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Abstract— This paper addresses tracking control of nonlinear
discrete-time monotone systems subject to input and state con-
straints. Forcing saturation on a previously designed controller
may, in general, lead to destabilization or, at least, result in
constraint violation and performance losses. Hereby it is shown
that for a certain class of nonlinear monotone systems it is
possible to design a static nonlinear output feedback which,
saturated among suitable state-dependent bounds, is able to
guarantee constraint satisfaction and asymptotic tracking of
piecewise constant references, with a moderate on-line compu-
tational burden.

I. INTRODUCTION

Monotone systems [1]-[14] have recently attracted great

attention in the control literature. So far most of the research

efforts have been devoted to analysis issues while much

less is known on specific control synthesis tools which

could exploit system monotonicity in some respect. A crucial

control problem is the design of an offset-free tracking

controller for nonlinear systems subject to input and state

constraints. In this respect, the ordering of trajectories in

monotone systems could certainly help an efficient design

of control laws that jointly ensure stability and constraint

fulfilment. The present paper shows in fact that, for a certain

class of nonlinear monotone systems, it is possible to design

a stabilizing static output feedback in a straightforward way

and then force saturation on the input taking into account

state and input constraints. Based on this control design,

it is possible to derive a tracking control algorithm which

provides, with a moderate on-line computational burden, both

constraint satisfaction and asymptotic tracking requirements.

The paper is organized as follows. First a review of basic

definitions and results on monotone systems is carried out in

section 2. Section 3 first reviews previous results from [17]

on tracking control of monotone systems subject to input

constraints only, and then shows how for a monotone system

it is possible to recast state constraints as appropriate state-

dependent input constraints. Section 4 presents a control

algorithm for monotone systems capable of handling state

(in addition to input) constraints and analyzes its properties.

The applicability of the method and its effectiveness are

illustrated by means of simulation examples in section 5.

Finally some conclusions are drawn in section 6.
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II. PROBLEM FORMULATION

Consider the following discrete-time SISO nonlinear sys-

tem
x(t + 1) = f(x(t), u(t))

y(t) = h(x(t))
(1)

where t ∈ ZZ+
�
= {0, 1, . . . } is the time index, x(t) ∈ X ⊆

IRn, u(t) ∈ U ⊆ IR, y(t) ∈ IR, the map f(·, ·) is continuous

in (x, u) and the map h(·) is continuous in x. The solution of

(1) for the initial state x(0) = x0 ∈ IRn and the input signal

u(·)
�
= {u(k) : k ≥ 0} ∈ U will be denoted, for all t ≥ 0,

by ϕ(t, x0, u(·)). The constant unit signal will be denoted

by 1(·), defined as 1(k) = 1 for all k ≥ 0. In an Euclidean

space IR� a partial order � induced by a positivity cone C is

defined. Let C ⊆ IR� be a nonempty, closed, convex, pointed

( C
⋂
−C = {0}) cone with nonempty interior, then v1 � v2

(v1, v2 ∈ IR�) means that v1 − v2 ∈ C. Strict ordering is

denoted by v1 � v2, meaning that v1 � v2 and v1 �= v2.

The partial order is extended to signals v(·) : ZZ+ → IR� in

the sense that v1(·) � v2(·) if v1(t) � v1(t) for all t ≥ 0.

With reference to the system (1), let Cx, Cu and Cy denote

the order cones for the state, input and, respectively, output.

Without loss of generality (otherwise, it is always possible to

consider −u as an input or −y as an output), the considered

order on the input and output spaces is Cu = Cy = IR≥0.

The system (1) is said monotone if the following property

holds, with respect to the orders on the state and the inputs

for all x1, x2 ∈ X and input signals u1(·), u2(·) ∈ U :

x1 � x2 and u1(·) � u2(·) ⇒
ϕ(t, x1, u1(·)) � ϕ(t, x2, u2(·)) ∀t ≥ 0

(2)

and the output map h(·) is monotone with respect to

the partial order on the state and output space, i.e.

h(ϕ(t, x1, u1(·))) ≥ h(ϕ(t, x2, u2(·))) for all t ≥ 0. It is

important to check monotonicity without having to compute

the trajectories of (1). This amounts to checking monotonic-

ity of the map f(x, u) with respect to the partial order in X
and U .

In this paper, the control objective is that

1) the output y(·) track a piecewise constant reference

r(·), i.e. a signal switching among different constant

set-points;

2) the input u(·) satisfy the pointwise-in-time constraints

u(t) ∈ U
�
= {u : u ≤ u ≤ ū}, ∀t ≥ 0 (3)

3) the state x(t) satisfy the pointwise-in-time constraints

x(t) ∈ S ⊂ X, ∀t ≥ 0 (4)
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For the subsequent developments the following assumptions

are made.

Assumption 1: For each constant set-point r there is asso-

ciated a unique (state,input) equilibrium pair (xe(r), ue(r))
such that

f(xe(r), ue(r)) = xe(r), r = h(xe(r)) (5)

Assumption 2: It is assumed that the set of admissible

states

S
�
= {x : g

i
≤ gi(x) ≤ gi, i = 1, 2, · · · ,m} (6)

is described by monotone constraints i.e. gi(x) are monotone

functions of x.

Clearly the constraints (3) and (4) restrict the statically

admissible set-points r to the ones that belong to the set

R = {r : ue(r) ∈ U, xe(r) ∈ S}. (7)

In order to ensure viability in finite time, the following

assumption is made.

Assumption 3: It is assumed that

R = {r : ue(r) ∈ U} ⊂ {r : xe(r) ∈ Sδ}. (8)

where

Sδ
�
= {x ∈ S : x + w ∈ S, ∀w : ‖w‖∞ ≤ δ}. (9)

and δ > 0 is arbitrarily small.

III. SYSTEM STABILIZATION AND SOME RESULTS

In order to design a suitable tracking policy for (1) under

the constraints (3) and (4), it is relevant to find how to

stabilize such a system. A useful result on the stability of

monotone systems is given hereafter.

Theorem 1: Suppose that:

(i) the dynamical system x(t + 1) = f(x(t)) is

monotone;

(ii) its trajectories are bounded in X;

(iii) X contains exactly one equilibrium point xe;

(iv) for every compact subset S of X , both inf(S)
and sup(S) belong to X (see [15] for a rigorous

definition of inf(S) and sup(S)).

Then xe is asymptotically stable globally in X , i.e. it is stable

and lim
t→∞

ϕ(t, x0) = xe for all x0 ∈ X .

In [16] this result was proved for continuous-time systems,

but the same argument can be applied to discrete time

systems. However the open-loop system (1) need not have

unique and stable equilibria. Its steady state behaviour will

be useful in order to design a controller.

Definition 1: Under the assumption 1, the system (1)

admits a (possibly multi-valued) input to state (I/S) steady-

state characteristic defined as follows

kX(u)
�
= {x ∈ X : f(x, u) = x} . (10)

If (1) admits an I/S characteristic, its input/output (I/O)

characteristic is by definition the composition

kY (u)
�
= {y ∈ Y : y = h(x) and f(x, u) = x} (11)

Our interest will be in the design of a static nonlinear output

feedback u(·) = �(y(·), r) meeting the control objectives

stated in the previous section. In order to design a static

nonlinear output feedback guaranteeing input constraint sat-

isfaction the subsequent theorem, presented in [17] for

continuous-time systems and rewritten here for discrete-time

systems, will be useful.

Theorem 2: Suppose that the system (1) is monotone with

respect to Cx in X , with Cu = Cy = IR≥0, and that it has

an I/O characteristic kY (u). Moreover assume that x(t +
1) = f(x(t), u) and x(t + 1) = f(x(t), u) admit a unique

asymptotically stable equilibrium point in x ∈ X . Design an

output feedback u = �(y, r) with the following properties.

1) It admits, for each fixed r, only one intersection point

in the plane (y, u) with the I/O characteristic kY (u).
2) It is such that the closed-loop system

x(t + 1) = f(x(t), �(h(x(t)), r)) (12)

is monotone with respect to the same partial order and

has bounded trajectories.

Then the saturated control law

sat(�(h(x(t)), r)) =⎧⎨
⎩

u if �(h(x(t)), r) < u
�(h(x(t)), r) if u ≤ �(h(x(t)), r) ≤ u
u if �(h(x(t)), r) > u

(13)

is such that the output asymptotically tracks any constant

reference r ∈ R globally in X , i.e. for all initial states x0 ∈
X .

The proof of the theorem for discrete time systems

is obtained following the same reasoning carried out for

continuous-time systems in [17] and exploiting theorem 1.

An important issue concerns the ability of handling state

constraints. In order to tackle this problem the following

theorem will be exploited for the subsequent developments.

Theorem 3: Suppose that the system (1) is monotone with

respect to Cx in X , with Cu = IR≥0 and its trajectories

are bounded in X . Moreover assume that the set of state

constraints S satisfies assumption 2. Given x ∈ S ⊂ X , if

the input satisfies the constraints

u(·) ∈ Ux
�
= {u(·) : ux ≤ u(t) ≤ ux, ∀t ≥ 0}. (14)

where ux and ux are constant inputs such that

ux = min{u : g
i
≤ gi(ϕ(t, x0, u 1(·))), ∀i, ∀t ≥ 0}

ux = max{u : gi(ϕ(t, x0, u 1(·))) ≤ gi, ∀i, ∀t ≥ 0}
(15)

then the constraints ϕ(t, x0, u(·)) ∈ S are satisfied for all

t ≥ 0.
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Proof - From the definition of monotone systems, for

any x ∈ S the following relation of order is met

u1(·) > u2(·) ⇒ ϕ(t, x, u1(·)) � ϕ(t, x, u2(·)) ∀t ≥ 0
(16)

Then, considering relation (16) under assumption of mono-

tone constraints, there exist constant ux and ux, with ux >
ux, given by (15), such that

gi ≥ gi(ϕ(t, x, ux1(·))) ≥ gi(ϕ(t, x, ux1(·))) ≥ g
i
,

∀i and ∀ t ≥ 0
(17)

Since for any signal u(·) such that ux ≤ u(·) ≤ ux

gi(ϕ(t, x, ux1(·))) ≥ gi(ϕ(t, x, u(·))) ≥ gi(ϕ(t, x, ux1(·)))
(18)

the state constraints x ∈ S can be replaced with

ux ≤ u(·) ≤ ux

This result will allow to face the tracking control problem

considering appropriate state-dependent input constraints.

IV. TRACKING CONTROL ALGORITHM

Based on the previous results, in particular theorem 2

and theorem 3, it is now possible to formulate the tracking

control algorithm described below.

Tracking control algorithm - At time t, given the

state x(t) and the desired reference rd(t) ∈ R, perform the

following steps

1) Estimate state-dependent bounds ux(t) and ux(t) satis-

fying (15).

2) Apply the control input u(t) = sat(�(y(t), rd(t))) =⎧⎨
⎩

ũmin(t) if �(y(t), rd(t)) < ũmin(t)
�(y(t), rd(t)) if ũmin(t) ≤ �(y(t), rd(t)) ≤ ũmax(t)
ũmax(t) if �(y(t), rd(t)) > ũmax(t)

(19)

where ũmin(t) = max{u, ux(t)} and ũmax(t) =
min{u, ux(t)}

The proposed algorithm enjoys the following property.

Theorem 4: Let us assume that, for all t ≥ 0, rd(t) =
rd ∈ R, where R satisfies assumption 3. Under the

assumptions of theorems 2 and 3, if at time t = 0
[ũmin(0), ũmax(0)] �= ∅, the tracking control algorithm

guarantees that the input and state constraints are satisfied for

all t ≥ 0 and the system asymptotically reaches the desired

equilibrium i.e. limt→∞ x(t) = xe(rd), limt→∞ u(t) =
ue(rd) and limt→∞ y(t) = rd.

Proof - Let us consider the situation in which the

constraints due to the states are active. Given the state

x0, at time t = 0, the constraints ϕ(t, x0, u(·)) ∈ S
are satisfied for all t ≥ 0 with ux0

≤ u(·) ≤ ux0
by

virtue of theorem 3. Moreover, due to the monotonicity of

the system, ϕ(t, x0, u(·)) � ϕ(t, x0, u 1(·)) for any u(·)
satisfying ux0

≤ u(·) ≤ ux0
and for all t > 0. Considering

the k steps ahead state prediction, computed applying a

constant input u 1(·), we have ϕ(k, ϕ(t, x0, u(·)), u 1(·)) �
ϕ(k, ϕ(t, x0, u 1(·)), u 1(·)) = ϕ(t + k, x0, u 1(·)). Under

the assumption 3 and since the map f(x, u) admits a unique

asymptotically stable equilibrium point in X

lim
t→∞

ϕ(t + k, x0, u 1(·)) ∈ Sδ (20)

Hence ∃ t > 0 such that ϕ(t + k, x0, u 1(·)) ∈ S for all

k ≥ 0. This implies ux(t) ≥ u for all t > t. Similarly

∃ t̂ > 0 such that ux(t) ≤ u is satisfied for all t ≥ t̂. Then,

since only input constraints are active for all t > max(t, t̂),
the result follows from theorem 2 proceeding along similar

lines as the ones used in [17] for a continuous-time system

and, here, suitably adapted to a discrete-time system.

Remark 1: Under monotonicity of the map � with respect

to r, the saturated control feedback in the second step is

equivalent to the following one-step-ahead reference gover-

nor policy:

1) Solve:

r(t) = arg min
r

(r − rd(t))
2

subject to

ũmin(t) ≤ �(y(t), r) ≤ ũmax(t)

(21)

2) Apply the control input u(t) = �(y(t), r(t)).

Remark 2: A feedback control law u = �(y, r) satisfying

the requirements that the two curves (u, kY (u)), i.e. the

plant I/O characteristic, and (�(y, r), y), i.e. the controller

characteristic, intersect just at one point (u, y) for each r,

and preserving the monotonicity of the open-loop system,

can be easily designed with a graphical procedure provided

that conditions of Proposition 1 in [17] are satisfied. In order

to carry out easily a graphical choice of the feedback shape it

is possible to re-parametrize the feedback as �(y, θ(r)) for a

suitable r-dependent parameter θ. Given the desired structure

of �(y, θ(r)) it is possible to determine θ(r) by solving the

following equation

kY (�(r, θ(r)) = r (22)

The existence of a suitable �(y, r) is ensured by assumption

1. Then, for each value of r, the computation of the matched

value θ(r) is performed on-line, so that offset-free tracking

is ensured.

At time t the estimation of bounds ux(t) and ux(t) satis-

fying (15) deserves further discussion. In fact, these bounds

must be computed on-line and it is, therefore, desirable to

keep low the required computational burden. In order to

limit the horizon for which (15) needs to be evaluated it

is fundamental to know a time t such that for all t > t
the state constraints will be fulfilled. For linear systems it

is possible to determine t and then to perform easily an on

line estimation of ux(t) and ux(t) as shown in the following

theorem.
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Theorem 5: Assume that the system

x(t + 1) = Ax(t) + Bu(t) (23)

is asymptotically stable and monotone with respect to the

partial orders induced by the orthants Cx ⊂ IRn and Cu ⊂ R.

Let the sets of admissible states and inputs S
�
= {x : Mx ≤

N} and, respectively, U be polytopes described by monotone

constraints. Then there exists t such that for any x0 ∈ S and

any u ∈ U , the following implication holds:

ϕ(t, x0, u 1(·)) ∈ S for t = 0, 1, . . . , t̄ =⇒

ϕ(t, x0, u 1(·)) ∈ S, ∀t ≥ 0.
(24)

Proof - Since the system (23) is asymptotically stable,

given any compact set K ⊂ IRn, it holds that

∀δ > 0, ∃ tδ | ∀t ≥ tδ,∀x ∈ K : ‖Atx‖∞ ≤ δ.

In order to obtain a tδ that is valid for any x0 ∈ S and

for any u ∈ U , due to the system’s monotonicity, it is

sufficient to compute such tδ for the initial conditions x =
inf

x∈S, u∈U
(x − H(1)u) and x = sup

x∈S, u∈U

(x − H(1)u) with

respect to the partial order in X , where H(1) = (I−A)−1B
and I denotes the identity matrix. More precisely, let

tδ = inf{t : ‖Akx‖∞ ≤ δ and ‖Akx‖∞ ≤ δ,∀k ≥ t}

Then, for all x0 ∈ S and u ∈ U , ϕ(t, x0, u 1(·)) ∈ S
provided that t ≥ tδ since, by assumption 3, H(1)u ∈ Sδ.

This proves the existence of t = tδ in (24).

Remark 3: If [ũmin(0), ũmax(0)] �= ∅, at time k given the

state x(k) = x, it is possible to compute on-line ũmax(k) and

ũmin(k) such that the state constraints are satisfied at any

time instant, by solving the following linear programming

problem

[ũmin(k), ũmax(k)] = [min
u∈U

u, max
u∈U

u]

subject to x(t) = Atx + φ(t, 1)u ∈ S ∀ t ∈ [0, t]
(25)

where φ(t, 1) is the unit step response.

Remark 4: For nonlinear systems the situation is theoret-

ically more complicated. However, it is possible to estimate

empirically the desired t by considering that x and u belong

to compact sets. Then, on-line, it is possible to apply a

bisection algorithm to find some feasible bounds on u. In

order to reduce the computational burden, it is possible to

compute off-line the bounds for a suitable number of state

values in S belonging, for instance, to the segment joining

the points x = inf(S) and x = sup(S). Then, exploiting

the system’s monotonicity and given the state x(t), it is

possible to obtain on-line some conservative information on

the bounds. Moreover, it is convenient to exploit the bounds

obtained at the previous step since they will be feasible and,

hopefully, they may be enlarged.

V. SIMULATION EXAMPLES

The effectiveness of the proposed control procedure is now

illustrated by means of two different numerical examples of

practical interest.

A. Example 1

Diffusion reaction processes are described by equations

that present spatial and temporal dependence. In order to

handle these models, they are usually approximated through

a spatial discretization subdividing the reactor in a cascade

of cells with a length depending on the accuracy required by

the model. Whenever the cells are all equal, the following

linear model is obtained

ẋ = Ax + Bu x ∈ IRn (26)

A =

⎡
⎢⎢⎢⎢⎢⎣

β − k γ 0 0 · · · 0
α β γ 0 · · · 0
0 α β γ · · · 0
... · · · · · · · · · · · · γ
0 · · · · · · 0 α β + γ

⎤
⎥⎥⎥⎥⎥⎦

,

B =
[

b1 0 0 · · · 0
]′

(27)

for which the conservation relation α + β + γ = 0 has been

imposed and k denotes a dispersion coefficient acting on

the first cell. For the simulation experiments we have used

n = 100, b1 = 1, k = 0.1, α = 2.3, β = −2.5 and γ = 0.2.

The structure of the system suggests the choice

y = x1 (28)

as output map. The considered system is positive and,

hence, monotone with respect to the positive orthant The

I/O characteristic of the system is the line

y = κu (κ = 0.416) (29)

In order to apply the proposed procedure the system has been

discretized with sampling time Ts = 0.01 and a suitable

control structure satisfying the conditions of theorem 2 is

u = −θ1y + θ2 (30)

Chosen the desired reference r ∈ R, for a given θ1, the

corresponding θ2(r) is easily computed as

θ2(r) =

(
1

κ
+ θ1

)
r (31)

The monotonicity condition of the closed loop system im-

poses the constraint θ1 < 1+Ts(β−k)
Tsb1

� 97.39 and θ1 = 97
has been selected. The obtained behaviour of the proposed

tracking strategy is shown by simulation experiments choos-

ing the following input and state constraints

0.1 ≤ u ≤ 1, 0 ≤ xi ≤ 1 for i = 1, . . . , n (32)

The statically admissible set-points are 0.0417 ≤ r ≤ 0.4167
The existence of a unique equilibrium point is guaranteed for

all r ∈ R. The output response to a square wave set-point,

applying the control law u = sat(−97y + θ2(r)), is shown

in figure 1. The input and, respectively, state responses are

reported in figures 2 and, respectively, 3. Finally figure 1

also displays the choice of the selected reference r.
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Fig. 1. Desired reference (dashed-dot), feasible reference (dashed) and
output response (solid)
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Fig. 2. State response for 1 ≤ i ≤ n = 100

B. Example 2

An interesting application for the proposed approach is the

n-dimensional cooperative system, which extends a model of

the protein synthesis in the cell [14]

ẋ1 = −α1x1 + γ(xn) + u
ẋi = −αixi + xi−1 i = 2, . . . , n

(33)

where αi > 0 for all i, and γ(xn) = x2
n/(1+x2

n). For u > 0,

the equilibria satisfy the relationships

xi = (αi+1 · · · αn)xn, i = 1, 2, · · · , n − 1
αxn = γ(xn) + u

(34)
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1

time

Input signal

Fig. 3. Saturated input

where α = α1 α2 · · · αn. For the simulation experiments

the following parameter values have been selected

n = 5, α1 = α2 = α3 = α4 = 1, α5 = 0.55 (35)

A possible choice for the output is

y = x1 (36)

Then the parametrized family of equilibrium points for (33)

with respect to y is easily computed by (34). It is straightfor-

ward to check that the system (33) is monotone with respect

to the order induced by the positivity cone Cx = IRn
≥0 in

X = IRn
≥0. The I/O characteristic of the system (33), (36)

is not well-defined. It is an hysteresis, as shown in figure

4, which presents multiple equilibria for some values of

u. The system model has been discretized with a sampling

time Ts = 0.01. In order to stabilize the branch of unstable

equilibrium points in IR≥0, it is straightforward to design

a controller satisfying the conditions of theorem 2. The

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

1.98

u

y

kY(u)

stable

unstable

stable

Fig. 4. The intersection between the plant I/O characteristic kY (u) and
u = sat(�(y, r)) for r = 0.3

simplest choice is

u = −θ1y
2 + θ2 (37)

Chosen the desired reference r ∈ R, for a given θ1, the

corresponding θ2(r) is the following

θ2(r) = α1r + θ1r
2 −

r2

( α
α1

)2 + r2
(38)

The monotonicity condition of the closed loop system im-

poses the constraint θ1 ≤ 1−α1Ts

Ts8 � 12.3750. In order

to get good performance, θ1 = 12.37 has been selected.

The obtained behaviour of the proposed tracking strategy is

shown by simulation experiments with the following input

and state constraints selected as

0.02 ≤ u ≤ 1, 0 ≤ xi ≤ 4 for i = 1, . . . , 5 (39)

The statically admissible set-points, induced by the input

constraints, are 0.022 ≤ r ≤ 1.925. The existence of a

unique equilibrium point is guaranteed for all r ∈ R =
[0.022, 1.925]. The output response to a square wave set-

point of amplitude ±0.8 and offset 1.2, applying the control

law u = sat(−θ1y
2 + θ2(r)), is shown in figure 5. The

applied input reported in figure 7 guarantees convergence
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to the desired reference and state constraint satisfaction as

illustrated in figure 6. Notice how, at the beginning, the

feasible inputs are restricted (figure 7) in order to guarantee

state constraint fulfilment. It has been empirically estimated

that t = 400 is a time window length sufficient for checking

state constraints satisfaction. Moreover, since the positive

orthant is invariant, if the interval [ux0
, ux0

] is not empty,

then umin is feasible and turns out to be a good initial point

in the optimization problems (15).
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Fig. 5. Desired output (dashed) and output response (solid)
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Fig. 6. State response

VI. CONCLUSIONS

The paper has addressed tracking control of monotone

nonlinear system in the presence of input and state con-

straints. It has been shown that for a certain class of

nonlinear monotone systems, it is possible to design off-line

a stabilizing static output controller in a straightforward way

and then take into account on-line state and input constraints

by saturation. The proposed controller operates, therefore,

in two steps. In the first step, it computes state-dependent

bounds on the input that guarantee state constraint feasibility

at any future time instant. In the second step, it saturates the

off-line designed control law among the on-line computed

bounds thus implicitly acting as a reference governor. It has

been proved that this jointly guarantees asymptotic tracking

of a constant feasible setpoint and pointwise in time con-

straint fulfilment provided that an initial feasibility condition
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Fig. 7. Saturated input (solid), ũmax(t) and ũmin(t) behaviour (dashed)
in the main picture and the non-saturated input (solid) in the minor one

holds. Further, the implementation of the proposed control

strategy is simple and exhibits a mild on-line computational

burden. The effectiveness of the proposed procedure has been

illustrated by means of two numerical examples of practical

interest, concerning a linear and a nonlinear system.
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