us consider the generalized quadratic perfor-

mance optimization problem for the following LTI system

with state-space representation:

ẋ = Ax + B1w + B2u
z = C1x + D11w + D12u
y = C2x + D21w,

(12)

4319



where x ∈ R
n is the state, w ∈ R

nw is the exogenous input,

u ∈ R
nu is the control input, z ∈ R

nz is the output to be

regulated, and y ∈ R
ny is the measured output. The system

matrices are A,B1, B2, C1, C2, D11, D12, and D21.
Our aim is to design an SOF controller such that the

closed-loop poles are placed within (8) and the closed-loop

system satisfies the performance specification for all T > 0,∫ T

0

[
w
z

]T [
Q S
ST R

] [
w
z

]
dt < 0 . (13)

For instance, the performance matrices for H∞ optimization

are given by Q = −γ2I, S = 0, R = I . Similarly, we can

formulate this problem in terms of rank-constrained LMIs

by the following lemma.
Lemma 3: For system (12), there exits a static output

control law (7) that makes the close-loop system satisfy both

the pole constraints (8) and the performance specification

(13) if and only if the following rank-constrained LMI

problem is feasible in matrices P ∈ R
n×n, P � 0, W ∈

R
(3n+2nz+nw)×(3n+2nz+nw),W � 0, and a scalar μ > 0⎡
⎢⎢⎢⎢⎢⎢⎣

pP 0 qP 0 AT
cl CT

cl

0 Q 0 S BT
cl DT

cl

q∗P 0 rP 0 −In 0
0 ST 0 R 0 −Inz

Acl Bcl −In 0 μIn 0
Ccl Dcl 0 −Inz 0 μInz

⎤
⎥⎥⎥⎥⎥⎥⎦
≺ W (14)

rank(W ) = n + nz, (15)

where[
Acl Bcl

Ccl Dcl

]
=

[
A + B2KC2 B1 + B2KD21

C1 + D12KC2 D11 + D12KD21

]
.

Proof: According to [17] and [18], satisfying the

pole constraint (8) and the performance condition (13) is

equivalent to the existence of a positive definite matrix P
such that

(�)T

⎡
⎢⎢⎣

pP 0 qP 0
0 Q 0 S

q∗P 0 rP 0
0 ST 0 R

⎤
⎥⎥⎦

⎡
⎢⎢⎣

I 0
0 I

Acl Bcl

Ccl Dcl

⎤
⎥⎥⎦ ≺ 0,

from which we have (14) and (15).
Finally, the following lemma states structured SOF syn-

thesis for H2 optimal control.
Lemma 4: For system (12) with D11 = D21 = 0, we

can find an SOF control law such that the closed-loop

system satisfies the H2 performance, ||Tzw||2 = ||Ccl(sI −
Acl)−1Bcl||2 < γ, and the pole constraints (8) as well

if and only if there exist matrices P ∈ R
n×n, P � 0,

W ∈ R
(3n+2nz)×(3n+2nz),W � 0, and a scalar μ > 0 such

that

tr(BT
1 PB1) ≤ γ2, (16)⎡

⎢⎢⎢⎢⎣

pP qP 0 AT
cl CT

cl

q∗P rP 0 −In 0
0 0 Inz

0 −Inz

Acl −In 0 μIn 0
Ccl 0 −Inz 0 μInz

⎤
⎥⎥⎥⎥⎦ ≺ W (17)

rank(W ) = n + nz, (18)

where

Acl = A + B2KC2, Ccl = C1 + D12KC2.

Proof: See [19] and [18]. The proof follows similar

ideas as the proof of Lemmas 2 and 3.

Consequently, fixed-structure synthesis results in finding

a constant matrix with structural constraints. In the next

section, we describe a computation method for the rank-

constrained LMI problems.

IV. PENALTY METHOD FOR RANK-CONSTRAINED LMI

PROBLEMS

With a slight abuse of notation, the problems in the

previous section can be written as the generic form:

minx cT x
subject to W (x) � 0, L(x) � 0

rank(W (x)) = r,
(19)

where x is the decision vector, and W (x) ∈ R
n×n and

L(x) ∈ R
m×m are matrices that are affine functions of x.

In the penalty method, the rank-constrained problem (19)

is first converted to an LMI optimization problem without

the rank condition by incorporating a penalty function into

the objective function. Then, a sequence of convex LMI

optimization problems are solved by an existing LMI solver.

If the value of the penalty function becomes sufficiently

small during the iteration process, we have obtained a locally

optimal solution to the original problem (19).

To select a penalty function reflecting the violation of the

rank condition, we note that the rank condition in (19) is

satisfied if and only if the n − r eigenvalues of W are

zero, and that the following inequality with respect to the

eigenvalues of the matrix W holds [20, p. 191]

λ1 + · · · + λn−r ≤ tr (V T WV ), (20)

where λ1, . . . , λn−r are the n−r smallest eigenvalues of W ,

and V ∈ R
n×(n−r) is an arbitrary matrix such that V T V =

In−r. Thus, we introduce the penalty function

p(x; V ) = tr(V T WV ), (21)

where V ∈ R
n×(n−r) such that V T V = In−r. From (20),

the proposed penalty function (21) is an upper bound on the

sum of the n − r smallest eigenvalues of W . Moreover, the

equality in (20) holds when V consists of the eigenvectors

corresponding to the n − r smallest eigenvalues of W . The

proposed penalty function (21) has the following properties:

• Its value can be zero only when rank(W ) ≤ r.

Otherwise, it is positive.

• For a given V , it is linear in x.

Therefore, our penalty function can be regarded as an exact

penalty function over the set {x : W � 0}.

Having clarified the penalty function, we define the penal-

ized objective function as

ϕ(x; ρ, μ, V ) = ρcT x + tr(W ) + μp(x; V ), (22)
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where μ is the positive penalty parameter, and ρ is the

optimization weight. Note that the term tr(W ) in (22) places

relative weights on the eigenvalues of W since tr(W ) =
Σn

1λi. Consequently, if we denote the convex set C
C = {x : W (x) � 0, L(x) � 0}, (23)

then the sequential unconstrained form of problem (19)

becomes

xk+1 = arg min
x

{ϕ(x; ρk, μk, Vk) : x ∈ C}, (24)

where Vk is constructed from the eigenvectors of W (xk)
since the eigenvectors of W are orthonormal to each other.

Now let us take a look at the convergence properties of the

algorithm. The convergence properties of the method can be

summarized as follows. More detailed discussion is described

in [14].

• For fixed ρ and μ, the sequence {ϕ(xk; ρ, μ, Vk)} of

(24) is always non-increasing and convergent; accord-

ingly the penalty function converges. This can be seen

from

ϕ(xk+1; ρ, μ, Vk) ≤ ϕ(xk; ρ, μ, Vk) ≤ ϕ(xk; ρ, μ, Vk−1).

• Increasing μ makes the value of the penalty function

decrease. This is evident from rewriting (22) in the form

ϕ(x; ρ, μ, V ) = ρcT x +
n∑

i=1

λi + μ
n−r∑
i=1

λi.

Thus, the convergence of the solution sequence to (24)

is guaranteed with an increasing sequence of μ, which

however, does not mean that we can always find a

solution to (19) by the penalty method.

• Like other local algorithms [6], [7], the global conver-

gence of the penalty function method is not guaranteed;

the convergence properties of the method are yet to be

studied.

We may now proceed to the implementation of the penalty

function method (PFM) for rank-constrained LMI optimiza-

tion problems. The PFM first tries to find a feasible solution

satisfying the rank constraint. Once a feasible solution is

obtained, the algorithm computes a locally optimal solution

while maintaining the feasibility condition by adjusting μ
and ρ alternately.

Algorithm 1: The PFM for rank-constrained LMI opti-

mization problems

1) Initialization. Find an initial x0 by solving

x0 = {x : x ∈ C}. (25)

Set xk = x0. Choose μk = μ0 > 1, ρk = ρ0 
 1, α ∈
(0, 1), β � 1, τ > 1, ξ > 1, ε1 � 1, ε2 � 1.

2) Computation of V . Compute Vk from W (xk) using

eigenvalue decomposition.

3) Convex optimization. Compute xk+1 by solving the

convex LMI optimization problem (24).

4) Feasibility test. If p(xk+1; Vk) ≤ ε1, then go to step 5.

Otherwise, go to step 6.

5) Optimality test. If |cT xk+1−cT xk| ≤ ε2, then a locally

optimal solution xk+1 is obtained and stop. Otherwise,

go to step 7.

6) Penalty parameter update. If p(xk+1;Vk) >
αp(xk;Vk), then increase the penalty parameter

by μk+1 = τμk. Go to step 8

7) Optimization weight update. If |cT xk+1 − cT xk| < β,

then increase the optimization weight by ρk+1 = ξρk.

8) Next step. Set k ← k + 1 and go to step 2.

Remark 1: Although the implementation code for the

PFM is as simple as that of the cone complementarity

linearization algorithm [6], our method can be applied to

optimization problems without using a bisection approach.

Remark 2: In the PFM, the most important computation

parameters that affect the convergence of the algorithm are

μ0, α, and τ . Although we need further studies on the

selection of them, by using the adaptive approach in [9] for

adjusting the penalty parameter, we can solve the examples

in the next section without much difficulty. Moreover, notice

that our algorithm does not require any specific initialization

procedure such as those in [10], [12]. It suffices to initiate

the algorithm with the most feasible point x0 over the convex

set {x : x ∈ C}.

V. NUMERICAL EXAMPLES

To illustrate the proposed penalty-based method, we se-

lected several examples from previous research. The al-

gorithm was implemented in a MATLAB program using

SeDuMi [21] and YALMIP [22]. All simulations were per-

formed on a Pentium-IV 2 GHz PC with 512 MB memory.

Example 1: Consider the chemical reactor presented in

[23], where the continuous-time state-space matrices for H∞
optimization are given.

To see the performance of the PFM, an SOF H∞ controller

was designed by using the existing coupled LMI formulation

in the form (see, for example, [2])

min
X,Y

γ∞ subject to (26)

(�)T

⎡
⎣ AT X + XA XB1 CT

1

BT
1 X −γI DT

11

C1 D11 −γI

⎤
⎦

⎡
⎣ CT

2

DT
21

0

⎤
⎦
⊥T

≺ 0

(�)T

⎡
⎣ AY + Y AT Y CT

1 B1

C1Y −γI D11

BT
1 DT

11 −γI

⎤
⎦

⎡
⎣ B2

D12

0

⎤
⎦
⊥T

≺ 0

[
X I
I Y

]
� 0

rank
[

X I
I Y

]
= n.

where X, Y are Lyapunov matrices, γ∞ means the H∞
norm of the close-loop system. Table I shows the results of

the PFM compared with those of the cone complementarity

linearization (CCL) algorithm [6], where we used a bisection

method to get a suboptimal H∞ norm. The CPU time of

the CCL method in Table I means the computation time for

the H∞ norm bound 1.1691, while the CPU time of the
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PFM denotes the total elapsed time to get the solution. For

comparison, the result of [23] is included in Table I, where

we realize that the PFM finds a suboptimal solution to this

example efficiently.

TABLE I

DESIGN RESULTS BASED ON FORMULATION (26) FOR EXAMPLE 1

Method γ∞ CPU(sec) Gain

CCL 1.1691 150.42
−34.428 −115.61

−97.832 −348.98

PFM 1.1693 76.75
−36.389 −139.72

−112.19 −453.78

QSDP [23] 1.202 -
−5.930 −9.251

−4.464 −19.073

0 100 200 300 400 500
10

−8

10
−6

10
−4

10
−2

10
0

10
2

Iterations

||X
Y

 −
 I 

||    
F CCL

PFM

Fig. 1. Performance comparison of the PFM and the CCL method for
Example 1 – formulation (26).

Fig. 1 shows a performance comparison of the PFM and

the CCL method for the coupled LMI formulation. Here,

the performance measure is selected as the Frobenius norm,

||XY − I||F since the rank condition in (26) is equivalent

to XY = I . In addition, the computational behavior of the

PFM is shown in Fig. 2, where we see that the value of

the penalty function decreases until the PFM finds a feasible

solution in about 100 iterations. Since then, by adjusting the

optimization weight and the penalty parameter alternately, a

suboptimal solution is obtained.

Now, let us turn to the synthesis based on the new

formulation (14) with (15). The results of the PFM are shown

in Table II, where the first row corresponds to unstructured

SOF synthesis. The second row is the result of decentralized

controller design of the structure

K =
[

k1 0
0 k2

]
.

From Tables I and II, we can recognize that the new

formulation requires high computational cost and produces

conservative results for unconstrained SOF design. The pro-

posed method, however, successfully yields a decentralized

controller. Fig. 3 shows the behavior of the PFM for the

decentralized controller design for Example 1.

10
−8

10
−4

10
0

Penalty function

p(
x;

V
)

1.12

1.14

1.16

1.18

H∞ norm

γ ∞

20 40 60 80 100 120 140 160 180 200

1

2

3

4

x 10
6 Penalty parameter and optimization weight

Iterations

μ,
ρ

ρ

μ

Fig. 2. Behavior of the PFM for Example 1 – formulation (26).

TABLE II

RESULTS OF THE PFM BASED ON LEMMA 3 FOR EXAMPLE 1

Control γ∞ CPU(sec) Gain

Unstructured

SOF
1.2475 779.67

0.9101 −3.8446

−0.36439 28.537

Decentralized

SOF
1.8559 242.55

0.97648 0.0

0.0 6.3382

Example 2: This example is a discrete-time H2 optimal

control problem discussed in [10] and [24]. A decentralized

H2 suboptimal controller was designed by using Lemma 4

with the PFM. The obtained controller was

K =
[ −0.4104 −0.3536 0 0

0 0 −0.3492 −0.1648

]
.

Table III displays the design result of the PFM in comparison

with those of previous research. Here, we see that the PFM

produced the smallest H2 norm of the closed-loop system.

TABLE III

COMPARISON OF THE H2 NORM FOR EXAMPLE 2

Method [24] [10] PFM

||Tzw||2 0.33 0.27331 0.27296

Example 3: The last example is an H2 optimal PID con-

trol problem taken from [25]. For practical purposes, we seek

a PID controller of the following structure

C(s) = kp + ki
1

s + τi
+ kd

s

τds + 1
(27)

rather than the idealized PID controller where τi = 0 and

τd = 0. A state-space representation of the PID controller
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Fig. 3. Behavior of the PFM for decentralized control of Example 1.

(27) is

K =
[

Ac Bc

Cc Dc

]
=

⎡
⎣ −τi 0

0 − 1
τd

1
1
τd

ki −kd

τd
kp + kd

τd

⎤
⎦ . (28)

After augmenting the controller state and by solving the

structured SOF problem for K of (28) using Lemma 4,

we obtained the result of Table IV with τi = 0.0996 and

τd = 0.0991. From Table IV, we see that the designed

controller is almost the same as the optimal controller.

TABLE IV

RESULTS OF THE PID CONTROL DESIGN FOR EXAMPLE 3

Method ||Tzw||2 kp ki kd

[25] 0.9723 -0.2726 0.0 -0.2751

PFM 0.9769 -0.27135 -0.0004 -0.27295

VI. CONCLUSION

We have described a practical procedure for finding struc-

turally constrained H2 and H∞ suboptimal output feedback

controllers for linear systems. The synthesis is formulated as

a new type of rank-constrained LMI optimization problem,

which was solved by an iterative penalty function method.

Our method is applicable to both continuous- and discrete-

time systems. Although the proposed algorithm does not have

global convergence property, numerical experiments on some

examples from previous research showed promising results.
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