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Abstract— This paper deals with quadratic stabilization of
discrete-time linear time-invariant systems, when the control
is based on a static (or memoryless) quantized measurement
of the state. A measure of quantization density is utilized in
accordance with previous definitions in the literature. Based on
this quantization density measure, the paper finds, for multiple-
input systems that can be stabilized using a one-dimensional
subspace of the input space, the infimum quantization density
over all state quantizers that are quadratically stabilizing with
respect to a given control Lyapunov function. This result
is shown to differ from a previously published result. This
discrepancy is explored by means of a numerical example that
shows that, whereas the previously published result yields an
inconsistent value of the density, our result provides a suitable
one. The paper thus corrects the previously published result
on infimum quantization density for a given control Lyapunov
function, for the class of multiple-input systems considered.

I. INTRODUCTION

Systems involving quantization arise naturally in many ar-

eas of engineering, especially when digital implementations

are involved. In recent years, especially motivated by control

of systems over communication networks, different control

schemes have been developed where the fact that controller

and plant(s) may be connected via a communication channel

is taken into account [1]–[6]. See also the special issue [7].

The new challenges to control design that arise from the

introduction of a communication channel between controller

and plant(s) are manifold. These challenges include the need

to explicitly deal with quantization, nonuniform sampling,

variable time delays and limited data-rate/bandwidth. Several

lines of research exist that deal with different groups of these

problems at a time.

The work in this paper is directly related with the line of

research introduced in [6] and followed in [8]–[12], and deals

mainly with quantization. The approach consists in defining

a measure of density of a quantizer. Such a measure is

intuitively related with the spacing between the quantization

levels of a quantizer: the larger the spacing, the less the

density. The goal is then to find (design) a quantizer that

has the infimum density by searching over all quadratically

stabilizing quantizers for a given system.

In [6], this infimum quantization density problem is

solved for linear time-invariant single-input systems. It is

shown that any quantizer that has the infimum density has

logarithmically-spaced quantization levels. The authors then

proceed to develop a comprehensive treatment of stabiliza-

tion of this type of systems via quantized (state or output)
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feedback. In addition, [6] also details how to obtain a

finite quantizer that achieves practical stability by truncating

a logarithmic quantizer derived from an infimum density

problem. This finite quantizer can then be practically imple-

mented. In [10], the infimum quantization density problem is

analyzed via a sector bound approach. The authors also deal

with multiple-input systems by independently quantizing the

different input channels. In [12], a geometric approach to

quadratic stabilization with quantizers is developed and is

utilized in [11] to reobtain some of the results of [6] and to

design static output feedback strategies that employ infimum

quantization density quantizers. In [9], different quantization

schemes and their densities are analyzed for multiple-input

systems. The first results regarding infimum quantization

density for multiple-input systems appear in [8], where the

problem is studied for two-input systems, providing (a) an

exact solution for control Lyapunov functions (CLFs) of a

specific type (which they name Type1) and (b) a lower bound

for another type. As evidenced by [8]–[10], the infimum

quantization density problem is extremely hard for general

multiple-input systems.

The current paper deals with linear multiple-input systems

that can be stabilized using a one-dimensional subspace of

the input space. This class of systems admits quadratic CLFs

of Type1 (see Section IV and [8]). For such a CLF, we

search for the infimum density over all stabilizing (with

respect to the given CLF) quantizers and obtain that the

infimum density is also the infimum density for a single-

input system derived from the original multiple-input system.

This result, though conceptually similar, differs from [8,

Theorem 1]. We analyze this discrepancy by means of a

numerical example and show that the result in [8, Theorem 1]

yields an inconsistent value of the infimum density. We stress

that the main results of [8] are not invalidated by this fact.

The main contribution of the current paper is then to obtain

the infimum quantization density for the class of multiple-

input systems considered, for a given CLF.

The remainder of this paper is organized as follows.

Section II specifies the class of multiple-input systems that

we deal with, as well as the problem to be solved and the

assumptions made. In Section III, the problem is divided into

two subproblems. The first of these subproblems is solved

using existing results. The second subproblem constitutes

the key contribution of the paper, obtaining a result on the

infimum density for the aforementioned class of multiple-

input systems, for a given CLF. In Section IV, we review

the result of [8, Theorem 1] on the infimum quantization

density for the class of multiple-input systems that we deal

with. We then compare that result with the current one in
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Section V by means of a numerical example. Conclusions

are drawn in Section VI.

II. PROBLEM STATEMENT

We consider a nonscalar discrete-time linear time-invariant

system, defined by

x+ = Ax + Bu, (1)

where A ∈ R
n×n is unstable, B ∈ R

n×m has full rank and

x+ denotes the successor state. We assume that system (1)

can be stabilized using only a one-dimensional subspace of

the input space. For this class of systems, we characterize

all quantized feedbacks u = q(x) that, in addition to having

values in a one-dimensional subspace, render the closed-loop

system x+ = Ax+Bq(x) quadratically stable with respect to

a given Lyapunov function. Then, we find the infimum of the

quantization density over all such feedbacks. In Section II-

A, we specify the definition of quantizer employed and some

basic facts on the quadratic stabilization approach. Section II-

B defines the measure of quantization density that we employ

and Section II-C formulates the problem of quantization

density optimization.

A. Quadratic stabilization via quantized state feedback

System (1) is analyzed whenever it can be quadratically

stabilized via a quantized state feedback u = q(x). In

accordance with the literature (see [6], [8], [10]), we define

a quantizer as follows.

Definition 1 (Quantizer): A quantizer q is a function q :
R

p → R
� of the form

q(z) = ui if z ∈ Ri, for i ∈ Z.

The sets Ri are called the quantization regions of q and ui is

called the level or value of q corresponding to Ri. The sets

Ri satisfy
⋃

i∈Z
Ri = R

p and Ri ∩Rj = ∅ whenever i �= j.

By state quantizer we mean a quantizer q whose domain is

the state space, that is, q : R
n → R

�. By scalar quantizer

we refer to a quantizer q : R → R.

Specifically, we are interested in state quantizers q : R
n →

R
m that are able to quadratically stabilize system (1) and

satisfy q(x) = vq̊(dT x), for some v ∈ R
m, d ∈ R

n and

where q̊ : R → R is a scalar quantizer, as shown in Fig. 1.

Note that the fact that such a quantizer stabilizes the system

implies that the pair (A,B) is stabilizable. Moreover, there

must exist a control v ∈ R
m such that the pair (A,Bv) be

stabilizable. In other words, the multiple-input system (1)

can be stabilized using only a one-dimensional subspace of

the input space.

Let V (x) � xT Px be a given CLF, where P = P T > 0
is an n×n matrix. Let ∆V (x, u) denote the increment of V
along the trajectories of system (1) when the control applied

is u ∈ R
m and the state is x ∈ R

n, that is,

∆V (x, u) � V (x+) − V (x)

= xT Lx + 2xT Mu + uT BT PBu, (2)

where L � AT PA − P, M � AT PB. (3)

x ∈ R
nu ∈ R

m

dT ·

x+ = Ax + Bu

scalar quantizer

q̊(·)v ·
ū ∈ R x̄ ∈ R

︸ ︷︷ ︸
q(·)

Fig. 1. The quantized feedback considered: u = q(x) = vq̊(dT x).

We are thus interested in quantizers q that satisfy

∆V (x, q(x)) < 0 for all nonzero x ∈ R
n. In the sequel,

we assume that L is invertible. This assumption enables us

to employ the results in [11] and can always be satisfied if

A contains no eigenvalues with unit magnitude.

B. Quantization density

Given a quantizer q : R
p → R

�, let U(q) denote the range

of q, that is,

U(q) � {u ∈ R
� : u = q(x) for some x ∈ R

p}. (4)

For ε ∈ (0, 1), let C�(ε) be the following region in R
�:

C�(ε) � {u ∈ R
� : ε ≤ ‖u‖ ≤ 1/ε}. (5)

We define the density of q, denoted η(q), as follows:

η(q) � lim sup
ε→0

#[U(q) ∩ C�(ε)]

−2 ln ε
, (6)

where #S denotes the number of elements of the set S. This

measure of density coincides with the one given in [6] when

the quantizer output (control input) is a scalar (that is, � = 1)

and q satisfies q(x) = −q(−x). It is also equal to one half the

density defined in [8] for two-input systems. According to

(6), the density of a quantizer with a finite number of levels is

zero, is infinite for a quantizer with radially uniformly spaced

values and finite for radially logarithmically spaced values.

Note that the density of a quantizer is always nonnegative.

C. Infimum quantization density

Given the unstable system (1) and a function V (x) =
xT Px, where P = P T > 0 is such that L in (3) is invertible,

we want to solve the following problem.

Problem 1 (Infimum Density Problem):

η� = inf η(q) (7)

subject to the following constraints:

C1) There exist v ∈ R
m, d ∈ R

n and a scalar quantizer q̊
such that q(x) = vq̊(dT x), for all x ∈ R

n,

C2) q(x) = −q(−x) for all x ∈ R
n,

C3) V is a Lyapunov function for the closed-loop system

x+ = Ax + Bq(x).
Constraint C1) insures that the quantizer q has the form

shown in Fig. 1 for some v ∈ R
m and d ∈ R

n. Constraint

C2) is imposed in accordance with [6], since it incurs no loss

of generality in regard to quantization density. C3) restricts

the search to quantizers that are quadratically stabilizing with

respect to the given CLF.
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Before solving Problem 1, the following comment is in

order. From C1) and C3), it follows that V is a Lyapunov

function for the closed-loop system x+ = Ax + Bvq̊(dT x),
for some v ∈ R

m and d ∈ R
n. Hence V is a CLF for the

single-input system

x+ = Ax + B̄ū, where B̄ � Bv, (8)

for some v ∈ R
m. Note that V is a CLF for such a system

if and only if ∆V (x, u) in (2), where u = vū, is negative

when ū = KGDx (and x �= 0), with

KGD = −(B̄T PB̄)−1vT MT , (9)

since this is the feedback that causes V (x) to decrease the

most along the trajectories of system (8) (see [6, Section

II-B]). Thus, V is a CLF for (8) if and only if

L − M̄(B̄T PB̄)−1M̄T < 0, where M̄ � Mv. (10)

In summary, the function V (x) = xT Px must be such that

there exists v ∈ R
m that satisfies (10). If this is not the case,

then the constraint set of Problem 1 is empty and it is not

meaningful to solve this problem for the given V .

The following result is used in the sequel.

Lemma 1: Let V (x) = xT Px be a CLF for the single-

input system (8), let L, defined in (3), be invertible and

assume that the system is nonscalar, that is, n ≥ 2. Then, L
has n − 1 negative and 1 positive eigenvalues.

Proof: Note that (2) and (10) imply that

xT [L − M̄(B̄T PB̄)−1M̄T ]x =

∆V (x, vKGDx) < 0, for all x ∈ R
n \ {0}. (11)

Since A is unstable and ū = KGDx stabilizes (8), we know

that KGD �= 0, and since KGD ∈ R
1×n, then dim(ker KGD) =

n − 1 ≥ 1. From (11), ∆V (x̄, 0) < 0 for all x̄ ∈ ker KGD \
{0}, and using (2) and (3), then ∆V (x̄, 0) = x̄T Lx̄ < 0 for

all x̄ ∈ ker KGD \ {0}. Since x̄T Lx̄ < 0 for all nonzero

vectors in a subspace of dimension n − 1, L must have

at least n − 1 negative eigenvalues (see [13, Sec. 4.3.23,

p. 192]). However, L cannot have n negative eigenvalues

because this implies that L is negative definite, contradicting

the assumption that A is unstable. Also, since L is invertible,

then the remaining eigenvalue must be positive.

III. PROBLEM SOLUTION

Fig. 1 shows that, conceptually, there exists a single-

input system between the fictitious input ū and the state

x. This observation motivates us to divide Problem 1 into

the following two subproblems. First, we assume that some

“feasible” v ∈ R
m is given and consider the single-input

system (8). The existing results [6], [10], [11] can be used

to design a quantizer having infimum density for this single-

input system. The resulting infimum density is a function of

the input matrix B̄ = Bv and hence a function of v. Second,

we optimize density over all “feasible” vectors v ∈ R
m. The

resulting density is the infimum density for the single-input
system (8). The following result shows that, fortunately, this

is also the infimum density for the multiple-input system

(1) when q satisfies constraint C1) and ‖v‖ = 1, or when

q̄(x) � q̊(dT x) is logarithmic.

Proposition 1: Let q̄ : R
n → R be a quantizer and let

q(x) = vq̄(x), for some nonzero v ∈ R
m. Then,

(i) If ‖v‖ = 1, then η(q) = η(q̄),
(ii) If q̄ is logarithmic, then η(q) = η(q̄).

Proof: Let U(q) and U(q̄) denote the ranges of q and

q̄, respectively. Note that U(q) ⊂ R
m and U(q̄) ⊂ R. Let

Cm(ε) and C1(ε) be defined as in (5). We have U(q) =
v U(q̄) and

#[U(q) ∩ Cm(ε)] = #[vU(q̄) ∩ Cm(ε)]

= #[‖v‖U(q̄) ∩ C1(ε)]. (12)

(i) From (12) and since ‖v‖ = 1, then #[U(q) ∩ Cm(ε)] =
#[U(q̄) ∩ C1(ε)], and hence

lim sup
ε→0

#[U(q) ∩ Cm(ε)]

−2 ln ε
= lim sup

ε→0

#[U(q̄) ∩ C1(ε)]

−2 ln ε
,

proving that η(q) = η(q̄).
(ii) Since q̄ is logarithmic, then

U(q̄) = {±ρiu0 : i ∈ Z} ∪ {0}, (13)

for some 0 < ρ < 1 and u0 ∈ R. We have

‖v‖U(q̄) = {±ρiu0‖v‖ : i ∈ Z} ∪ {0}. (14)

From (14), (13) and [6], it follows that

lim sup
ε→0

#[‖v‖U(q̄) ∩ C1(ε)]

−2 ln ε
= −2/ ln ρ = η(q̄),

and using (14) and (12), then η(q) = η(q̄).
Fig. 2 illustrates equality (12) when ‖v‖ = 1. At the top left,

the set U(q) is depicted by means of little circles. Note that

U(q) is contained in the subspace of R
m generated by the

vector v, also shown in the figure. The annular region Cm(ε)
is the region between the circles with radii ε and 1/ε. At the

top right, the intersection U(q)∩Cm(ε) is shown and consists

of the four little circles that are contained in Cm(ε) in the

top-left part of the figure. At the bottom left, the set U(q̄) and

the region C1(ε) are shown, and their intersection is shown

at the bottom-right part of the figure. Note that the number

of elements in the sets U(q) ∩ Cm(ε) and U(q̄) ∩ C1(ε) is

the same.

R
mR

m

RR

ε

ε

1/ε

1/ε

U(q)

U(q̄)

v:‖v‖=1v:‖v‖=1
00

00

11
· · ·

· · ·

Cm(ε)

C1(ε)

U(q)∩Cm(ε)

U(q̄)∩C1(ε)

Fig. 2. The equality (12) for ‖v‖ = 1.
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We now return to Problem 1. Considering constraint C1),

defining q̄(x) � q̊(dT x) and incorporating the additional

constraint ‖v‖ = 1, we may use Proposition 1 to replace

(7) by η� = inf η(q̄). We are now ready to divide Problem 1

into the following two subproblems.

Subproblem a): For a given v ∈ R
m,

ηv = inf η(q̄)

subject to:

C1’) There exists d ∈ R
n and a scalar quantizer q̊ such that

q̄(x) = q̊(dT x) for all x ∈ R
n,

C2’) q̄(x) = −q̄(−x) for all x ∈ R
n,

C3’) V is a Lyapunov function for the closed-loop system

x+ = Ax + (Bv)q̄(x).
Subproblem b):

η� = inf ηv,

where ηv is the solution to Subproblem a), subject to:

• v ∈ R
m, ‖v‖ = 1 and v is such that there exists at least

one feasible q̄ for Subproblem a).

The solution to Problem 1, namely η�, is also the solution

to Subproblem b).

A. Solution to Subproblem a)

Depending on the given value of v ∈ R
m, the constraints

of Subproblem a) will be satisfied or not. When the con-

straints are satisfied, we have, using the result in [11]:

ηv = −2/ ln
β(v) − γ(v)

β(v) + γ(v)
, (15)

where

β(v) � vT MT L−1Mv, γ(v) �

√
−vT Hv β(v) (16)

H � BT PB − MT L−1M, (17)

and L and M were defined in (3). As shown in [6], [10] and

[11], a quantizer that has the infimum density for a single-

input system is logarithmic and hence, by Proposition 1, the

constraint ‖v‖ = 1 is not necessary in Subproblem b). Also,

note that the expression ηv in (15)–(17) does not depend on

the norm of v (provided it is nonzero).

B. Solution to Subproblem b)

It is only meaningful to evaluate ηv for vectors v ∈ R
m

such that the constraint set of Subproblem a) is nonempty.

Note that the only constraint of Subproblem a) that relates

to v is C3’), which says that V is a CLF for the single-

input system (8). We can equivalently characterize all such

v ∈ R
m as follows:

• v ∈ R
m satisfies (10) for the given V (x) = xT Px.

The following Lemma provides an equivalent algebraic char-

acterization of all such v ∈ R
m.

Lemma 2: Fix P = P T > 0 such that L in (3) is invertible

and there exists (at least one) v ∈ R
m satisfying (10). Then,

for this fixed P , an arbitrary nonzero v ∈ R
m satisfies (10)

if and only if vT Hv < 0, where H was defined in (17).

Proof: Necessity. The matrix on the left-hand side of

(10) is negative definite if and only if its inverse also is.

Using a matrix inversion formula, together with (17) and

B̄ = Bv, it follows that (10) is true if and only if

L−1 + L−1M̄(vT Hv)−1M̄T L−1 < 0, (18)

Since, from Lemma 1, L has one positive and n − 1
negative eigenvalues, so does L−1. Since M̄ ∈ R

n×1, then

the symmetric matrix L−1M̄(vT Hv)−1M̄T L−1 has rank at

most one. In order that (18) be true, this matrix must then

be nonzero and negative semidefinite. Thus, it follows that

vT Hv < 0, concluding the necessity part of the proof.

Sufficiency. We now assume that vT Hv < 0 which, by

(17) and (8), is equivalent to

M̄T L−1M̄ > B̄T PB̄ > 0, (19)

where M̄ = Mv and the last inequality follows from P > 0
and B̄ = Bv, where B has full rank. Eq. (10) is true if

and only if all the eigenvalues of L− M̄(B̄T PB̄)−1M̄T are

negative. λ is an eigenvalue of this matrix if and only if there

exists a nonzero x ∈ R
n satisfying

[λI − L + M̄(B̄T PB̄)−1M̄T ]x = 0. (20)

We first prove that if λ satisfies (20) then λ is not the only

positive eigenvalue of L. For a contradiction, assume that λ
satisfies (20) and is the only positive eigenvalue of L. Then,

the matrix λI − L is positive semidefinite. Also, the rank-

one matrix M̄(B̄T PB̄)−1M̄T is positive semidefinite since,

from (19), B̄T PB̄ > 0 and M̄ �= 0. Premultiplying (20) by

xT yields

xT (λI − L)x + xT [M̄(B̄T PB̄)−1M̄T ]x = 0,

which is therefore satisfied if and only if

xT (λI − L)x = xT [M̄(B̄T PB̄)−1M̄T ]x = 0. (21)

Since the matrices in (21) are positive semidefinite and x is

nonzero, it follows that

(λI − L)x = M̄(B̄T PB̄)−1M̄T x = 0. (22)

The following conditions follow from (22): x is an eigen-

vector corresponding to the only positive eigenvalue of L
and M̄T x = 0. In addition, x is also an eigenvector

corresponding to the only positive eigenvalue of L−1 because

L is symmetric. Then, M̄T L−1M̄ < 0 because M̄ is

orthogonal to the eigenvector corresponding to the only

positive eigenvalue of L−1. This contradicts (19). Therefore,

we have proved that if λ satisfies (20), then λ is not the only

positive eigenvalue of L.

We now prove that if λ ≥ 0, then it is not an eigenvalue of

the matrix on the left-hand side of (10). For a contradiction,

assume λ ≥ 0 is an eigenvalue of this matrix. Then, λ
satisfies

det(λI − L + M̄(B̄T PB̄)−1M̄T ) = 0. (23)

Since we have already proved that λ is not the only positive

eigenvalue of L, then (23) is equivalent to

(1 + M̄T (λI−L)−1M̄(B̄T PB̄)−1) det(λI−L) = 0. (24)
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Since det(λI − L) �= 0, it then follows from (24) that

M̄T (L − λI)−1M̄ = B̄T PB̄.

Consider the function f(α) � M̄T (L − αI)−1M̄ , which is

defined, continuous and differentiable at any α ∈ R that is

not an eigenvalue of L. Note that f(λ) = B̄T PB̄ > 0 and

f(0) > B̄T PB̄ > 0 [see (19)]. We have

df

dα
(α) = M̄T (L − αI)−2M̄,

which satisfies df
dα (α) > 0 at any α that is not an eigenvalue

of L. Hence, f(α) is increasing at any such point. Also, it is

straightforward to check that limα→∞ f(α) = 0. Denoting

the only positive eigenvalue of L by λmax(L), we conclude

that f(α) has the form sketched in Fig. 3 for any α ≥ 0
that is not λmax(L). Hence, there exists no α ≥ 0 such that

f(α) = B̄T PB̄. This is a contradiction since we had λ ≥ 0
and f(λ) = B̄T PB̄. We have thus shown that whenever λ
is an eigenvalue of the matrix on the left-hand side of (10),

then λ < 0, proving (10). This concludes the proof.

f(α)

α
λmax(L)

f(λ)=B̄T PB̄

f(0)>f(λ)

0

Fig. 3. The function f(α).

Using Lemma 2 we can recast Subproblem b) as:

η� = inf ηv,

subject to:

• v ∈ R
m satisfies vT Hv < 0.

We are now ready to state the main result of the paper.

Theorem 1: The solution to Subproblem b), and hence to

Problem 1, is given by

η� = −2/ ln
β(v�) − γ(v�)

β(v�) + γ(v�)
, where (25)

v� = (BT PB)−1/2w�, (26)

β and γ are defined in (16), and w� is an eigenvector

corresponding to the greatest eigenvalue of the matrix

(BT PB)−1/2MT L−1M(BT PB)−1/2. (27)

Proof: Since the density of a quantizer is always

nonnegative, we have ηv ≥ 0 and thus any optimizer of

Subproblem b) is also an optimizer of [see (15)]

inf
β(v) − γ(v)

β(v) + γ(v)
, (28)

subject to vT Hv < 0. From (17), vT Hv < 0 implies that

vT MT L−1Mv > 0 and hence β(v) > 0 [see (16)]. Then,

γ(v) �= 0 and (28) is equivalent to

inf
β(v)/γ(v) − 1

β(v)/γ(v) + 1
. (29)

From (16) and (17), it follows that γ2(v) = −vT Hv β(v) =
[β(v) − vT BT PBv]β(v) and then γ2(v) < β2(v). Com-

bining this last inequality with the fact that β(v) > 0 and

γ(v) > 0 whenever vT Hv < 0, then β(v) > γ(v) > 0,

and thus β(v)/γ(v) > 1 whenever vT Hv < 0. Since the

expression to be optimized in (29), considered as a function

of β(v)/γ(v), is increasing for β(v)/γ(v) > 1, then any

optimizer is also an optimizer of inf β(v)/γ(v), which in

turn is an optimizer of

inf
β2(v)

γ2(v)
= inf

vT MT L−1Mv

vT MT L−1Mv − vT BT PBv
, (30)

subject to vT Hv < 0. Since vT BT PBv > 0, (30) is

equivalent to

inf
vT MT L−1Mv

vT BT PBv
vT MT L−1Mv

vT BT PBv
− 1

, (31)

and since vT Hv < 0, then vT MT L−1Mv
vT BT PBv

> 1 and any

optimizer of (31) is also an optimizer of

sup
vT MT L−1Mv

vT BT PBv
. (32)

Let w = (BT PB)1/2v and substitute into (32) to obtain

sup
wT (BT PB)−1/2MT L−1M(BT PB)−1/2w

wT w
. (33)

Note that any optimizer w� of (33) is an eigenvector cor-

responding to the greatest eigenvalue of the matrix (27).

Therefore, v� = (BT PB)−1/2w� and the result follows.

Remark 1: Theorem 1 solves a quantization density op-

timization problem when the CLF is given. For the class

of multiple-input systems considered, namely those that

can be stabilized using a one-dimensional subspace of the

input space, optimization of the quantization density over

all quadratic CLFs for the derived single-input system (8)

yields the result in [6, Theorem 2.2]. This infimum density

only depends on the unstable eigenvalues of A, that is, it is

independent of the input matrix B̄ = Bv, so long as (A,Bv)
is stabilizable.

IV. A RESULT IN THE LITERATURE

In this section, we review [8, Theorem 1] in order to be

able to compare that result to the one above.

In [8], the authors define a CLF of the form V (x) = xT Px
to be of TypeJ if the number of strictly positive eigenvalues

of the matrix L = AT PA − P , defined in (3), is J . Then,

according to Lemma 1, the CLF considered in this paper

is of Type1. For simplicity, we now copy the statement of

Theorem 1 in [8, p. 183] using the current notation.

Theorem 2 (Theorem 1 in p. 183 of [8]): If V (x) =
xT Px, P > 0, is a CLF of Type1 for system (1).

Then V (x) is also a CLF for the single-input system

(8) obtained by replacing B with B̄ = Bv� where
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v� = (BT PB)−1BT PAw�, and w� denotes the eigenvector

associated with the only positive eigenvalue of L. Moreover

the coarsest (infimum density) quantizer for system (1), and

such a V , is given by

q(x) = v�q̄(x)

where q̄(x) is the coarsest quantizer for system (8).

According to this theorem, the infimum density η� � η(q̄)
can be obtained from [6] as:

η� = −2/ ln ρ, (34)

where

ρ =

√
B̄T PAQ−1AT PB̄

B̄T PB̄
− 1√

B̄T PAQ−1AT PB̄
B̄T PB̄

+ 1
, (35)

and

Q = P − AT PA +
AT PB̄B̄T PA

B̄T PB̄
, (36)

with B̄ = Bv�.

V. EXAMPLE

In this section, we compare the solution to Problem 1

obtained in Theorem 1 with the result in [8, Theorem 1] by

means of a numerical example. Let system (1) be defined

with matrices

A =

⎡
⎣2 1 0

0 2 0
0 0 3

⎤
⎦ , B =

⎡
⎣0 0

1 0
0 1

⎤
⎦ ,

and consider the CLF V (x) = xT Px, where

P =

⎡
⎣ 1744 3901 −4574

3901 8809 −10356
−4574 −10356 12187

⎤
⎦ .

Note that P = P T , and P > 0 since the eigenvalues of

P are approximately 1, 25 and 22714. The eigenvalues of

the matrix L defined in (3) are approximately -253, -1 and

146756, showing that L has only one positive eigenvalue and

is invertible. According to [8], then V (x) is a CLF of Type1.

Evaluating η� according to Theorem 1, that is, according

to (25) and (26), gives

η� = −2/ ln 0.9318 ≈ 28.3, with

v� =
[
0.712 0.7022

]T
.

Also, the same result is obtained by means of (34)–(36), with

B̄ = Bv�. If we evaluate the density using Theorem 2, that

is, according to [8, Theorem 1], we obtain

v� =
[
−0.8509 0.5254

]T
,

and the argument of the square root in (35) is negative,

approximately equal to −7.2773, which results in an in-

consistent (complex) value of the density. Note also that in

this case, V (x) = xT Px is not a CLF for the single-input

system (8) with B̄ = Bv�, since (10) is not satisfied or,

equivalently, Q in (36) is not positive definite. The reason

for this inconsistency seems to stem from the fact that, in

the proof of [8, Theorem 1], the authors study ∆V (x, u) [see

(2)] only along the direction of the eigenvector corresponding

to the only positive eigenvalue of L = AT PA − P .

VI. CONCLUSIONS

We have derived a new result on the infimum quantization

density for linear time-invariant multiple-input systems that

can be stabilized using a one-dimensional subspace of the

input space. This result yields the infimum density over all

quantized feedbacks that are quadratically stabilizing with

respect to a given control Lyapunov function. The infimum

density derived was shown to differ from a previously

published result. This discrepancy was explored by means of

a numerical example that shows that, whereas the previously

published result yields an inconsistent value of the density,

our result provides a suitable one. We have thus corrected the

previously published result on infimum quantization density

for a given control Lyapunov function, for the class of

multiple-input systems considered.
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