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Abstract— Continuing the authors’ studies of hybrid dy-
namical systems, i.e. differential equations governed by finite
automata, an efficient and complete classification of control
linear systems in the plane is offered. The set of all such
systems is divided into equivalence classes which are explicitly
characterized by some quantitative invariants. The canonical
representatives in each class are determined. It is shown how
to use this classification to find out whether a given system is
stabilizable or not.

I. INTRODUCTION

Consider a linear control 2 × 2 - system

ẋ = Ax + Bu, y = Cx, (1)

on [0,∞), where x ∈ R2 is the state variable of the
system, y ∈ R is the output variable, u ∈ R is the
control variable, and B,C are real, nonzero 2-dimensional
column vector and row vector, respectively. As rankB =
rankC = 1, the stabilization of the system is a nontrivial
problem, because static output feedback controls may not
work, even if the usual controllability and observability
assumptions are fulfilled. A typical example is the controlled
harmonic oscillator. Among dynamical stabilizers (which
always exist), the simplest are those having a finite number
of states (”automata”). Coupling such a stabilizer with the
given continuous dynamical system (”a plant”) generates a
hybrid feedback control. A way of attaching the automaton to
the plant is given by a switching diagram. In [1] it is shown
that there exists a linear hybrid feedback control (in short:
LH-control, see Definition 2.2 below), which stabilizes the
controlled harmonic oscillator. However, in [2] and [5], it
is proved that some planar systems cannot be stabilized in
this way. That is why, the problem arise how to recognize
systems, which admit stabilization by finite state controllers
and which are not.

Remark first that the cases, where either rankC, or
rankB are not 1 are not of much interest for the systems
in the plane. Assume for a moment that B,C are matrices
of the size 2× � and m× 2, respectively. If the pair (A,B)
is stabilizable, and rankC = 2 (the case of complete
observability of the solutions), or if rankB = 2 and the pair
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(A,C) is detectable, then there always exists a linear static
output feedback control u = Gy with an � × m-matrix G,
which exponentially stabilizes the zero solution of the given
control system with an arbitrary matrix A (see e.g. [8]). If,
on the contrary, the pair (A,B) is not stabilizable, or the
pair (A,C) is not detectable (for example, if B = 0 or
C = 0), then system (1) can be stabilized neither by linear
static output feedback controls, nor by LH-controls. Thus,
the assumption posed on system (1) that B,C are nonzero
vectors is indeed essential and provides no loss of generality:
only in this case LH-controls can do the stabilization job
better than linear static output feedback controls (see [5],
[4] for the details).

In [5] a classification of control planar systems (the so-
called ”GT -classification”) was offered, which in particular
implied the following stabilization criterion: system (1) is
stabilizable by a LH-control (LH-stabilizable) if and only
if there exists α ∈ R for which the matrix A + αBC
has no nonnegative real eigenvalues. A similar result was
independently proved by a different method in the papers
[2] and [3]. The criterion demonstrates that, indeed, the
stabilization condition is considerably weakened if static
output feedbacks are replaced by hybrid feedbacks. However,
this condition is not always easy to check. In [4] the ”GT -
classification” was exploited to construct verifiable criteria
for LH-stabilization of system (1). An efficient algorithm
was designed which tests specific systems (1) using the input
data (A,B,C). This algorithm also recognizes whether the
zero solution to (1) can be stabilized by a static output
feedback linear control, or by a LH-control, or cannot be
stabilized by any of them.

The present paper continues and in some sense completes
the study started in [4], [5]. The following are the main
results of the paper:

1) A set of invariants is identified, which characterize the
GT -equivalence classes, where GT is a certain group of
transformations of the triples (A,B,C). This leads to an
efficient classification of systems (1) based on the suggested
invariants. In each equivalence class one canonical represen-
tative is found whose parameters can explicitly be calculated
via the invariants of the class.

2) Certain properties of the equivalence classes are studied,
for example, whether or not a system from the given class
admits stabilization and, if it does, whether it is possible to
find a static output feedback control, or a non-static LH-
control should be applied.

3) The final classification is conveniently put in a table.
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II. LH-CONTROLS AND STABILIZATION

Below are the formal definitions of LH-controls and some
relevant objects.

Definition 2.1: A discrete automaton is a 6-tuple ∆ =
(Q, I,M, T , j, q0), where

(i) Q is a finite set of all automaton states (locations);
(ii) the finite set I contains the input alphabet;
(iii) the transition map M : Q × I → Q indicates the

location after a transition time, based on the previous location
q and input i ∈ I at the time of transition;

(iv) T : Q → (0,∞) is a mapping which sets a period
T (q) between transitions times;

(v) j : R → I is a function with property j(λy) = j(y),
y ∈ R, λ > 0;

(vi) q0 = q(0) is the state of the automaton at the initial
time.

For any automaton ∆ satisfying (i)-(vi) a special feed-
back operator F∆ can be iteratively constructed. Given y :
[0,∞) → R the function F∆y : [0,∞) → Q is defined by:

1. (F∆y)(0) = q0; t1 = T (q0); F∆y ≡ q0 on [0, t1);
2. If t1, . . . , tk and the values (F∆y)(t) for t ∈ [0, tk)

are already known, then tk+1 and (F∆y)(t) are defined for
t ∈ [tk, tk+1) by the equalities

(F∆y)(tk) = M(q(tk−1), j(y(tk))) := q(tk);
tk+1 = tk + T (q(tk)); F∆y ≡ q(tk) on [tk, tk+1).

Here {tk}∞k=0 (t0 = 0) is a sequence of the automaton’s
possible switching times.

Definition 2.2: Given a discrete automaton ∆ and a set
{αq | q ∈ Q} ⊂ R, the pair (∆, {αq}), will be addressed as
a linear hybrid feedback control; dependence between the
control function u(·) and the output function y(·) is defined
by u(t) = αq(tk)y(t), t ∈ [tk, tk+1), k = 0, 1, . . . , where
the {tk}∞k=0 is the corresponding sequence of switching
times.

The set of all linear hybrid feedback controls has already
been denoted by LH. Any specific control u ∈ LH has the
form u = (∆, {Gq}). According to Definition 2.2, system (1)
governed by a control u = (∆, {Gq}) ∈ LH is equivalent
to the nonlinear functional differential equation

ẋ(t) = (A + BG(F∆Cx)(t)C)x(t), t ∈ [0,∞). (2)

Lemma 2.1: [4] For any LH-control u and for any a ∈
R2 there exists the unique trajectory x : [0,∞) → R2 with
the property x(0) = a (evidently, x ≡ 0 if a = 0).

Remark 2.1: The full dynamics of system (1) governed
by a LH-control u is characterized by the triple H(t) =
(x(t), q(t), r(t)), where x(·) is a solution to (1), q(t) is the
automaton’s location at time t, and r(t) is the time remaining
till the next transition instance (see [1]). The function H(·) :
[0,∞) → R2 × Q × [0,∞) can be called a full trajectory
of the (hybrid) system (1). Note that equation (2) explicitly
provides the first component of the full trajectory.

Let LH1 ⊂ LH be the subclass of LH, for which Q
contains only one point. Clearly, the subclass LH1 coincides
with the class of linear static output feedback controls of the
form u = αy.

Definition 2.3: System (1) is said to be u-stabilizable,
where u ∈ LH, if the trivial solution of the system, subject
to the control u, is uniformly asymptotically stable. In other
words,
(a) for any ε > 0 there is δ > 0 such that every solution x(·)
with the property |x(0)| < δ satisfies the estimate |x(t)| < ε
for t ≥ 0;
(b) for every solution x(·) one has |x(t)| → 0 as t → ∞,
the convergence being uniform w.r.t. initial points x(0) ∈ K
for any bounded K ⊂ R2.

Let U ⊂ LH. System (1) is called U-stabilizable if ∃u ∈ U
such that (1) is u-stabilizable.

Let Σ be the set of all triples (A,B,C), where A is
a real 2 × 2-matrix, B is a nonzero real column-vector,
and C is a nonzero real row-vector. Clearly, system (1) is
uniquely determined by (A,B,C) and the control u. A triple
(A,B,C) ∈ Σ is in the sequel called u-stabilizable, resp. U-
stabilizable, if the corresponding system (1) is u-stabilizable,
resp. U-stabilizable.

Definition 2.4: Let Ω = (A,B,C) ∈ Σ, u ∈ LH. The
upper Lyapunov exponent κ(Ω, u) of the u-governed system
(1) (or of the triple Ω) is the greatest lower bound of λ > 0
such that for each solution x of this system the exponential
estimate |x(t)| ≤ Meλt|x(0)| holds for t ≥ 0, where M > 0
may only depend on λ.

Given a subset U ⊂ LH we put

κ(Ω,U) = inf
u∈U

κ(Ω, u).

The number κ(Ω,U) is called the upper Lyapunov exponent
of (1) with respect to the subset U .

The number κ(Ω,U) characterizes capability of the con-
trols u ∈ U to influence the rate of convergence of solutions
to zero (if κ < 0), or to infinity (if κ > 0) as t → ∞.
In particular, the equality κ(Ω,U) = −∞ means that the
controls can make the solutions tend to zero as fast as
necessary.

Let σ(M) denote the spectrum of a matrix M, and put
C− = {z ∈ C |Re z < 0}, C∗

− = {z ∈ C | (Re z < 0) ∨
(Im z 
= 0)}. The following known definitions (specified for
the particular system (1)) can be found in [8].

Definition 2.5: Let (A,B,C) ∈ Σ.
The pair (A,B) is controllable if det(B AB) 
= 0.
The pair (A,C) is observable if the pair (A�,C�) is

controllable.
The pair (A,B) is stabilizable if there exists a real, 2-

dimensional row-vector F such that σ(A + BF) ⊂ C−.
The pair (A,C) is detectable if the pair (A�,C�) is

stabilizable.
It is possible to check explicitly [4] whether a triple

Ω ∈ Σ, related to system (1), has one or several following
properties:
P1. The pair (A,B) is controllable,
P2. The pair (A,C) is observable,
P3. The pair (A,B) is stabilizable,
P4. The pair (A,C) is detectable,
P5. The triple Ω is LH1-stabilizable, i.e. σ(A+αBC) ⊂ C−
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for some α ∈ R,
P6. The triple Ω is LH-stabilizable, i.e. σ(A+αBC) ⊂ C∗

−
for some α ∈ R,
P7. κ(Ω,LH) = −∞.

In addition, the following implications hold: 1)⇒3),
2)⇒4), 5)⇒6)⇐7), 6)⇒3)&4). The first three are well-
known, the last one is proved in [5]. Observe also that
∀Ω ∈ Σ κ(Ω,LH1) > −∞.

These properties seem to be sufficiently exhaustive for
stability analysis of the control system (1). It is convenient
to write Ψ(Ω) = {i1, i2, . . . , i7} for Ω ∈ Σ, where for each
k = 1, 2, . . . , 7 either ik = 1 (if property Pk above holds),
or ik = 0 (if it does not).

III. THE TRANSFORMATION GROUP GT AND
GT -INVARIANTS

Let GL2 denote the multiplicative group of nonsingular
real 2 × 2-matrices. Define the transformations Ti(·) : Σ →
Σ, i = 1, 2, 3 by

T1(D) : (A,B,C) �→ (DAD−1,DB,CD−1),
D ∈ GL2;

T2(m1,m2,m3) : (A,B,C) �→(m1A,m2B,m3C),
m1 > 0, m2,m3 ∈ R \ {0};

T3(α) : (A,B,C) �→ (A + αBC,B,C), α ∈ R.

The family of all transformations of the set Σ, generated
by Ti, i = 1, 2, 3 is called GT . This family consists of
transformations T : Σ → Σ, which can be represented
as a finite product of Ti(·), where (·) is replaced by any
admissible parameter described above.

Lemma 3.1 ([5]): Any transformation T ∈ GT can, in
fact, be represented as T = T1(D)◦T2(m1,m2,m3)◦T3(α)
for some D ∈ GL2, m1 > 0, m2,m3 ∈ R\{0} and α ∈ R.
A similar representation T = Ti◦Tj ◦Tk is also valid for any
of the six permutation {i, j, k} of the set {1, 2, 3} (however,
the parameter values D,mi, α can be different for different
permutations).

From the definitions of Ti and from Lemma 3.1 it follows
that GT indeed is a group of transformations of the set Σ,
where the group multiplication is the composition (multi-
plication) of set transformations. Observe that GT is not
commutative (see [5]).

The group GT gives rise to the natural equivalence relation
on Σ, where Ω1 ∼ Ω2 iff there exists T ∈ GT such that
Ω2 = T (Ω1). The generated factor set is denoted by Σ/GT .
It consists of all GT -equivalence classes.

Definition 3.1: Let A be a property (condition), which is
assigned to some triples (A,B,C) ∈ Σ (or to system (1)
corresponding to the triple). The property A is said to be
a GT -invariant if its validity for some Ω1 ∈ Σ implies its
validity for any other Ω2 ∈ Σ that is GT -equivalent to Ω1.

A GT -invariant is called quantitative if there exist finitely
many families Σ = Σ1 ⊃ . . . ⊃ Σk ⊃ Σk+1 = ∅, sets
Ei ∈ R and functions fi : Σi → R, i = 1, 2 . . . , k such
that A can be described by the set of conditions fi(Ω) ∈ Ei

(Ω ∈ Σ, i = 1, 2, . . . , k0(Ω)), where k0(Ω) ∈ N is chosen
in such a way that Ω ∈ Σk0(Ω) \ Σk0(Ω)+1.

A complete quantitative invariant (CQI) is a quantitative
GT -invariant A satisfying the following condition: if A is
valid for Ω1,Ω2 ∈ Σ, then Ω1 ∼ Ω2.

A natural question arises of how the factorization Σ/GT
is connected with the problem of stabilization (in particular,
LH-stabilization) of system (1). The answer is given by the
following result.

Theorem 3.1: Any value of the (vector) function Ψ from
Section 2 is a GT -invariant. In other words, properties Pk,
k = 1, ..., 7 of the triples (A,B,C) ∈ Σ are GT -invariant.
In particular, Theorem 3.1 justifies that the corresponding
factor-mapping Ψ̃ : Σ/GT → {0; 1}{1;2;...;7} is well-defined.

To be able to suggest an efficient GT -classification it is,
however, necessary to find CQI. The first, yet crucial step in
this direction is described in the next theorem. Some notation
used in the theorem is introduced below.

Let Σ1 = {Ω ∈ Σ|CB 
= 0}. Define the functions ω,m :
Σ1 → R by

ω(Ω) = trA − CAB
CB

, m(Ω) =
CAB
CB

· ω(Ω) − detA.

Let Σ2 = {Ω ∈ Σ1|m(Ω) 
= 0}. Then the function τ : Σ2 →
R is given by

τ(Ω) =
ω(Ω)√
|m(Ω)|

.

Theorem 3.2: Each of the conditions listed below is a
quantitative GT -invariant:
Q1. CAB = CB = 0;
Q2. CAB 
= 0, CB = 0;
Q3. CAB · CB 
= 0, sign ω(Ω) = µ, signm(Ω) = ν

(∀µ, ν ∈ {−1, 0, 1});
Q4. CAB · CB · m(Ω) 
= 0, τ(Ω) = µ (∀µ ∈ R).

IV. SYSTEMS WITH LH-CONTROLS AND THEIR
GT -CLASSIFICATION

The quantitative invariants described in Theorem 3.2 can
be used in the GT -classification. A brief overview of what
has been done is presented below without proofs. The final
GT -classification is presented at the end of the section as
a table. The proofs are technical and will be published
elsewhere.

a) A convenient description of the factor-set Σ/GT is
offered, where a certain CQI is assigned to each element
of this factor-set (i.e. to each GT -equivalence class). This
provides an efficient way to verify to which GT -equivalence
class does a given triple Ω = (A,B,C) ∈ Σ belong.

b) A canonical triple in any GT -equivalence class is
found. This is a triple which seems to be most suitable to
study various properties of system (1), which are invariant
under transformations from GT , in particular, to calculate
the vector Ψ(Ω). An algorithm of how a given triple Ω ∈ Σ
can be transformed to its canonical form is constructed as
well.

c) Using the canonical triples, Theorem 3.1 and the results
from [5], [6], [4], and [7], the function Ψ̃ can explicitly
be calculated in all cases. In other words, for any GT -
equivalence class Ω̃ ∈ Σ/GT it is found which of the seven
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properties Pk, k = 1, ..., 7 are valid for the representatives
Ω of the class Ω̃.

The results of the GT -classification, in particular those
described in a)-c), are summarized in the table below. The
algorithm of transforming a triple to its canonical form is,
however, omitted because of the limitations on the size of
the paper.

The first column in the table contains an explicit (below
the dotted lines) and symbolic (above the dotted lines) de-
scription of different GT -equivalence classes. The symbolic
description depends on three parameters H = H(ρ1, ρ2, ρ3),
which constitute CQI, thus characterizing the equivalence
class in question. The explicit description is added for the
sake of convenience. The first invariant ρ1 takes only 4
integer values, from 1 to 4, and corresponds the number k of
the condition Qk in Theorem 3.2. For example, if ρ1 = 1,
then the triple (A,B,C) satisfies CAB = CB = 0, and
this is also written below the dotted line. The systems with
the same ρ1 have similar properties, while the systems with
different ρ1 are less similar. That is why the systems with
different ρ1 are placed in the different parts of the table
separated by a double line. The second invariant ρ2 takes
only 3 values: -1, 0, 1 depending on some special properties
of the triple Ω, which are formulated differently for different
values of the other two invariants. The third invariant may
take infinitely many values and can be calculated in the way
shown in the table with the help of the functions ω(Ω),
m(Ω), τ(Ω) introduced just before Theorem 3.2, as well
as the eigenvalues of the matrix A: σ(A) = {λ1, λ2}. If the
eigenvalues λ1, λ2 are real and different, then it is assumed,
without loss of generality, that λ1 < λ2.

The second column in the table describes the canonical
triple Ω = (A,B,C) in each GT -equivalence class. Each
canonical triple depends on a parameter which coincides
with the third invariant of the equivalence class. The 7-
dimensional vector Ψ(Ω) below the dotted line, which takes
the values 0 or 1, is described in Theorem 3.1. It indicates
whether the properties Pk are valid or not for the triple Ω.
Remark that according to Section 3 this vector is also equal
to Ψ̃(H(ρ1, ρ2, ρ3)).

V. DISCUSSION

The described GT -classification is complete. This means
that the union of all H(·) in the table coincides with Σ/GT .

It is interesting to remark that the sets H(ρ1, ·, ·), ρ1 =
1, 2, 3, are far smaller than the set H(4, ·, ·). To be more
precise, consider the set of all triples Σ = {(A,B,C)} as
a subset of the space R8. Then the set consisting of all Ω
from the equivalence classes H(ρ1, ·, ·), where ρ1 = 1, 2, 3,
is a nowhere dense set of measure 0 in R8. The sets
Σ−

2 = {Ω| ∃µ ∈ R, Ω ∈ H(4,−1, µ)} and Σ+
2 = {Ω| ∃µ ∈

R, Ω ∈ H(4, 1, µ)} are, on the contrary, open in R8, so that
they are invariant under small perturbations of the matrices
from system (1). In addition, Σ2 = Σ−

2 ∪Σ+
2 is dense in R8.

Notice also that the invariant µ = τ(Ω), which also is the
diagonal entry in A in the canonical form for H(4,±1, µ)
depends continuously on Ω.

TABLE I

THE GT-CLASSIFICATION

Elements of Σ/GT The canonical form

and their CQI and Ψ(·)
H(1, 0, k),

k = −1, 0, 1
. . . . . . . . . . . . . . . . . . . .
CB = CAB = 0,
λ1 = λ2, sign λ = k

((
k 0
0 k

)
,

(
0
1

)
, (1 0)

)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
{0011110} if k = −1
{0000000} if k = 0, 1

H(1,−1, µ), µ ∈ R
. . . . . . . . . . . . . . . . . . . . .
CB = CAB = 0,
λ1 < λ2, AB = λ1B

λ2+λ1
λ2−λ1

= µ

((
µ 1
1 µ

)
,

(
1

−1

)
, (1 1)

)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
{0011110} if µ < −1
{0001000} if µ ∈ [−1; 1)
{0000000} if µ ≥ 1

H(1, 1, µ), µ ∈ R
. . . . . . . . . . . . . . . . . . . . .
CB = CAB = 0,
λ1 < λ2, AB = λ2B

λ2+λ1
λ2−λ1

= µ

((
µ 1
1 µ

)
,

(
1
1

)
, (1 − 1)

)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
{0011110} if µ < −1
{0010000} if µ ∈ [−1; 1)
{0000000} if µ ≥ 1

H(2, 0, k),
k = −1, 0, 1

. . . . . . . . . . . . . . . . . . . . .
CAB �= 0, CB = 0,

sign trA = k

((
k 1

−1 k

)
,

(
0
1

)
, (1 0)

)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
{1111111} if k = −1
{1111011} if k = 0, 1

H(3, 0, k),
k = −1, 0, 1

. . . . . . . . . . . . . . . . . . . . .
CB �= 0, m(Ω) = 0,

det(B AB) = 0,

det

(
C

CA

)
= 0,

sign ω(Ω) = k

((
k 0
0 k

)
,

(
1
0

)
, (1 0)

)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

{0011110} if k = −1
{0000000} if k = 0, 1

H(3,−1, k),
k = −1, 0, 1

. . . . . . . . . . . . . . . . . . . . .
CB �= 0, m(Ω) = 0,

det(B AB) = 0,

det

(
C

CA

)
�= 0,

sign ω(Ω) = k

((
k 1
0 k

)
,

(
1
0

)
, (1 0)

)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

{0111110} if k = −1
{0101000} if k = 0, 1

H(3, 1, k),
k = −1, 0, 1

. . . . . . . . . . . . . . . . . . . . .
CB �= 0, m(Ω) = 0,

det(B AB) �= 0,

det

(
C

CA

)
= 0,

sign ω(Ω) = k

((
k 0
1 k

)
,

(
1
0

)
, (1 0)

)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

{1011110} if k = −1
{1010000} if k = 0, 1

H(4,−1, µ), µ ∈ R
. . . . . . . . . . . . . . . . . . . . .
CB �= 0, m(Ω) < 0,

τ(Ω) = µ

((
µ 1

−1 µ

)
,

(
1
0

)
, (1 0)

)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
{1111111} if µ < 1
{1111011} if µ ≥ 1

H(4, 1, µ), µ ∈ R
. . . . . . . . . . . . . . . . . . . . .
CB �= 0, m(Ω) > 0,

τ(Ω) = µ

((
µ 1
1 µ

)
,

(
1
0

)
, (1 0)

)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
{1111110} if µ < 0
{1111000} if µ ≥ 0
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For arbitrary Ω ∈ Σ, T ∈ GT , put T (Ω) =
(T (A), T (B), T (C)). According to the result, mentioned
in Section 1, system (1) is LH-stabilizable if and only if
there exists a real α such that the matrix T3(α)(A) has no
nonnegative real eigenvalues. However, it is not enough to
achieve an arbitrary rate of convergence of solutions to zero
(see e. g. the case H(1, 0,−1)). The table solves this problem
in an efficient way. The corresponding criterion says that
κ(Ω,LH) = −∞ (i.e. the upper Lyapunov exponent of the
system can be arbitrarily small) if and only if ∃T ∈ GT ,
for which T (A) has no real eigenvalues. Indeed, the latter
is equivalent to the relation Ω ∈ Σ∗, where

Σ∗ ={Ω| ∃k ∈ {−1, 0, 1}, Ω ∈ H(2, 0, k)}
∪ {Ω| ∃µ ∈ R, Ω ∈ H(4,−1, µ)}

Then it is readily seen from the table that this, in turn, is
equivalent to κ(Ω,LH) = −∞.

Of particular interest are the following subsets of Σ∗: 1)
H(2, 0, 0) and H(2, 0, 1), the union of which was in [5]
denoted by GT II, and 2) H(4,−1, µ) with µ ≥ 1, the union
of which was in [5] denoted by GT III. Only the systems (1)
with the matrix triples from these classes are LH-stabilizable
(with an arbitrarily small Lyapunov exponent), yet not LH1-
stabilizable (see also Theorem 5.1 below). Remark that LH1-
stabilization was proved in [5], the property κ(Ω,LH) =
−∞ for GT II and GT III was justified in [6] and [7],
respectively.

In [5, Th. 6.1] it was proved that system (1) with the triple

Ωγ =
((

0 1
1 0

)
,

(
0
1

)
, (γ 1)

)

is not LH-stabilizable if −1 ≤ γ ≤ 0. The set of all Ω ∈ Σ,
which are GT -equivalent to Ωγ for some −1 ≤ γ ≤ 0, was
denoted by GT IV. In fact, Ωγ is not a canonical form in
the terminology used in the present paper. However, it is
easy to check that Ωγ ∈ H(4, 1, µ) if γ ∈ (−1; 0], where
µ = − γ√

1−γ2
≥ 0, and Ω−1 ∈ H(3, 1, 1).

Given µ ∈ R and u ∈ LH it is also readily seen from the
table that x(t) is a solution of (1) with the canonical triple
from H(4, 1, µ) if and only if x̃(t) := eβtx(t), is a solution
of (1) with the canonical triple from H(4, 1, µ+β). Thus, the
property κ(Ω,LH) > −∞ (i.e. not any rate of convergence
is possible) for a triple Ω from H(4, 1, µ), µ ∈ R follows
from the fact that the triple Ω0 is not LH-stabilizable.

The last result of the paper states that the obtained GT -
classification easily implies an efficient criteria of LH1-
stabilization and LH-stabilization which were proved in [4].
Below one of the results is presented in somewhat different,
yet equivalent form. It again follows directly from the table.

Theorem 5.1: A triple Ω = (A,B,C) is not LH1-
stabilizable, but LH-stabilizable if and only if one of the
following statements is true:
1) CB = 0, CAB 
= 0, tr A ≥ 0;
2) m(Ω) < 0, τ(Ω) ≥ 1.
Remark that the second condition of Theorem 5.1 is equiv-
alent to the inequalities ω(Ω) > 0, CAB

CB < detA
ω(Ω) ≤ trA.

Thus, we obtain Theorem 7.4 from [4].

Remark 5.1: The offered classification provides an im-
mediate construction of the stabilizing algorithms for the
canonical triples in each equivalence class. A stabilizing
algorithm for a general triple Ω can be found explicitly as
well if the GT -transformation of Ω to the corresponding
canonical triple is known. This transformation can indeed
be calculated for any Ω, although the resulting formulas can
be cumbersome.
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