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Abstract— This paper extends some duality results from a
standard optimization setup to a noncooperative (Nash) game
framework. A coupled constrained Nash game is considered.
Solving directly such a coupled Nash game requires coordi-
nation among possibly all players. An alternative approach is
proposed based on the equivalence to a special constrained op-
timization problem for an NG-game cost function. By exploiting
specific separability properties of the NG-game cost, this duality
approach leads to a natural hierarchical decomposition into a
lower-level uncoupled Nash game and a higher-level system
optimization problem.

I. INTRODUCTION

A powerful tool for solving standard constrained optimiza-
tion problems with separable cost function and constraints is
the duality approach, [14]. The dual problem can be used
to provide lower bounds and in some cases may be easier
to solve than the primal problem. For separable problems,
the dual problem can be decomposed hierarchically into a
set of lower-order optimization problems and a higher-level
optimization problem for the Lagrangian multipliers. This
decomposition has a computational advantage as the lower-
order problems may be analytically tractable. The duality ap-
proach and separability has been used successfully in devel-
oping congestion control algorithms, where the Lagrangian
multipliers pay the role of pricing parameters. In [16], [15]
a system problem is defined as a constrained optimization
problem with a central separable cost function. Duality is
used decompose the problem into a set of decoupled user
problems and a network problem.

Recently, as an alternative to the traditional system-wide
network optimization, [1]-[4], game theory approaches [20],
[13] have been used for optimization and control of networks.
In large-scale networks, control decisions are often made by
users independently, according to their own performance ob-
jectives, [5], [6], and noncooperative game theory is suitable
framework.

Game-theoretic models have been employed for flow op-
timization (congestion control) or for power allocation and
control in networks. In flow or congestion control, [15],
[17]- [19], each user’s utility depends only on its own action
and is not coupled to the other users’ actions. The coupling
appears in the constraints only, specifically the link capacity
constraints. This is contrasted with power allocation and
control via game theory in wireless networks, [6]-[9], [7],
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or in optical networks, [10]-[12]. Here each user’s utility
depends not only on its own action but also on the other
users’ actions, and hence the utilities are coupled.

In this paper we extend duality results from standard
optimization framework to a noncooperative (Nash) game
theoretical context.We consider a Nash game with coupled
utilities and coupled constraints. Existence conditions for
an NE solution are based on an augmented two-argument
system cost function, [13]. This cost function is defined
in a Nash game (NG)-sense and we call it the NG-game
cost function. Due to coupling, solving directly a coupled
Nash game requires coordination among possibly all players
(Section II). Alternatively, we first show that a coupled
Nash game can be converted into an equivalent constrained
optimization problem for the NG-game cost function, with
respect to the second argument, that admits a fixed-point
solution (Section III). We exploit the property that the
NG-cost function is separable with respect to the second
argument, i.e., in a NG-game sense. Based on this we extend
standard duality results, [14], to a NG-game framework.
We use duality approach as a natural way to obtain a
hierarchical decomposition of the coupled NG game into a
lower-level uncoupled Nash game, and a higher-level system
optimization problem (Section IV).

We use standard notation. For a two-argument function,
f(u;x), f : Rm×Rm → R, where u = (u1, . . . , um) ∈ Rm

and x = (x1, . . . , xm) ∈ Rm, we denote by ∇f(u;x) the
gradient

∇f(u;x) =
[ ∇uf(u;x) ∇xf(u;x)

]
(1)

with ∇uf(u;x) =
[

∂f(u;x)
∂ui

]
, ∇xf(u;x) =

[
∂f(u;x)

∂xi

]
.

II. NASH NONCOOPERATIVE GAME THEORY

A. Formulation for Rectangular Action Sets

In this section we review definitions and results in non-
cooperative game theory, [13], [20], for rectangular actions
sets. A noncooperative (Nash) m-player game is defined
where each player minimizes an individual cost function by
adjusting its own action, in response to the other players’
actions. We give definitions with respect to both individual
players’ cost functions and an NG-game cost function.

Let u denote the vector of player actions, and u−i the
vector obtained by deleting the ith element from u,

u = [u1 . . . . . . ui . . . . . . um]T

u−i = [u1 . . . ui−1, ui+1 . . . um]T
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so that u = (u−i, ui) ∈ Ω, or u∗ = [u∗
i ] where Ω is the

action space Ω = Ω1× . . .×Ωm. Let Ωi = [mi,Mi], i ∈ M,
M = {1, . . . ,m} so that Ω is a rectangular or separable set.
The relevant concept is the noncooperative Nash equilibrium
(NE), [20], [13].

Definition 1: Consider an m-player game, with each
player minimizing the cost function Ji : Ω → R, over
ui ∈ Ωi. A vector u∗ = [u∗

i ] ∈ Ω, or u∗ = (u∗
−i, u

∗
i ) is

called a Nash equilibrium (NE) solution of this game if for
every given u∗

−i,

Ji(u∗
−i, u

∗
i ) ≤ Ji(u∗

−i, xi) ∀xi ∈ Ωi ∀i ∈ M

Definition 1 specifies that u∗ is an NE when u∗
i is the

solution to the individual optimization problem Ji for player
i, given all other players have equilibrium actions, u∗

−i. In
this sense, each cost function (parameterized by u∗

−i) is
minimized individually, but the NE solution has to satisfy
simultaneously the set of m inequalities in Definition 1.

Existence of an NE solution depends on existence of well-
defined reaction curves of all players, that have a common
intersection point, [13]. Sufficient conditions for existence
are given in Theorem 4.3 in [13]: each cost function is
jointly continuous in all arguments and is convex in its ”own”
argument ui for every given uj j �= i, and the action set Ωi is
a compact subset of Rn. Assumption (A.1) below guarantees
that an NE solution is inner.

(A.1) ui = mi and ui = Mi are not solutions to the
minimization of Ji, i.e., Ji(u−i,mi) > Ji(u−i, ui) ∀ui �=
mi and Ji(u−i,Mi) > Ji(u−i, ui), ∀ui �= Mi.

Without loss of generality we assume that (A.1) holds and
hence an NE solution is inner.

Next we review necessary conditions for an NE solution.
Since each cost function Ji is convex in its ”own” argument,
ui, there exists a minimizing u∗

i , for any given u−i, such that

Ji(u−i, u
∗
i ) < Ji(u−i, ui), ∀ui �= u∗

i

on the compact set Ωi. Moreover, by (A.1), u∗
i is inner. To

find u∗
i we solve the necessary condition

∂Ji

∂ui
(u−i, ui) = 0 ∀ i ∈ M (2)

which defines the reaction curve of the ith player, Ri, [13].
The optimal u∗

i depends on u−i , u∗
i = Ri(u−i), i.e., it is

parameterized in u−i. An NE solution to the m-player game,
u∗, is a vector solution of the set of m equations, (2), for
all i ∈ M. The procedure for solving the NG-game can be
summarized as follows: find a solution to minimization of
each individual cost function, Ji, stack the resulting set of
m parameterized equations in vector form, and look for a
fixed-point solution, u∗ = [u∗

i ]. We will then denote J∗
i =

Ji(u∗
−i, u

∗
i ) the Nash individual optimal values.

Definition 1 involves a set of m inequalities that have to
be satisfied simultaneously. It can be equivalently formulated
by using an augmented ”system-like” cost function, [13],
that we call the NG-game cost function. The NG-game cost

function J̃ is defined as the two-argument function, J̃ : Ω×
Ω → R,

J̃(u;x) :=
m∑

i=1

Ji(u−i, xi), ∀x ∈ Ω (3)

with x = [x1 . . . xi . . . xm]T , and u, u−i defined as before.
The following definition, given with respect to the NG-

game cost function, is equivalent to Definition 1.
Definition 2: Consider an m-player game, with each

player minimizing the cost function Ji : Ω → R, over
ui ∈ Ωi. Then a vector u∗ ∈ Ω is called a NE solution
of this game if its NG-game cost function J̃ , (3), satisfies

J̃(u∗;u∗) ≤ J̃(u∗;x) ∀x ∈ Ω

Equivalently, for every given u∗
−i,

m∑
i=1

Ji(u∗
−i, u

∗
i ) ≤

m∑
i=1

Ji(u∗
−i, xi) ∀x ∈ Ω

If u∗ is an NE in the sense of Definition 1, it follows
immediately that u∗ satisfies also Definition 2. Conversely,
it can be shown by using a contradiction argument that, if
u∗ is an NE in the sense of Definition 2, u∗ satisfies all
component-wise inequalities in Definition 1, [13].

The NG-cost function J̃ , (3), is separable in the second
argument, x, for any given first argument, u, which we
call separable in a NG-game sense. This property will be
instrumental in the following developments. Theorem 4.3
in [13], gives conditions for existence of an NE solution
with respect to the cost functions Ji, and (2) are necessary
conditions. Since we will be using the NG-cost function
equivalence, we reformulate this result (stated as Theorem
1) with respect to the NG-game cost function J̃ , and prove
it for completeness.

Theorem 1: Let Ω = Ω1 × . . . × Ωm, with Ωi a closed,
bounded and convex subset of R. For each i ∈ M the cost
functional Ji : Ω → R are continuous on Ω and strictly
convex in ui, for every uj ∈ Ωj , j ∈ M, j �= i. Then the
associated Nash game with NG-game cost function J̃ (3)
admits a Nash equilibrium (NE) solution.

Under (A.1), an NE solution u satisfies the following
necessary conditions with respect to the NG-game cost J̃ ,

∇xJ̃(u;x)
∣∣∣
x=u

= 0 (4)

where the notation used denotes a fixed-point solution.
Proof:

We use arguments similar to those in Theorem 4.4, [13].
Since J̃ , (3), is separable in NG-game sense, i.e., separable
in the second argument, x, using (3) we see that ∇xJ̃(u;x)
is given as

∇xJ̃(u;x) =
[

∂J1(u−1,x1)
∂x1

. . . ∂Jm(u−m,xm)
∂xm

]
(5)

for any given u. From (5), it follows that the Hessian of J̃

with respect to x, ∇2
xxJ̃(u;x) =

[
∂2J̃(u;x)
∂xi ∂xj

]
is a diagonal
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matrix, with the ith diagonal element given as[
∇2

xxJ̃(u;x)
]
(i,i)

=
∂2Ji(u−i, xi)

∂x2
i

By strict convexity of each Ji with respect to its argument it
follows that for each given u−i,

∂2Ji(u−i,xi)
∂x2

i

> 0, ∀xi ∈ Ωi.

Hence, ∇2
xxJ̃(u;x) is positive definite, i.e., J̃ is strictly

convex with respect to its second argument x, for every
given u with (u,x) ∈ Ω × Ω. Therefore, there exists an
x∗ minimizing J̃(u;x), over x, for any given u, and we can
introduce the reaction set of the game, [13],

Ψ(u) = {v ∈ Ω|J̃(u;v) < J̃(u;x), ∀x ∈ Ω} (6)

so that x∗ ∈ Ψ(u). The above properties of continuity and
convexity of J̃ on a closed compact set, imply via a fixed-
point theorem argument [13], that the reaction set of the
game Ψ(u) has a fixed point u∗ such that

u∗ ∈ Ψ(u∗)

Using (6), we see that u∗ satisfies

J̃(u∗;u∗) < J̃(u∗;x), ∀x ∈ Ω (7)

i.e., in effect x∗=u∗ minimizes J̃(u;x), over x ∈ Ω. We
write this compactly as

u∗ = arg
{

minx∈Ω J̃(u;x)
∣∣∣
x=u

}
(8)

and
J̃(u∗;u∗) = min

x∈Ω
J̃(u;x)

∣∣∣∣
x=u

(9)

The above compact notation in (8, 9), denotes minimization
of J̃ , with respect to the second argument x as in (6), fol-
lowed by solving for a fixed-point solution. This is realized
by setting x = u, and solving u = Ψ(u) for a solution
u∗. From (7), by Definition 2, u∗ is an NE solution to the
m-player game. Obviously the individual components of u∗

constitute an NE solution in the sense of Definition 1, and
by (A.1), it is inner.

Next we consider the necessary conditions. In order to find
an x∗ minimizing J̃(u;x), over x as in (6), we need to solve
the necessary condition

∇xJ̃(u;x) = 0 (10)

This will give x∗ parameterized by u, x∗ ∈ Ψ(u). Since an
NE solution u is a fixed point of Ψ(u), in effect we need to
solve (10) for a fixed point solution x = u, i.e., in a compact
notation ∇xJ̃(u;x)

∣∣∣
x=u

= 0

Remark 1: The foregoing procedure involves minimiza-
tion of the NG-game cost function, J̃ , with respect to the
second argument x, which is a standard minimization of a
function parameterized by u. To find an NE solution, we
just impose that the solution of this minimization is a fixed
point defined as above. Using (5), we see that (4) is given
component-wise as

∂Ji

∂xi
(u−i, xi)

∣∣∣
xi=ui

= 0, ∀ i ∈ M

For this set of equations we look for a fixed-point solution,
i.e., we set xi = ui, so that we can write

∂Ji

∂ui
(u−i, ui) = 0, ∀ i ∈ M

which is exactly (2). Hence the two-argument form (4) is
equivalent to the component-wise form, (2).

B. NE Existence for Coupled Action Sets

For the case when the action spaces (or the constraint
sets) are coupled and not rectangular, the players’ decision
variables are coupled. Thus there is a single set Ω ⊂ Rm, to
which the m-tuple u = (u1, . . . , ui, . . . , um) belongs. There
are no separate action sets, Ωj and Ωj , j �= i, from which
player i and player j can choose independently their actions.
We will review an existence result, (Theorem 4.4 in [13]), for
NG games with coupled constraints, or coupled NG games.
The NE concept can be defined as in Definition 1, this time
using the projection set Ωi(u∗

−i) instead, i.e.,

Ji(u∗
−i, u

∗
i ) ≤ Ji(u∗

−i, xi) ∀xi ∈ Ωi(u∗
−i)∀i ∈ M (11)

where Ωi(u∗
−i) is a subset obtained by the projection

Ωi(u∗
−i) := {xi ∈ R | (u∗

−i, xi) ∈ Ω}
for any given u∗

−i. Based on a fixed point theorem argument,
Theorem 4.4 in [13] gives sufficient conditions for existence
of an NE solution for games with coupled constraint sets.
We restate this result here as Theorem 2.

Theorem 2: Let Ω be a closed, bounded and convex subset
of Rm, and for each i ∈ M the cost functional Ji : Ω → R
be continuous on Ω and convex in ui, for every uj ∈ Ωj ,
j ∈ M, j �= i. Then the associated Nash game with NG-cost
function J̃ admits a Nash equilibrium (NE) solution.

Due to coupling, solving directly for such a NE solution
requires coordination among possibly all players. In the
next section, we exploit the fact that NG games can be
equivalently defined with respect to the NG-cost function
which is separable in an NG-sense. Afterwards we can use
duality approach as a natural way to obtain a hierarchical
decomposition of the coupled NG game.

III. LAGRANGIAN EXTENSION FOR COUPLED
CONSTRAINED NASH GAMES

In this section we formulate a Nash game (NG) game with
coupled constraints. Without loss of generality we consider
only inequality constraints, since equality constraints can be
treated similarly. Consider a Nash game for m players, each
player minimizing the individual cost function Ji : Ω →
R, Ω = Ω1 × . . . × Ωm, subject to R coupled inequality
constraints

gr(u) ≤ 0, r = 1, . . . , R

where gr(u) = gr(u−i, xi), with u = (u−i, xi) ∈ Ω.
Compactly, we write

g(u) ≤ 0 (12)
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where g(u) =
[

g1(u) . . . gR(u)
]T

. So u ∈ Ω, where the
overall action set Ω is coupled, due to coupled constraints,

Ω = {u ∈ Ω| gr(u) ≤ 0, r = 1, . . . , R} (13)

We use the existence results of NE solution for such games
(Theorem 2), and the equivalent formulation with respect to
the NG-cost function, (3). Similar to (3), we augment the
constraints gr in an equivalent two-argument form, g̃r,

g̃r(u;x) =
m∑

i=1

gr(u−i, xi), r = 1, . . . , R (14)

From (14) we define in a vector notation,

g̃(u;x) =
∑m

i=1 g(u−i, xi) (15)

with
g(u−i, xi) =

[
g1(u−i, xi) . . . gR(u−i, xi)

]T

It can be immediately seen that this form keeps the separa-
bility property in the second argument x, i.e., in a NG-game
sense. Moreover, due to coupled identical constraints for all
players, all components in g̃ are equal to g.

We next show that such a coupled NG game can be
formulated as a constrained minimization of the NG-cost
function, with respect to the second argument, and fixed-
point solution.

Lemma 1: Consider a Nash game for m players, each
minimizing the individual cost function Ji(u−i, ui), u ∈
Ω ⊂ Rm, subject to coupled constraints gr(u) ≤ 0, r =
1, . . . , R. Assume that Theorem 2 is satisfied, so that an NE
solution u∗ exists, and we denote J∗

i = Ji(u∗
−i, u

∗
i ) the Nash

individual optimal values.
Equivalently, u∗ is a solution for the constrained mini-

mization of the NG-game cost function J̃ (3),

J̃(u∗;u∗) ≤ J̃(u∗;x), ∀x ∈ Ω, g̃(u∗;x) ≤ 0 (16)

with g̃(u∗;u∗) ≤ 0, where the constraint g̃(u∗;x) is given
in (15), and the optimal NG-game cost is

J̃∗ = J̃(u∗;u∗) =
∑

i

J∗
i (17)

Proof:
We give a proof for a single coupled inequality constraint,

g(u) ≤ 0, g(u) = g(u−i, xi), u = (u−i, xi) ∈ Ω

since extension to the multiple inequality case can be done
immediately by appropriately using vector inequalities. Us-
ing (13), we see that the projection set, (11), in Theorem 2
is

Ωi(u∗
−i) = {xi ∈ Ωi| g(u∗

−i, xi) ≤ 0} (18)

Then, for an NE solution u∗, we have (cf. Definition 1 and
(11)), for all i = 1, . . . ,m,

Ji(u∗
−i, u

∗
i ) ≤ Ji(u∗

−i, xi), ∀xi ∈ Ωi, g(u∗
−i, xi) ≤ 0 (19)

with g(u∗
−i, u

∗
i ) ≤ 0. Note that g(u∗

−i, u
∗
i ) ≤ 0 is equivalent

to g̃(u∗;u∗) ≤ 0. Using (3), it can be seen that (19) implies
that

J̃(u∗;u∗) ≤ J̃(u∗;x), ∀x ∈ Ω, g̃(u∗;x) ≤ 0 (20)

with g̃(u∗;u∗) ≤ 0, and g̃(u∗;x) : Ω×Ω → R defined as in
(15). Conversely, we show by a contradiction argument that
if u∗ is an NE in the sense of (20), then u∗ satisfies (19).
Therefore, assume that u∗ is an NE in the sense of (20) but
not in the sense of (19). Then, it follows that there exists an
i0 ∈ M and some x̄i0 ∈ Ωi0 , with

g(u∗
−i0 , x̄i0) ≤ 0 (21)

such that
Ji0(u

∗
−i0 , x̄i0) < Ji0(u

∗
−i0 , u

∗
i0) (22)

Then adding
∑

i �=i0
Ji(u∗), on both sides of (22) yields

J̃(u∗; x̄0) < J̃(u∗;u∗), for x̄0 = (u∗
−i0 , x̄i0) ∈ Ω

Now from (21) and g(u∗
−i, u

∗
i ) ≤ 0, it follows that

g̃(u∗; x̄0) =
∑
i �=i0

g(u∗
−i, u

∗
i ) + g(u∗

−i0 , x̄i0) ≤ 0, ∀i �= i0

so that x0 is feasible. The two foregoing inequalities imply
that u∗ is not an NE solution in the sense of (20), contradict-
ing the hypothesis. Hence, (20) is equivalent to (19), which
is (16) for a single constraint and (17) follows.

Remark 2: Using the same compact notation as in (9),
from (16) we can write

J̃(u∗;u∗) =
[

min
x∈Ω,̃g(u;x)≤0

J̃(u;x)
]
|x=u (23)

In the following we use Lemma 1 and standard optimality
conditions for constrained optimization [14], applied to the
NG-cost function J̃ . For standard constrained optimization
problems, the set of optimality conditions involves a set
of auxiliary variables called Lagrange multipliers, [14],
which form the basis of duality results. Accordingly, we
introduce an augmented Lagrangian function and augmented
constraints in a two-argument form,

L̃(u;x; µ) = J̃(u;x) + µT g̃(u;x) (24)

where µ is a Lagrange multiplier vector. The next result gives
necessary conditions in terms of Lagrange multipliers.

Lemma 2: Let u be a NE solution of the Nash game
with individual cost function Ji(u−i, ui), i = 1, . . . ,m,
u ∈ Ω ⊂ Rm, subject to the coupled constraints gr(u) ≤ 0,
r = 1, . . . , R. Ji and gr are continuously differentiable
functions, and A(u) = {r|gr(u) = 0} denotes the set of
active constraints at u.

Consider the two-argument Lagrangian function L̃, (24).
Then there exist unique µ∗, µ∗

r ≥ 0, such that

∇xL̃(u;x; µ∗)
∣∣∣
x=u

= 0

with µ∗
r = 0, ∀r /∈ A(u), i.e.,

µ∗
r gr(u) = 0, ∀r = 1, . . . , R

Proof: From Lemma 1, an NE solution to the game u
can be equivalently found by solving the constrained mini-
mization problem (16), or (23), with respect to the second
argument x and finding a fixed-point solution. Since the first
step is a standard minimization for the augmented NG-game
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cost, J̃(u;x) (parameterized in u), it follows that necessary
conditions are expressed in terms of the Lagrangian

L̃(u;x; µ) := J̃(u;x) +
R∑

r=1

µr g̃r(u;x)

with µ = [µ1, . . . , µr, . . . , µR]T and g̃r defined as in (14).
Recalling (15), we can write L̃ as in (24). The necessary
conditions for a x (parameterized by u) to be a minimizing
solution, is that there exist Lagrange multipliers, µ∗ (param-
eterized by u) satisfying (cf. Proposition 3.3.1 in [14]),

∇xL̃(u;x; µ∗) = 0

and
µ∗

r g̃r(u;x) = 0, ∀r = 1, . . . , R

which will give a set x = Ψ(u). Since for an NE solution
we search for a fixed-point solution from this set, u = Ψ(u),
we express this compactly as

∇xL̃(u;x; µ∗)
∣∣∣
x=u

= 0 (25)

and
µ∗

r g̃r(u;u) = 0, ∀r = 1, . . . , R

As before, the procedure involves minimization of L̃ with
respect to x, parameterized by u, and then looking for a
fixed-point solution x = u.

Remark 3: Note that alternatively, the proof can be based
on a penalized cost function for each player, and transform-
ing into an unconstrained penalized Nash game. Assuming
existence of an NE solution for this game and using the
necessary conditions in terms of a set of m equations, it can
be shown that the resulting system of m equations has a
fixed point solution.
Similarly the following sufficient result can be proved.

Lemma 3: Consider the Nash game with individual cost
function Ji(u−i, ui), i = 1, . . . ,m, u ∈ Ω ⊂ Rm, subject to
the inequality constraints gr(u) ≤ 0, r = 1, . . . , R. Ji and gr

are continuously differentiable functions. Let u∗ be a feasible
point that together with a vector µ, satisfies µr ≥ 0, r =
1, . . . , R, with µr = 0, ∀r /∈ A(u), A(u) = {r|gr(u) =
0}, or, succinctly,

µr gr(u) = 0, r = 1, . . . , R (26)

and that minimizes the Lagrangian function L̃(u;x; µ), (24),
over x ∈ Ω, as a fixed point, i.e., as in (8),

u∗ = arg
{ [

minx∈Ω L̃(u;x; µ)
]
|x=u

}
(27)

Then (u;x) = (u∗;u∗) is a NE solution of the game, in the
sense of (16), i.e.,

J̃(u∗;u∗) ≤ J̃(u∗;x), ∀x ∈ Ω, g̃(u∗;x) ≤ 0
Proof: Since u∗ is a feasible point satisfying (26), using

(15) it follows that µT g̃(u∗;u∗) = 0. Therefore, using (24),
we have

L̃(u∗;u∗; µ) = J̃(u∗;u∗)

Also from (27), u∗ minimizes the augmented Lagrangian
L̃(u;x; µ), with respect to the second argument and is a
fixed point-solution. Then similar to (7) we have

L̃(u∗;u∗; µ) ≤ L̃(u∗;x; µ), ∀x ∈ Ω

SInce µ ≥ 0, using (24), on the right-hand side of the
foregoing, if follows that, for any x such that g̃(u∗;x) ≤ 0,
we can write

J̃(u∗;u∗) ≤ J̃(u∗;x), ∀x ∈ Ω, g̃(u∗;x) ≤ 0

i.e., (16) holds. Then using Lemma 1, the foregoing is
equivalent to u∗ being an NE game solution.

Remark 4: Note that if Ji and gr are differentiable convex
functions and Ω = Rm, the Lagrangian function L̃(u;x; µ)
is convex with respect to x, so the Lagrangian minimization
is equivalent to the first order necessary condition. Thus in
the presence of convexity the first order optimality conditions
are also sufficient.

IV. DUALITY EXTENSION AND HIERARCHICAL
DECOMPOSITION

In this section we consider duality extension for coupled
NE games. From Lemma 1, solving a Nash game with cost
functions Ji, i = 1,m, is equivalent to minimizing the NG-
game cost function J̃ , with respect to second argument for
a fixed-point solution. We introduce a dual cost function,
related to the minimization of the associated Lagrangian
function, similar to standard optimization, [14]. For convex
inequality constraints, duality enables hierarchical decompo-
sition into a lower-level modified Nash game and a higher-
level coordination problem, with a Stackelberg game [13]
(leader-follower) interpretation.

Recall the Lagrangian function L̃, (24) associated with
the coupled NE game, and its minimization as in (27). For
each µ the resulting fixed-point solution x = u, will be a
function of µ, u∗ = u∗(µ). Consider the dual cost function
D(µ) defined as

D(µ) :=
[

minx∈Ω L̃(u;x; µ)
]∣∣∣

x=u
(28)

where g̃(u;u) ≤ 0, i.e.,

D(µ) = L̃(u∗;u∗; µ)

The dual NG problem can be defined as maximizing D(µ)
subject to µ ≥ 0, with the dual optimal value defined as

D∗ = max
µ≥0

D(µ) (29)

Finally the following results characterizes the primal and
dual optimal solution pairs.

Theorem 3: (u∗; µ∗) is an optimal NE solution-Lagrange
multiplier pair in the sense of (16) and (29), if and only if

(NG feasibility)
u∗ ∈ Ω g̃r(u∗;u∗) ≤ 0, r = 1, . . . , R

(Dual feasibility)
µ∗ ≥ 0

(Lagrangian optimality)
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u∗ = arg
{ [

minx∈Ω L̃(u;x; µ)
]
|x=u

}
(Complementary slackness)

µ∗
r g̃r(u∗;u∗) = 0, r = 1, . . . , R

Proof: If (u∗; µ∗) is an optimal NE solution-Lagrange
multiplier pair, then u∗ is primal feasible and µ∗ is dual
feasible and the first two relations follow directly. The last
two relations follow from Lemma 2.

Conversely, for sufficiency, using Lagrangian optimality,
we obtain

L̃(u∗;u∗, µ∗) =
[

minx∈Ω L̃(u;x; µ∗)
]∣∣∣

x=u

so that

L̃(u∗;u∗, µ∗) ≤ L̃(u∗;x; µ∗), ∀x ∈ Ω

Recall that L̃ is defined as in (24), so that, using the
complementary slackness condition, we can write

L̃(u∗;u∗, µ∗) = J̃(u∗;u∗)

Using this together with (24) into the foregoing inequality
we can write

J̃(u∗;u∗) ≤ J̃(u∗;x), ∀x ∈ Ω, withg̃(u∗;x) ≤ 0

Therefore (16) holds and using Lemma 1, it follows that u∗

is an optimal NE game solution and

J̃∗ = J̃(u∗;u∗)

On the other hand using (28) evaluated at µ∗ and the
foregoing relations, yields

D(µ∗) =
[

minx∈Ω L̃(u;x; µ∗)
]∣∣∣

x=u

= L̃(u∗;u∗, µ∗) = J̃(u∗;u∗)

Then, using the definition of the optimal dual cost D∗, (29),

D∗ ≥ D(µ∗) = J̃(u∗;u∗) = J̃∗

Remark 5: If a Lagrange multiplier µ is known then all
optimal NE solutions (u∗,u∗) can be found by minimizing
the Lagrangian over x ∈ Ω, in the fixed-point sense as (27).
However among those solutions u∗, there may be vectors
that do not satisfy the NG-feasibility condition g(u∗) ≤ 0,
so this has to be checked.

Recall that both the coupled Nash cost and the constraints
are separable in the second argument, which we will exploit
in the following. We show that the dual NG cost function
D(µ) can be decomposed and equivalently found by solving
a modified uncoupled Nash game.

Corollary 1: Consider the coupled Nash game with indi-
vidual cost function Ji(u−i, ui), i = 1, . . . ,m, u ∈ Ω ⊂
Rm, Ω = Ω1× . . .×Ωm, subject to the inequality constraint
g(u) ≤ 0. Ji and g are continuously differentiable and
convex functions.

The dual cost function D(µ) can be decomposed as

D(µ) =
m∑

i=1

[
minxi∈Ωi

Li(u−i, xi, µ)
] |xi=ui (30)

=
m∑

i=1

Li(u∗
−i(µ), u∗

i (µ), µ)

where u∗(µ) = [u∗
i (µ)] is a a fixed-point solution to the set

of minimizations and

Li(u−i, xi, µ) = Ji(u−i, xi) + µ g(u−i, xi) (31)

Alternatively, D(µ) can be obtained by solving the uncou-
pled Nash game with cost functions Li, (31).

Proof:
Using (3) and (15), we can write the Lagrangian L̃, (24),

as

L̃(u;x; µ) =
m∑

i=1

Li(u−i, xi, µ) (32)

where Li are defined as in (31). Recall the necessary
conditions of Lemma 2, with respect to the Lagrangian L̃,

∇xL̃(u;x; µ)|x=u = 0, u ∈ Ω

i..e, solving for a fixed point solution in the equation

∇xL̃(u;x; µ) = 0 (33)

Component-wise, (33) is equivalent to a set of m equations

∂L̃(u;x; µ)
∂xi

= 0, i = 1,m

to be solved for fixed-point solution, or using (32)
m∑

j=1

∂

∂xi
Lj(u−j , xj ; µ) = 0, i = 1,m

Due to separability with respect to x, we see that the
foregoing are equivalent to

∂

∂xi
Li(u−i, xi; µ) = 0, i = 1,m (34)

which are the necessary conditions for minimizing Li with
respect to xi. Since Ji and gr are convex, this is also
sufficient for minimizing Li, (31). Therefore, component-
wise, the same minimizing solution is found by using (33)
or (34). Now for the value functional we have firstly

min
x∈Ω

L̃(u;x; µ) = min
x∈Ω

m∑
i=1

Li(u−i, xi, µ), x ∈ Ω

with Li given in (31), and Ω = Ω1 × . . .×Ωm. Using again
the NG-separability property with respect to x = [xi] on the
right-hand side of the above it follows that for any given u;

min
x∈Ω

L̃(u;x; µ) =
m∑

i=1

min
xi∈Ωi

Li(u−i, xi, µ) (35)

Note that after minimization in each of the m subproblems
on the right-hand side we obtain x∗

i as function of u−i, that
we denote x∗

i = xi(u−i), so that

xi(u−i) = arg min
xi∈Ωi

[Li(u−i, xi, µ)] (36)
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Moreover, because we look for a fixed-point solution we set
x = u or simultaneously

xi(u−i) = ui, ∀i = 1, . . . ,m

and we solve for u∗
i . From (35) we can write for these u∗

i ,
or in a fixed-point notation[

minx∈Ω L̃(u;x; µ)
]
|x=u (37)

=
m∑

i=1

[
minxi∈Ωi

Li(u−i, xi, µ)
] |xi=ui

which using (28) gives the first relation in (30).
A fixed-point solution is a vector solution u = [ui] of

the set of m equations (34) . We denote such a solution as
u∗ = [u∗

i ], and note that it will depend on µ. Substituting for
this u∗(µ) on the right-hand side of (37) yields the second
part of (30). Recalling that a fixed-point solution u∗ to the m
parallel optimization problems (36) is in fact a NE solution
to a modified Nash game with cost functions Li completes
the proof.

Remark 6: Note that the result has the useful form of
a lower-level modified Nash game with cost functions Li

and a higher-level optimization problem for coordination. In
general, u∗

i (µ), i ∈ M may not be NE optimal (for the given
µ) in the sense of attaining the minimum NG cost, i.e., such
that L∗

i = J∗
i , but by Theorem 3 there exists a dual optimal

price µ∗ ≥ 0 such that u(µ∗) = [ui(µ∗)] is NE optimal.
Hence µ∗ can be found as the maximizer in (29), where
D(µ) is given as in (30). A sufficient condition is that the
dual cost D(µ) is strictly concave in µ for u∗(µ) as obtained
from the lower-level game, (31). Alternatively, the price µ
can be adjusted until the slackness conditions in Theorem
3 are satisfied indicating that the dual optimal price µ∗ is
found.

Remark 7: In effect, the formulation in Corollary 1 has
the interpretation of a two-level hierarchical game [13]. The
upper level game is a Stackelberg game with the the system
being leader that sets the ”prices” (Lagrange multipliers) and
the players being the m followers. In this game the leader
determines prices such that the players will respond with
certain actions to maximize the dual cost function, and the
optimal cost of the leader is D∗, (29). Given prices as set
by the leader, a Nash game is played at the lower level,
such that player i chooses the action ui to minimize its own
cost function Li, (31). Then conditions for existence of a
Stackelberg solution to the overall game can be based on
Corollary 4.4 in [13]. Each player reacts to given ”prices”
(Lagrange multipliers) and the price acts as a coordination
signal.

V. CONCLUSIONS

In this paper we extended duality results from standard
optimization to a noncooperative (Nash) game framework.
We started by showing that a coupled Nash game is equiv-
alent to a constrained optimization of the NG-game cost
function with respect to the second argument, that admits

a fixed-point solution. We exploited the separability of the
NG-cost function with respect to the second argument, and
we extended the duality approach in a Nash game sense.
This approach leads to a natural hierarchical decomposition
into a lower-level uncoupled Nash game, and a higher-level
system optimization problem, or in effect into a two-level
hierarchical game.
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