
 
Abstract— Online trained neural networks have become 

popular in recent years in designing robust and adaptive 
controllers for dynamic systems with uncertainties in their 
system equations because of their universal function 
approximation property. This paper discusses a technique that 
dynamically reoptimizes a Single Network Adaptive Critic 
(SNAC) based optimal controller in the presence of unmodeled 
uncertainties. The controller design is carried out in two steps: 
(i) synthesis of a set of online neural networks that capture the 
uncertainties in the plant equations on-line (ii) re-optimization 
of the existing optimal controller to drive the states of the plant 
to a desired reference by minimizing a predefined cost function. 
The neural network weight update rule for the online networks 
has been derived using Lyapunov theory that guarantees 
stability of the error dynamics as well as boundedness of the 
weights. This approach has been applied in the online re-
optimization of a micro-electromechanical device controller 
and numerical results from simulation studies are presented 
here.  

I. INTRODUCTION

any difficult real-life control design problems can be 
formulated in the framework of optimal control 

theory. It is well-known that the dynamic programming 
formulation offers the most comprehensive solution to 
compute nonlinear optimal control in a state feedback form 
[1]. An innovative idea was proposed in [2] to get around the 
numerical complexity of solving the associated Hamilton-
Jacobi-Bellman (HJB) equation by using an ‘Approximate 
Dynamic Programming (ADP)’ formulation. In one version 
of this approach, called the Dual Heuristic Programming 
(DHP), one network (called the action network) represents 
the mapping between the state and control variables while a 
second network (called the critic network) represents the 
mapping between the state and costate variables.  

A significant improvement to the adaptive critic architecture 
was proposed by [3]. It is named Single Network Adaptive 
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Critic (SNAC) because it uses only the critic network instead 
of the action-critic dual network set up in typical adaptive 
critic architecture. SNAC is applicable to a large class of 
problems for which the optimal control (stationary) equation 
is explicitly solvable for control in terms of state and costate 
variables. SNAC eliminates the iterative training loops 
between the action and critic networks and consequently 
there are computational savings.  
In the recent past, there has been a lot of interest in the use 
of neural networks for direct closed loop controller design 
that guarantee desired performance in presence of 
uncertainties and unmodeled dynamics [4]. An adaptive 
optimal controller that makes use of online neural networks 
to approximate parametric/unmodeled nonlinear 
uncertainties for general control affine systems of the form 

( ) ( )X f X g X U= +  is discussed in this work. The weight 
update rule used in the neural networks in this work is very 
similar to the Lyapunov based weight update rule used in 
Leitner’s work [4]. The uniqueness of the method proposed 
in this work is that the online function approximating 
network can be used to re-optimize in real time an existing 
Single Network Adaptive Critic [3] based optimal controller 
that has already been designed for a nominal system. This 
method is also unique in that unmatched uncertainties can be 
dealt with. Section 2 discusses approximate dynamic 
programming and the Single Network Adaptive Critic 
technique for optimal control design. Section 3 outlines the 
online approximation of system uncertainties and the 
Lyapunov based online weight update rule used in this work. 
Online re-optimization of the SNAC controller is discussed 
in section 4. Simulation studies are performed and results are 
given in section 5. The MEMS example considered here 
involves the presence of an unmatched parametric 
uncertainty in the system model that causes unmodeled 
nonlinearities to be present in the tracking error equations. 
The objective is dynamic reoptimization of the existing 
SNAC controller designed for a nominal MEMS model. 
Conclusions are drawn in section 6. Convergence proof of 
the SNAC technique for control affine linear systems has 
been given in the appendix. 

II. APPROXIMATE DYNAMIC PROGRAMMING
A. Outline 
In this section, we attempt to outline the principles of 
approximate (discrete) dynamic programming, on which the 
SNAC approach is based on. An interested reader can find 
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more details about the derivations in [5]. In discrete-time 
formulation, the aim is to find an admissible control kU ,
which causes the system described by the state equation   

( )1 ,k k k kX F X U+ =                           (1) 
to follow an admissible trajectory that optimizes a sensible 
performance index J  given by 

( )
1

1

,
N

k k k
k

J X U
−

=

= Ψ∑                   (2)                

where, the subscript k  denotes the time step. kX  and kU

represent the 1n ×  state vector and 1m ×  control vector, 
respectively, at time step k . One can notice that when 
N → ∞ , this leads to the infinite time problem. First, the cost 
function from time step k  is denoted as 

( )
1

,
N

k k k k
k k

J X U
−

=

= Ψ∑               (3) 

Then kJ  can be rewritten as  

1k k kJ J += Ψ +                    (4) 

where kΨ  and 
1

1
1

N

k k
k k

J
−

+
= +

= Ψ∑  represent the utility function at 

time step k  and the cost-to-go from time step 1k +  to N ,
respectively.  The  costate vector is defined as 

k
k

k

J
X

λ ∂=
∂

                          (5) 

For optimal control (stationary) equation, the necessary 
condition for optimality is given by  

0k

k

J
U

∂ =
∂

                      (6) 

The optimal control equation can be written as 

1
1 0

T

k k
k

k k

X
U U

λ+
+

⎛ ⎞ ⎛ ⎞∂Ψ ∂+ =⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠
                (7) 

Using Eq.(7), on the optimal path, the costate equation  can 
be expressed as 

1
1

T

k k
k k

k k

X
X X

λ λ+
+

⎛ ⎞ ⎛ ⎞∂Ψ ∂= +⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠
             (8) 

Eqs.(1), (7) and (8) have to be solved simultaneously, along 
with appropriate boundary conditions, for the synthesis of 
optimal control.  

B. Single Network Adaptive Critic(SNAC) 
The SNAC technique retains all powerful features of the 
dual network Adaptive Critic (AC) methodology, while 
eliminating the action network completely. Details of the AC 
methodology have been provided in [5]. Note that in SNAC 
design, the critic network captures the functional 
relationship between kX  and 1kλ + , whereas in AC design the 
critic network capture the relationship between kX  and kλ .
Note that the SNAC method is valid only for the class of 
problems where the optimal control equation Eq.(7) is 
explicitly solvable for control variable kU  in terms of the 
state variable kX  and costate variable 1kλ + . Details 
regarding the neural network training and convergence 
checks can be obtained from [3].     

III. NEURAL NETWORK BASED ADAPTATION AND ONLINE 
WEIGHT UPDATE RULE

In this section, a novel technique that is used to capture 
parametric uncertainties or unmodeled nonlinearities that 
may be present in the plant dynamics but are not considered 
in the system model used for controller design is briefly 
discussed. This method has been elaborated in [6]. The 
uncertainty approximation is achieved using an online neural 
network in each system equation. Consider a general 
nonlinear system with the following structure 

                    ( ) ( )X f X g X U= +                                 (9)                      
The control vector drives the system from an initial point to 
a final desired point optimizing a sensible performance 
index J given by 

0

( , )J X U dt
∞

= Ψ∫                                        (10) 

It is assumed that a pre-designed SNAC optimal control U
is available to drive the modeled system along a desired 
trajectory. Let the actual plant have the structure 

      ( ) ( ) ( )X f X g X U d X= + +                          (11)                      
where the controller U  will have to be re-optimized to 
optimize the plant performance with the unmodeled 
dynamics ( )d X  present. Since the term ( )d X  in the plant 
equation is unknown, the first step in controller re-
optimization is to approximate the uncertainty in the plant 
equation. For this purpose, a virtual plant is defined. The 
dynamics of this virtual plant is governed by 

ˆ( ) ( ) ( ) , (0) (0)a a aX f X g X U d X X X X X= + + + − =  (12)                      
We assume that we have all the actual plant states, X ,
available for measurement at every step. The term ˆ( )d X  is 
the neural network approximation of the unmodeled 
dynamics of the system which is a function of the actual 
plant state. Subtracting Eq.(12)  from Eq. (11) we have 

ˆ( ) ( )a aX X d X d X X X− = − − +  or ˆ( ) ( )a aE d X d X E= − −

where a aE X X≡ − . It can be seen that as ˆ( ) ( )d X d X−
approaches zero, the expression becomes an exponentially 
stable differential equation, i.e. 0aE →  as time t → ∞ .

Defining [ ]1( ) ( ) ( ) T

nd X d X d X≡ , where ( )id X  denotes the 

unmodeled dynamics in the differential equation for the thi
state of the system. The approach in this study is to have ‘ n ’
neural networks (one for each component of the unmodeled 
dynamics) so as allow for simpler development and analysis.
Let us assume that there exists a neural network with an 
optimum set of weights iW   and a basis function vector, 

( )i Xϕ  that approximates ( )id X  within a certain accuracy iε .
Thus we have 

( ) ( )T
i i i id X W Xϕ ε= +                            (13)                      
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Also ˆ ˆ( ) ( )T
i i id X W Xϕ= , where ˆ ( )T

i iW Xϕ  is the output of the 

actual neural network. ˆ
iW  represents the actual network 

weights. A stable weight update rule is   
ˆ ( )

ii i a i iW e p Xϕ= Γ                           (14) 
which can be obtained from a quadratic Lyapunov function  
of the form 2 1(1/ 2) (1/ 2)( )T

i ai i i i iL e p W W−= + Γ   where  

i i ia ae x x≡ −  and ˆ
i i iW W W≡ −  .                                                        

IV. DYNAMIC RE-OPTIMIZATION OF THE SNAC
CONTROLLER

In this section we discuss how the state and costate 
equations get updated online that help in reoptimizing the 
critic network. The steps of this process are detailed below. 
It can be seen in subsection II.B that the main components of 
the SNAC controller design architecture are the Critic 
Network, the optimal control equations, the state equations 
and the costate equations. For implementation purposes, the 
state equation Eq. (9) is rewritten in a discrete form as 

1 ( ( ) ( ) )k k k k kX X t f X g X U+ = + ∆ +               (15)                                               
where  t∆  is the time step of integration. 
The performance index Eq. (10) can be expressed as  

( )
1

,k k k
k

J X U
∞

=

= Ψ∑                              (16)                                               

In a discrete form, the actual plant equation Eq. (11) is 
written as 

1 ( ( ) ( ) ( ))k k k k k kX X t f X g X U d X+ = + ∆ + +         (17)                           
In this study Euler integration scheme has been followed for 
implementation purposes.  
The critic network is trained to represent the mapping 
between kX  and 1kλ +  for the cost function given by Eq. (16) 
subject to the nominal state equation Eq. (15). The actual 
plant is given by Eq. (17) where the uncertainty ( )kd X  is 
present in the system dynamics. The critic network has not 
been trained with the actual state equation and hence is not 
the optimal critic for the actual plant. On close examination 
it can be seen that the costate equations will have to be 
modified so that an online training routine can help the critic 
capture the optimal relation between kX  and 1kλ + . The 
uncertainty in the actual plant dynamics is captured by the 
online neural network and is represented by ˆ( )kd X . It should 
be noted here that the inputs to the neural network are the 
states of the actual plant which we assume are readily 
available for measurement at every time step. In a discrete 
format, the weight update rule of the network that 
approximates the plant uncertainty is expressed as  

, 1, 1 ,
ˆ ˆ ( ( ))

i ki k i k i a i i kW W t e p Xϕ
++ = + ∆ Γ                  (18)                                    

Revisiting the costate equation (Eq. (8)), it can be seen that 

there is a term that involves 1k

k

X
X

+∂⎛ ⎞⎜ ⎟∂⎝ ⎠
. An essential part of 

the actual plant equation is the uncertainty ( )kd X . This term 
will have to be incorporated into the costate equation to 

ensure optimality of the costate. On replacing ( )kd X  with 
ˆ( )kd X  in Eq. (17) and using it in the costate equation, the 

new costate equation can be written as 

1

ˆ( ) ( ) ( )1
T

k k k k
k k k

k k k k

f X g X d X
t t U t

X X X X
λ λ +

⎡ ⎤⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂Ψ ∂ ∂ ∂= + + ∆ + ∆ + ∆⎢ ⎥⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦
                 

(19)
The uncertainty approximation ˆ( )kd X  is given by ˆ ( )T

k kW Xϕ
(output of the online neural network). The partial derivative 

term 
ˆ( )k

k

d X
X

⎛ ⎞∂
⎜ ⎟∂⎝ ⎠

 can be written as ( )ˆ T k
k

k

X
W

X
ϕ∂
∂

. Since the 

basis functions, ( )kXϕ  are chosen by the control designer, 
the partial derivative of the basis functions can be calculated 
offline. This ensures that the costate equation gets updated 
online as the online neural network approximates the 
uncertainty. The reoptimization scheme is represented in 
Figure 1. 
The steps for dynamic (online) critic re-optimization are as 
follows: 
1. For each step k , follow the steps below: 

• Input kX to the critic network to obtain 1 1
a

k kλ λ+ +=

• Calculate kU , form the optimal control equation since 

kX  and 1kλ +  are known. 
• Get  1kX +  from the state Eq.(30) using kX  and kU

• Get ˆ( )kd X  as the output of the online neural network 
• Input 1kX +  to the critic network to get 2kλ +

• Using 1kX +  and 2kλ + , calculate 1
t
kλ +  from the updated 

costate Eq.(32) 
2. Train the critic network for kX ; the output being 

corresponding 1
t
kλ + .

3. Update time step k  to 1k +
4. Continue steps 1-3. 

Figure1: Dynamic Reoptimization of SNAC Controller 
V. SIMULATION STUDY: A MEMS ACTUATOR

A. Problem Description and Optimality Conditions 
The problem considered in this study is a MEMS device, 
namely electrostatic actuator [7]. This problem was chosen 

1
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kλ +Critic 
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to prove that this technique is applicable for complex 
engineering systems of practical significance.  
The governing equations are given by 

2

0

1 0

( ) 0
2

in

Qg
Q V

R A

Q
mg bg k g g

A

ε

ε

⎛ ⎞− − =⎜ ⎟⎝ ⎠

+ + − + =
                          (20) 

where Q  denotes the charge, g  the gap between the plate 
and the base ( 0 1g mµ= ), and g  represents the rate of change 
of the gap when the plate moves. inV  is the input voltage that 
is used to move the plate to the desired position. The system 
parameters for the MEMS actuator are available in [7]. 
Defining the state variable 1 2 3[ ] [ ]T TZ z z z Q g g= = , and 
substituting system parameters, Eq.(20) can be written as 

       
1 1 2

2 3

2
31

3 2

1000 10

1200 2

inz V z z

z z

zzz z

= −
=

⎛ ⎞ ⎛ ⎞= − − − +⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

                (21) 

The function of the control input in this problem is to bring 
the plate to some desired position, i.e. the gap g  has to be 
maintained at some desired value. The desired value of the 
gap was set as 0.5 mµ . An optimal controller was designed 
to drive the plate to the desired value. At the equilibrium 
point, 2 0.5, 0z Z= = . Solving Eq.(21) for 1 3,z z  and inV
the values of the states at the equilibrium (operating) point  
were obtained as [ ]0 10 0.5 0 T

Z = and the associated steady 
state controller value was given as 

0
0.05inV = .  Next, the 

deviated state was defined as 1 2 3 0[ ]TX x x x Z Z= ≡ −  and the 
deviated control as 0in inu V V≡ − . In terms of these variables, 
the error dynamics of the system were 

   
1 1 2 1 2

2 3
2

3 1 3 2 1

5 100 10 1000

0.1 0.5 0.005

x x x x x u

x x

x x x x x

= − − − +
=

= − − − −

                (22)  

Next, an optimal regulator problem was formulated to drive 
0X →  with a cost function, J as 

          ( )2

0

1
2

T
w wJ X Q X R u dt

∞

= +∫                           (23) 

with 0wQ ≥ and 0wR >  the weighting matrices for state and 
control respectively. The state equation and cost function 
were discretized as follows 

1

1

1

1 1 2 1 2

2 3

2
3 1 3 2 1

5 100 10 1000

0.1 0.5 0.005

k k k k k

k k

k k k k k

k

k

x x x x x u

x X t x

x x x x x

+

+

+

⎡ ⎤⎡ ⎤ − − − +
⎢ ⎥⎢ ⎥

= + ∆ ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
− − − −⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

         (24)                                                     

       ( )2

1

1
2

N
T
k W k W k

k

J X Q X R u t
→∞

=

= + ∆∑                         (25) 

Next, using 2( ) / 2T
k k W k W kX Q X R u tΨ = + ∆  in Eqs.(7) and (8), 

the optimal control and costate equations were obtained as 
follows 

                 111 k

k wu R
R

λ
+−= −                             (26) 

              1

T

k
k w k k

k

F
t Q X

X
λ λ +

⎡ ⎤∂= ∆ + ⎢ ⎥∂⎣ ⎦
                  (27) 

In Eq. (27) kF  represents the expression on the right hand 
side of Eq. (24). For this problem we chose 0.001t∆ = ,

3wQ I=  and 1wR = . In the SNAC synthesis, we chose three 
sub-networks each having a 6-1 structure for the critic 
network. In each network, we selected hyperbolic tangent 
functions and a linear function as activation functions for the 
hidden layer and output layer respectively. The SNAC based 
control law was able to make the actuator plate optimally 
track the desired reference.    
B. Unmatched Uncertainty 

In order to test the reoptimization scheme, the value of 
permittivity ε  was changed from 2 21 /C N mµ  to 

2 20.5 /C N mµ .  This change was assumed to be an unknown 
uncertainty that would introduce additional nonlinearities to 
the nominal model represented by Eq. (21). The aim of the 
reoptimization scheme was then to reoptimize the existing 
optimal SNAC controller (nominal controller) to make the 
actuator plate optimally track the desired reference position. 
The system model now became 

1 1 2

2 3

2
31

3 2

1000 20

1100 2

inz V z z

z z

zzz z

= −
=

⎛ ⎞ ⎛ ⎞= − − − +⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

                  (28) 

It is assumed that only the nominal model Eq. (21) is 
known and Eq. (28) is unknown. Eq. (28) can be expressed 
in terms of the known model with the uncertainty lumped up 
in each state equation as shown in Eq. (29). 

1 1 2 1

2 3 2

2
31

3 2 3

1000 10 ( )
( )

1 ( )100 2

inz V z z d Z

z z d Z

zzz z d Z

= − +
= +

⎛ ⎞ ⎛ ⎞= − − − + +⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

               (29) 

where the unknown terms ( )2
1 1 2 2 3 110 , 0, /100d z z d d z≡ − ≡ ≡ − .

At the equilibrium point, 2 0.5, 0z Z= = . Solving Eq.(29) 
for 1 3,z z  and inV , the values of the states at equilibrium are 

( )( )( )

2

3 2

1/ 2

1 3 2 3

0.5

/ 2 1 200

z

z d

z z z d

=
=

= − − + +

             (30)  

and the associated steady state control value is 
( )1 2 110 /1000inV z z d= −                         (31) 

In order to approximate the unknown nonlinear terms in the 
state equations we introduce a virtual plant as explained in 
Section 3. The structure of the virtual plant used in this 
problem was 

1 1 2 1 1 1

2 3 2 2 2

2
31

3 2 3 3 3

ˆ1000 10 ( )
ˆ ( )

ˆ1 ( )100 2

a a

a a

a a

inz V z z d Z z z

z z d Z z z

zzz z d Z z z

= − + + −

= + + −

⎛ ⎞ ⎛ ⎞= − − − + + + −⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

      (32) 
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In Eq. (32) ˆ
id  represents the output of the online neural 

network that approximates the uncertainty in the thi  state 
equation of the system. 
Basis function neural networks were used in this study for 
approximating the unmodeled dynamics. Vectors iC ,

1,2,3i =  which have a structure [1 ]T
i iC z= were created. The 

vector of basis functions Φ  was composed of all possible 
products of elements of 'iC s . By using kronecker products 
to represent the neuron interactions, Φ  was composed as 

1 2 3( ( , ), )kron kron C C CΦ =  where ( , )kron ∗ ∗  represents the 

kronecker product. During simulation ˆ , 1, 2,3id i =  were used 
in Eqs. (30) and (31) to replace , 1, 2,3id i = .

The discretized error equations are  

( ) ( )

1

1

1

1 1 2 2 11

2 3 3 2

2
3 1 1 3 3 2 2 3

1000( ) 10( )( ) ( )

( ) ( )

( ) /200 ( ) / 2 ( ) ( )

k k kk

k k k

k k k k k

e
in k k

e
k k

e
k

V u z x z x d Xx

x X t z x d X

x z x z x z x d X

+

+

+

⎡ ⎤+ − + + +⎡ ⎤ ⎢ ⎥⎢ ⎥ ⎢ ⎥= + ∆ + +⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥− + − + − + +⎢ ⎥⎣ ⎦ ⎣ ⎦

(33)

where , 1,2,3e
id i =  represent the uncertainties that appears in 

the error equation because of the nonlinearities in the plant 
equations. A virtual set of error equations were defined that 
were used to approximate the uncertainties in the error 
equation, Eq. (33). These virtual set of error equations were 
given by 

( ) ( )

1

1

1

1 11

2 3 3 2 2 2

2
3 1 1 3 3

2 2 1 1 1

2 2 3 3 3

1000( ) 10( ) ...
ˆ( ) ( )

( ) / 200 ( ) / 2 ...

ˆ... ( ) ( )

ˆ... ( ) ( )

kk

k k k k k

k k k

k k k k

k k k k

a
in k

a a e a
k k

a

e a
k

e a
k

V u z xx

x X t z x d X x x

x z x z x

z x d X x x

z x d X x x

+

+

+

⎡ + − +⎡ ⎤
⎢⎢ ⎥
⎢= + ∆ + + + −⎢ ⎥
⎢⎢ ⎥
⎢⎢ ⎥ − + − +⎣ ⎦ ⎣

⎤+ + + −
⎥
⎥
⎥

− + + + − ⎥⎦

      (34) 

In Eq. (34), ˆ , 1,2,3e
id i =  represent approximations of the 

unknown terms in the error equations Eq. (33). The terms 
denoted by ˆe

id  are outputs of online neural networks which 
have the same structure as the networks described earlier (to 
approximate uncertainties in the plant equation). Vectors 

e
iC , 1,2,3i =  which have a structure [1 ]e T

i iC x= were 
created. The vector of basis functions eΦ  was 

1 2 3( ( , ), )e e e ekron kron C C CΦ = .  The outputs of the online neural 
networks that approximate uncertainties in the error equation 
were expressed as   ˆ ˆ ( )

k k

e eT e
i i i kd W X= Φ . These outputs were 

used to replace the uncertainties denoted by e
id  in Eq. (33). 

Next, using 2( ) / 2T
k k W k W kX Q X R u tΨ = + ∆  the optimal control 

and costate equations was obtained. The expression for 
optimal control is the same as Eq. (26). The costate equation 
now accommodates the change in the state equation. 
During each iteration of the simulation, the critic network 
mentioned in subsection V. (A) was updated. This update 
was based on the new costate equation. The online training 
was carried out using the error vector ( kX ) at that instant as 

the input and the new target costate ( 1kλ + ) as the output. This 
training was performed online made use of only one epoch 
of the Levenberg-Marquardt back-propagation scheme 
available in the Neural Network Toolbox of MATLAB v 7.0 
for training/ reoptimizing the network at each time step. 

VI. RESULTS
  Simulation studies were performed for twenty seconds. 
The actuator position has been plotted in Figure 2. It details 
the nominal state trajectory (state trajectory of the plant if 
uncertainties were not accounted for), state trajectory 
affected by online reoptimization of the critic network and 
optimal state trajectory if the uncertainty were known and 
accounted for when the optimal controller was designed. The 
last mentioned state trajectory was simulated for comparison 
purposes. It can be seen in Figure 2 how well the 
reoptimized controller drives the actuator to the desired 
position of 0.5 mµ . Figure 3 illustrates nominal control, 
reoptimized control, and optimal control if uncertainties 
were known and modeled in the system equations apriori.
The error state uncertainty approximations carried out by the 
corresponding networks for the three error state equations 
are shown in Figure 4. 

VII. CONCLUSIONS
There has not been any concerted effort to dynamically re-
optimize existing controllers in the presence of uncertainties.  
In this study, a scheme to re-optimize a pre-designed optimal 
SNAC controller for control affine systems in the presence 
of unmodeled/parametric uncertainties has been developed. 
This methodology has been simulated and results have been 
shown for the tracking control of a MEMS actuator. The 
results shown are promising. A set of online neural networks 
capture plant uncertainty. This information about the 
nonlinearity/uncertainty is used to update the costate 
equation in the SNAC architecture to further train /adapt the 
critic network to optimize itself in presence of the 
unmodeled term. This method is unique in that unmatched 
uncertainties and nonlinearities can be compensated for as is 
shown in the example illustrated in Section 5.  

APPENDIX: PROOF OF CONVERGENCE OF SNAC 
Let ( ).g  represent the function approximated by the critic 
neural network. 

                                     ( )1k kg xλ + =                                (1a) 
The control is then given by, 

                            ( )1 T
k ku R b g x−= −                               (2a) 

Using Eq(2a) in state propagation equation we get 
                              ( )1

1
T

k k kx Ax bR b g x−
+ = −                      (3a) 

Let iW  and oW  represent the weight matrices of the input and 
output layers of a two layer neural network respectively. Let 

( ).ϕ  be the activation function of the hidden layer. ( ).g  can 
be expressed as ( ) ( )T T

o ig x W W xϕ= .                             
Let ( )1n kg x+  represent the desired output of the network in 
(n+1)th iteration.  ( )1n kg x+  can be expressed as 
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                     ( )( ) ( ) ( )( )1 1 1T
n n n ng x k Qx k A g x k+ = + + +           (4a)                         

To prove that SNAC training converges, it is sufficient to 
prove that ( ).ng  is a contraction mapping. 
From Eq. (4a) we can write 

                    ( )( ) ( ) ( )( )1 1 11 1T
n n n ng x k Qx k A g x k− − −= + + +        (5a) 

Subtracting Eq. (5a) from Eq. (4a) we get 
( )( ) ( )( )( ) ( ) ( )( )

( )( ) ( )( )( )
1 1

1 1

1 1 ...

... 1 1

n n n n

T
n n n n

g x k g x k Q x k x k

A g x k g x k

+ −

− −

− = + − + +

+ − +
       (6a)                                                                         

Taking norm on both sides of Eq (6a) yields 
( )( ) ( )( )( ) ( ) ( )( )

( )( ) ( )( )( )
1 1

1 1

1 1 ...

... 1 1

n n n n

T
n n n n

g x k g x k Q x k x k

A g x k g x k

+ −

− −

− ≤ + − + +

+ − +
       (7a)             

On substituting the state propagation equation, Eq. (3a) in 
the first term on the right hand side of Eq. (7a), the first term 
gets modified to ( ) ( )( )1

1
T

n k n kQbR b g x g x−
−− .                     

Now, consider the second term on the right hand side of Eq. 
(7a). The term,  ( )( ) ( )( )( )1 11 1n n n ng x k g x k− −+ − +

( )( ) ( )( ) ( )( ) ( )( )1 1 1 11 1 1 1n n n n n n n ng x k g x k g x k g x k− − − −≤ + − + + + − +  (8a) 
Consider the first term in the above inequality, 

( )( ) ( )( )1 1 11 1n n n ng x k g x k− − −+ − +

( )( ) ( )( )( )1 1 1 11 1
n n n

T T T
o i n i nW W x k W x kϕ ϕ

− − − −≤ + − +          (9a) 

As ( ).ϕ  is a Lipschitz function, ( ) ( ) ( )x y x yϕ ϕ η− ≤ −  where, 
η  is any positive number. Using this relation, Eq. (9a) 

( )( ) ( )( )( )1 1

1
1n n

T T T
o i n nW W bR b g x k g x kη

− −

−
−≤ −

The second term in Eq. (8a) represents the change in the 
network output due to change in weights. Let the change of 
weights in the input layer be iw∆  and that in output layer be 

ow∆ . It can be seen that, ( )( ) ( )( )11 1n n n ng x k g x k−+ − +

( )( ) ( )( )( )1 1
1 1

n n n n

T T T T
o i n o i nW W x k W W x kϕ ϕ

− −
= + − +

( ) ( )( ) ( )1 1 1
1

n n n

T TT
o i n oW w x k wη

− − −
≤ ∆ + + ∆           (10a)                                         

Based on backpropagation algorithm, we get  

( ) ( )( ) ( )( )( )1 1 1n

T

o n nw k g x k g x k
− −∆ ≤ −

( ) ( )( ) ( )( )( )1 2 1n

T

i n nw k g x k g x k
− −∆ ≤ −

where ( ) ( )'
1 . ik y nαϕ=  and 

12 0n

Tk Wα
−

=

Therefore, the second term in Eq. (8a),  
( )( ) ( )( ) ( )( ) ( )( )( )

( )( ) ( )( )( )
11 2 1

1 1

1 1 ...

...

n

T
n n n n o n n

n n

g x k g x k W k g x k g x k

k g x k g x k

η
−− −

−

+ − + ≤ −

+ −
(11a) 

Eq. (7a) can be rewritten as 
( )( ) ( )( )( ) ( )( ) ( )( )( )

( )( ) ( )( )( ) ( )( ) ( )( )( )
1

1 1

1 1 2 1

1
1 1 1

1 1 ...

... ...

n

n n

T
n n n n o n n

T T T
n n o i n n

g x k g x k W k g x k g x k

k g x k g x k W W bR b g x k g x k

η

η

−

− −

− − −

−
− −

+ − + ≤ −

+ − + −

( )( ) ( )( )( )1 , 1n ng x k g x kρ ρ−= − <                        (12a) 
Now, we can write  

( )( ) ( )( )( ) ( ) ( )( )
( )( ) ( )( )( ) ( ) ( )( )

1
1 1

1 1

...

...

T
n n n k n k

T
n n n k n k

g x k g x k QbR b g x g x

A g x k g x k g x g xρ

−
+ −

− −

− ≤ − +

− ≤ Ψ −
     (13a)

The above is a contraction mapping if 1Ψ < n∨ . This 
condition can be met by selecting appropriate values of R and 
α .        
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