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Abstract— This paper considers the problem of channel op-
tical signal-to-noise ratio (OSNR) optimization and extends the
Nash game formulation in [11] to a more general configuration.
The model in [11] considers optically amplified links and a
lumped end-to-end network model, whereby channel powers
can be adjusted independently only at the transmitter sites. In
this paper a more general case is considered where channel pow-
ers are also adjustable at intermediary dynamic sites, specific
to optical networks. For this inherent distributed configuration
a new nested Nash game is formulated towards maximizing
channel OSNR at receiver. Existence and uniqueness of the NE
solution is shown and a recursive procedure for constructing it
is given. Based on this, an iterative algorithm that is distributed
with respect to both channels and spans is proposed.

I. INTRODUCTION

There has been recent interest in optical wavelength-
division multiplexed (WDM) communication networks and
their dynamic and performance aspects [1]-[2]. Important
questions address how to realize reconfigurable networks,
while at the same time maintaining stability [3]-[4], and
optimal channel performance after reconfiguration. Chan-
nel performance depends on optical signal to noise ratio
(OSNR), dispersion and nonlinear effects, [5]. Typically
in link optimization, OSNR is considered the performance
parameter, with dispersion and nonlinearity being kept low
by proper link design, [6], [7]. The dominant impairment
affecting OSNR is noise accumulation in chains of optical
amplifiers and its spectral dependence, [6]. By adjusting
channel input power at transmitter (Tx), channel OSNR at
receiver (Rx) can be equalized. Some static approaches have
been developed for single-link OSNR optimization, [8], [6].
For reconfigurable optical networks, where different channels
can travel via different optical paths, on-line decentralized
algorithms are required.

Recently, noncooperative game theory [24], [17] has been
used as an alternative to traditional system-wide optimization
[9], [10], for network optimization and control [14]-[16].
In large-scale networks control decisions are often made by
users independently, each according to its own performance
objective [13], [14], and noncooperative game theory [24],
[17] is suitable framework. This is appropriate for large-
scale optical networks also, where a centralized system for
transmitting real-time information between all channels is
difficult to maintain and cooperation among channels is
impractical.
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Fig. 1. Lumped OA-link model (Tx to Rx)
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Fig. 2. Distributed γ-link model

This problem was considered recently in [11]-[12]. A
general OSNR network model was developed as an end-
to-end network model. The OSNR optimization problem
was formulated as a centralized problem in [12], and as a
noncooperative game between channels in [11]. Based on this
game an iterative algorithm that is distributed with respect
to channels was proposed. In a noncooperative Nash game
players are self-interested, each player maximizing its own
performance (utility) under the presence of all other players.
The game settles at a Nash equilibrium (NE) if one exists,
from which any player’s deviation will result in degradation
of other player’s utility. The natural decoupling feature of
a Nash game formulation lends itself to iterative algorithms
that are decentralized with respect to players.

In this paper we extend the approach in [11] to a more gen-
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eral configuration motivated as follows. The model in [11]-
[12] is a lumped end-to-end network model that considers
that in an optical link between transmitter and receiver sites
all intermediary sites are optical amplifiers (OA), (Figure 1).
Optical amplifiers provide simultaneous channel amplifica-
tion and maintain a target total output optical power. In such
an OA-link channel powers can be adjusted independently
only at the transmitter sites, which is similar to wireless
links [14]-[16], as end-to-end systems. For the resulting
lumped end-to-end OSNR model, from Tx to Rx, (Figure
1) a noncooperative game was formulated between channels
towards maximizing OSNR at Rx [11].

However in optical networks that use dynamic optical
filters, [19]-[22], there exists the flexibility of also adjusting
individually channel powers at intermediary points (Figure
2), distributed across a link. Such a flexibility does not
exist typically in wireless networks. This case of distributed
optical spans is the more general configuration that we
consider in this paper. For simplicity we consider a single
link with multiple γ-spans, i.e., a distributed optical link.
The following interesting question can be stated: how can
we take advantage of this inherent distributed span structure
? Specifically how can we formulate a new meaningful
game towards maximizing channel OSNR at Rx that is also
distributed with respect to spans ?

We extend the non-cooperative game formulation in [11]
to such a distributed γ-span configuration. We formulate a
nested Nash game [17] with respect to both γ-spans and
channels. Channel utility is related to maximizing its own
OSNR at Rx, or to minimizing OSNR degradation on the
path from Tx to Rx. At each γ-span channels are the non-
cooperative players in the lower-level game. Between all γ-
spans we formulate a higher-level Nash game that is naturally
in a ladder-nested form, i.e., such that the actions of one
player depend only on the actions of the preceding ones. For
each γ-span the NE solution of the channel game is found
by applying the results in [11]. At each γ-span, the channel
power adjustment (player action) depends on previous γ-
spans’ actions and channel output powers. We take advantage
of the ladder-nested form to develop a systematic recursive
procedure for constructing an NE solution to the overall
nested game

The paper is organized as follows. In Section II we
review the OSNR model and the channel game in [11].
In Section III we extend the OSNR model to a γ- span
optical link configuration. In Section IV we define a channel
cost function naturally related to minimizing the OSNR
degradation from one γ-span to another. Based on this we
formulate a new nested noncooperative game with respect
to both γ-spans and channels. In Section V we prove our
main result (Theorem 2) for existence and uniqueness of
the overall NE solution, and we give a recursive procedure
for constructing it. We also propose an iterative algorithm
that is distributed with respect to both channels and γ-spans.
Conclusions are given in Section VI.

II. BACKGROUND

A. OA-Link / Network OSNR Model

In the following we review the network OSNR model,
[11], specialized here for an optical link composed of N
cascaded optical amplifiers (OAs), called an OA-link (Figure
1). OAs are used to amplify the optical power of all channels
in a link simultaneously, at the expense of introducing
amplified spontaneous emission (ASE) noise. Because of
each kth amplifier wavelength-dependent gain profile, each
ith channel experiences a different gain, Gk,i, and ASE noise
power is also wavelength-dependent, ASEk,i.

As in [6], [7], [11], the following assumptions are used:
all spans in the OA-link have equal length, L, and all the
amplifiers in an OA-link have the same spectral shape, Gi.
These assumptions are representative for typical cases used
in the industry but could be relaxed proceeding along the
same lines. Amplifiers operate typically in automatic power
control (APC) mode such that a specified target total power
is launched into each of the following spans. This mode
compensates variations in fiber-span loss across a link [6].
Moreover the target total power is selected to be bellow the
threshold for nonlinear effects [7]. Since all spans have same
length, this threshold power, and hence the total power target
P0, is the same for all spans in the OA-link.

There are m channels / wavelengths transmitted across
a link, with M = {1, ...,m} denoting the channel set.
For the ith channel, let ui and n0,i be the input signal
and noise optical power (at Tx), respectively. Similarly, let
pN,i, nout

N,i be the output signal and noise optical power
(at Rx), respectively. The ith channel OSNR, is defined as
OSNRi = pN,i

nout
N,i

. The following result, [11], restated here as

Lemma 1, gives the OSNR model for an OA-link.
Lemma 1: The optical signal power and ASE noise power

at the output of an OA-link are given as

pN,i = ui

N∏
q=1

hq,i

nout
N,i = n0,i

N∏
q=1

hq,i +
N∑

v=1

ASEv,i

N∏
q=v+1

hq,i

where
v∏

q=1

hq,i = Gv
i

P0∑
j∈M Gv

j uj
, ∀v = 1, . . . , N

The channel OSNR at the output of the link is given as

OSNRi =
ui

n0,i +
∑

j∈M Γi,j uj

where

Γi,j =
N∑

v=1

Gv
j

Gv
i

ASEv,i

P0
, ∀ i, j ∈ M

and ASEv,i is ASE noise self-generated at the vth optical
amplifier, associated with the ith channel.
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B. End-to-end OSNR Game

Based on this end-to-end (or block) model for an OA-link,
the OSNR optimization problem was formulated, [11], as a
non-cooperative game, [17], between the m channels. We
review here the main result.

Let u = [u1, . . . , ui, . . . , um]T , be the vector of chan-
nel powers at the Tx, and let u−i, denote the vector ob-
tained from u by deleting the ith element, i.e., u−i =
[u1, . . . , ui−1, ui+1, . . . , um]T , with ui ∈ [umin, umax].
Each channel minimizes its own cost function Ji,

Ji(ui,u−i) = αi ui − βiUi(ui,u−i)

as the difference between a linear pricing term and the
channel utility function Ui,

Ui(ui,u−i) = ln(1 + ai
ui

X−i
) ai > 0 (1)

where X−i =
∑

j �=i Γi,j uj+n0,i and ai is a channel specific
parameter. This utility function Ui is twice continuously
differentiable, monotone increasing and strictly concave in
ui. The game settles at an NE solution such that a chan-
nel cannot improve its performance by acting unilaterally
without degrading the performance of other players. The
following assumption guarantees that the NE solution is
inner.

(A.1) ui = umin is not a solution to the minimization of
the cost function Ji, i.e., Ji(umin) > Ji(ui), ∀ui �= umin.
Similarly, ui = umax is not a solution to the minimization
of the cost function Ji, i.e., Ji(umax) > Ji(ui).

In the above, αi, βi are channel specific parameters, used
to quantify the willingness to pay the price, and channel’s
desire to maximize its OSNR, selected such that (A.1) holds.
Therefore the cost function to be minimized is

Ji(ui,u−i) = αiui − βi ln(1 + ai
ui

X−i
) (2)

Alternatively, Ui can be expressed as

Ui(ui,u−i) = ln(1 +
ai

1
OSNRi

− Γi,i

)

which is monotone in OSNR, so that maximizing utility is
related to maximizing channel OSNR. Then equivalently

Ji(ui,u−i) = αiui − βi ln(1 +
ai

1
OSNRi

− Γi,i

) (3)

Conditions for existence and uniqueness of the NE solu-
tion are given in Theorem 1, [11], which is restated here.

Theorem 1: The m-player game problem with individual
cost functions Ji, (2), admits a unique NE solution u∗ if ai

are selected such that∑
j �=i

Γi,j < ai, ∀i ∈ M

The unique optimal NE solution u∗ is given as

u∗ = Γ̃−1 b̃

where Γ̃ = [Γ̃i,j ] and b̃ = [b̃i] are defined as

Γ̃i,j =
{

ai, j = i
Γi,j , j �= i

b̃i =
aiβi

αi
− n0,i

and Γi,j being defined in Lemma 1.

III. DISTRIBUTED γ-LINK OSNR MODEL

In this section we extend the OSNR model for a OA-link to
the case of a more general optical link, called γ-link (Figure
2). A γ-link has K intermediary sites where a dynamic gain
/adjustment element (DGE) exists. DGEs are optical filters
with spectrally adjustable attenuation, such that wavelength
(channel) powers can be individually adjusted, [19]-[22].
Depending on the technology, different resolutions, and even
a decoupled spectral response can be achieved. This justifies
a generic DGE model, that can be used independent of
technology, [23], such that

pout,i = γi pin,i, ∀i ∈ M (4)

where γi is the DGE filter adjustable attenuation per channel,
and pin,i, pout,i the input and output channel optical power,
respectively. The attenuation factor γi ∈ [γmin, γmax], 0 <
γmin < γmax ≤ 1. Due to insertion loss and cost considera-
tions, DGEs are not inserted at every optical amplifier (OA)
site, but every few OA sites. We call a γ-span, an optical
span with one DGE and R cascaded OAs. An optical link
is composed of K such cascaded γ-spans and is called a γ-
link. For this link channel powers are adjustable not only at
the input (Tx), but also at each γ-span. Let K = {1, ...,K}
denote the set of γ-spans in a link, and M = {1, ...,m} the
set of channels. We denote by uk,i, nin

k,i, the signal and noise
power, respectively, at the input of the kth γ-span, k ∈ K,
for the ith channel, i ∈ M. Similarly, let pk,i, nout

k,i , denote
the signal and noise power, respectively, and OSNRk,i,

OSNRk,i =
pk,i

nout
k,i

denote channel ith OSNR at the output of kth γ-span.
In what follows we let different γ-spans have optical fiber

spans of different lengths Lk, in between their OAs. We
also let OAs have different gain profiles Gk,i dependent on
the γ-span, k ∈ K. As before, all cascaded OAs within a γ-
span, are assumed to have the same spectral shape, Gk,i. The
OAs are operated in APC mode, and have the same target
total power within a γ-span, denoted by P0k, k ∈ K. At
the input of the kth γ-span, channel powers can be adjusted
individually, so that from (4) we can write recursively, for
k ∈ K,

uk,i = γk,i pk−1,i ∀k ∈ K, ∀i ∈ M (5)

where pk−1,i is the signal power at the output of the previous
γ-span, and γk,i is the channel power adjustment. Similarly,
the input noise nin

k,i to the kth γ-span is related to the output
noise power nout

k−1,i of the previous span as

nin
k,i = γk,i nout

k−1,i ∀k ∈ K, ∀i ∈ M (6)

Note that (6) assumes γk,i affects both signal and noise
components similarly. This is a realistic assumption, since
an actual DGE filter cannot separate ASE optical noise from
signal.

For k = 1 in (5), u1,i is the Tx power (input to the first
span), equal by convention to γ1,ip0,i, with p0,i as the initial
condition. Note that in [11], only end-to-end adjustment was
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Fig. 3. Two consecutive γ-spans

considered, i.e., only Tx power u1,i, or, γ1,i is adjustable and
γk,i = 1 for all k = 2, . . . ,K.

We can use the OA-link model in Lemma 1 together with
the connection relations (5) to obtain a recursive γ-span
model, for both output signal power and channel OSNR.

Lemma 2: Consider K cascaded γ-spans (Figure 3), each
being composed of R cascaded OAs. The following recursive
relations hold for any k ∈ K and i ∈ M:

(i) The signal power of the ith channel at the output of
the kth γ-span is given recursively as

pk,i =
P0k GR

k,i∑
j∈M GR

k,j γk,j pk−1,j
γk,ipk−1,i ∀k ∈ K

(ii) The OSNR of the ith channel at the output of the kth
γ-span is given recursively as

1
OSNRk,i

=
1

OSNRk−1,i
+

∑
j∈M

Γki,j

γk,j pk−1,j

γk,i pk−1,i

where Γk = [Γki,j ] is the kth γ-span matrix, defined as

Γki,j
=

R∑
r=1

Gr
k,j

Gr
k,i

ASEr,i

P0k
, ∀i, j ∈ M (7)

Proof:
(i) Applying Lemma 1 to the kth γ-span, we have

nout
k,i = nin

k,i

R∏
q=1

hq,i +
R∑

r=1

ASEr,i

R∏
q=r+1

hq,i

where pk,i = uk,i

∏R
q=1 hq,i and

r∏
q=1

hq,i = Gr
k,i

P0k∑
j∈M Gr

k,j uk,j
, ∀r = 1, . . . , R

Using the γ-span connection relation (5) yields (i).
(ii) For the channel OSNR, from Lemma 1 applied to the

kth γ-span we have

OSNRk,i =
uk,i

nin
k,i +

∑
j∈M Γki,j uk,j

∀ i ∈ M

where Γk = [Γki,j
] is given in (7). Then

1
OSNRk,i

=
nin

k,i

uk,i
+

∑
j

Γki,j

uk,j

uk,i
∀ i ∈ M

Using now (5, 6) we have
uk,i

nin
k,i

=
γk,iuk−1,i

γk,inout
k−1,i

= OSNRk−1,i

so that from the foregoing we obtain

1
OSNRk,i

=
1

OSNRk−1,i
+

∑
j

Γki,j

uk,j

uk,i

Then (ii) follows immediately by using (5) again.

Remark 1: Note that signal power pk,i, for the ith channel
at the output of the kth γ-span, depends nonlinearly on the
corresponding channel power at the output of the (k − 1)th

span pk−1,i and on the adjustable factor γk,i. Also pk,i is
coupled to all other channels’ powers pk−1,j , j �= i.

Let pk = [pk,1, . . . , pk,m]T and γk = [γk,1, . . . , γk,m]T ,
so we can write compactly in vector notation,

pk = Fk(pk−1, γk) (8)

where the nonlinear vector-valued function Fk is defined
component-wise by the right-hand side of (i), Lemma 2.

In the following we use the recursive γ-span model in
Lemma 2 to obtain the end-to-end γ-link OSNR model
(Figure 2) and relate it to the OA-link OSNR model in
Lemma 1.

Lemma 3: Consider a γ-link with K cascaded γ-spans.
The following end-to-end relation holds

OSNRK,i =
u1,i

n0,i +
∑m

j=1 Γγi,j
u1,j

where Γγ = [Γγi,j
], is given as

Γγi,j
=

K∑
k=1

Γki,j

(
k−1∏
q=1

GR
q,j

GR
q,i

) (
k∏

r=2

γr,j

γr,i

)
u1,i = γ1,i p0,i and Γki,j as in Lemma 2, (ii).

Proof:
Using Lemma 2, (ii), recursively after k, we have for the

end-to-end output OSNR, for all i ∈ M,

1
OSNRK,i

=
1

OSNR0,i
+

K∑
k=1

m∑
j=1

Γki,j

γk,j

γk,i

pk−1,j

pk−1,i
(9)

Note that, since the output of span 0 is actually the input to
span 1, OSNR0,i is the OSNR at the Tx site, i.e.,

OSNR0,i =
u1,i

n0,i

At the Tx site the signal power is directly adjustable, since
there is virtually no ASE noise, and hence n0,i is usually
negligible at the Tx site. From (i) in Lemma 2 we can write

pk,i

pk,j
=

GR
k,i γk,i

GR
k,j γk,j

pk−1,i

pk−1,j
(10)

which shows that the ratio of any two channel powers
at the output of the kth γ-span is linearly related to the
corresponding ratio at the previous γ-span’s output.

Using now (10) on the right-hand-side of (9), we obtain
after recursive manipulation

1
OSNRK,i

=
n0,i

u1,i

+
K∑

k=1

m∑
j=1

Γki,j

(
k−1∏
q=1

GR
q,j

GR
q,i

) (
k∏

r=2

γr,j

γr,i

)
u1,j

u1,i

which completes the proof.
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Remark 2: The first relation in (ii), (9), gives the end-to-
end OSNR at the output of the link as a function of the input
power at the beginning of the link (Tx) and all the adjustable
factors γk,i, k ≥ 2. Note that for the case when only the Tx
powers are adjustable, γk,i = 1, k ≥ 2, it can be shown that,
for N = KR, we can recover the end-to end block results
in Lemma 1.

IV. NESTED NONCOOPERATIVE GAME
FORMULATION

In this section we extend the noncooperative OSNR game
formulation in Section II.B to a distributed γ-span config-
uration (γ-link) as in Section III. We define a two-level
noncooperative Nash game with respect to both K γ-spans
and m channels. Starting from each channel’s objective of
optimizing its own OSNR (along its path from Tx to Rx),
we give firstly an alternative interpretation of the channel
game. Taking this interpretation in the context of a γ-link,
we define a channel cost function related to minimizing the
OSNR degradation from one γ-span to another.

A. γ-Link Channel OSNR Game Interpretation

Recall that in the noncooperative game in Section II.B,
each channel maximizes its own utility Ui, which is related
to channel OSNR at Rx. This is done by minimizing its own
channel cost function Ji, (3), in response to the other chan-
nels’ actions, and hence minimizing the OSNR degradation,

1
OSNRK,i

, from Tx to Rx. For notational convenience we
denote this relationship as

Ji(ui,u−i) ≈ 1
OSNRK,i

(11)

The game can be equivalently defined in terms of a system-
like cost, Jt, defined in an NE sense, [17], as a two-argument
function

Jt(u,u) =
∑

i

Ji(ui,u−i) (12)

The same channel cost formulation is used for a γ-link. We
neglect the low noise at Tx, n0,i, so that from (9) we can
write

1
OSNRK,i

=
K∑

k=1

(
1

δQk,i

)
, ∀i ∈ M (13)

where
1

δQk,i
=

∑
j

Γki,j

γk,j

γk,i

pk−1,j

pk−1,i
, ∀k ∈ K,∀i ∈ M

Using (ii) Lemma 2, we can write 1/δQk,i, (13), as
1

δQk,i
=

1
OSNRk,i

− 1
OSNRk−1,i

(14)

Hence 1/δQk,i can be interpreted as a measure of the
OSNR degradation from one γ-span to another. The additive
relationship in (13) with respect to γ-spans will be used to
define an appropriate γ-span cost function.

From (13) we see that maximizing output OSNR,
OSNRK,i, could be formulated by minimizing each of

1/δQk,i. Then, for a γ-link from (11, 13), Ji is the end-
to-end channel cost function

Ji ≈
K∑

k=1

(
1

δQk,i

)
(15)

Also, equivalently we use the same system-like cost inter-
pretation as in (12), so that using Ji as in (15). for a γ-link
we have

Jt =
∑

i

∑
k

Jk,i (16)

with Jk,i given as

Jk,i ≈ 1
δQk,i

After changing the summation order in (16), we write

Jt =
∑

k

Jk, with Jk =
∑

i

Jk,i (17)

and Jk,i as in (16).
Based on these observations we will use the cost function

of each kth γ-span as in (17) with the sum being taken also
in an NE sense.

Note that Jk,i (16) used in (17) is defined similarly to Ji

(3), but with respect to δQk,i. Therefore, let

Jk,i(γk) = αk,iγk,ipk−1,i − βk,i ln(1 +
ak,i

1
δQk,i

− Γki,i

) (18)

where from (14)
1

δQk,i
=

1
OSNRk,i

− 1
OSNRk−1,i

and αk,i, βk,i are channel and γ-span specific parameters
selected such that (A.1) holds. Therefore minimizing Jk,i is
related to minimizing 1/δQk,i. Equivalently Jk,i is related
minimizing the degradation in OSNR for a span to another.

Now, from (13) we can express 1/δQk,i as

1
δQk,i

=
∑
j �=i

Γki,j

γk,j

γk,i

pk−1,j

pk−1,i
+ Γki,i

Using this into (18) yields, for all k, i

Jk,i(γk) = αk,i γk,i pk−1,i − βk,i ln(1 + ak,i
γk,i

X̃−i
0k

) (19)

where X̃−i
0k =

∑
j �=i Γki,j γk,j

pk−1,j

pk−1,i
. Since pk−1,i is given

as in Lemma 2 (i),

pk−1,i =
P0k−1 GR

k−1,i∑
j∈M GR

k−1,jγk−1,j pk−2,j
γk−1,i pk−2,i

we see that Jk,i (19) depends on γk,i, the adjustable param-
eters (actions) for each channel at the kth γ-span, and also
implicitly on previous γ-span’s actions such as γk−1,i. This
cost function Jk,i (18, 19) will be used next.

6962



B. Nested Game Formulation

In the following we define a two-level noncooperative
Nash game with respect to both K γ-spans and m channels.
We use the channel cost function Jk,i as defined in (18, 19).

The following notations are used. For each k ∈ K, let
uk denote the vector of channel input powers into the kth

γ-span, uk = [uk,1, . . . , uk,m]T . From (5) we have

uk = Diag(γk)pk−1, or uk = Diag(pk−1) γk (20)

where pk−1 (8) is the vector of channel output powers from
the (k−1)th γ-span, given as in Lemma 2. γk is the vector of
channel actions (adjustments) at the kth γ-span, γk ∈ Um,
Um = U × . . .×U , U = [γmin, γmax]. Let γ−i

k be obtained
by deleting the ith element, γk,i, from γk

γ−i
k = (γk,1, . . . , γk,i−1, γk,i+1, . . . , γk,m)

Then γk can be written as γk = (γk,i, γ
−i
k ) ∈ Um. Let γ̂

denote the K-tuple of all γk, i.e., γ̂ ∈ UmK , and γ̂−k the
(K − 1)-tuple obtained by deleting the kth element,

γ̂ = (γ1, . . . . . . , γk, . . . . . . γK), γk ∈ Um

γ̂−k = (γ1, . . . , γk−1, γk+1, . . . , γK), ∀k ∈ K
Then γ̂ can be written as γ̂ = (γk, γ̂−k) ∈ UmK .

We consider a game with K players Pk, represented by the
γ-spans, each player having the action γk, the adjustments
of all channels’ powers at the kth γ-span. Each player Pk

has a cost function Jk whose value depends not only on its
own action, but also on the actions of other players, i.e., on
γ̂. Each γ-span attempts to minimizes its own cost function,
in response to others γ-spans’ (players’) actions. Then the
relevant concept is the noncooperative Nash equilibrium
(NE), [24], [17].

Definition 1: Consider an K-player game between γ-
spans. Each player minimizes the cost function Jk, Jk :
UmK → R, over γk ∈ Um. A vector γ̂∗ = (γ∗

1 , . . . , γ∗
K),

γ̂∗ ∈ UmK , is called a Nash equilibrium (NE) solution of
this game if

Jk(γ̂∗) ≤ inf
γk∈Um

Jk(γk, γ̂−k∗) ∀k ∈ K

or, equivalently, if, for all k ∈ K and any given γ̂−k∗,

Jk(γ∗
k , γ̂−k∗) ≤ Jk(γk, γ̂−k∗), ∀γk ∈ Um

Definition 1 specifies that γ̂∗ is an NE when γ∗
k is the

solution to the individual optimization problem Jk for γ-span
k, given all γ-spans in its link have equilibrium power levels,
γ̂−k∗. Existence of an NE solution depends on existence of
a common intersection point for the reaction curves of all
players, [17]. It can be seen that the K-player game is a
nonzero-sum finite game with a fixed order of play (order
of precedence of the γ-spans), in ladder-nested form, [17].
Each player Pk has access to the information acquired by all
his precedents, and the difference between Pk ’s information
and his immediate precedent, Pk−1’s information, involves
only actions of Pk−1. Games in ladder-nested form can be

recursively decomposed into simpler structures, and Nash
equilibria can be obtained recursively. We use this in the
following.

Note that correspondingly, each γ-span’s cost function
needs to be minimized in an NE sense, between all channels
that share the γ-span. For each k ∈ K, we define an m-
player game between channels, with individual cost function
Jk,i, (19), so that in effect we formulate a nested two-level
(K x m) noncooperative game.

Definition 2: For each k ∈ K, consider an m-player game
between channels, with each channel being a player that
minimizes the cost Jk,i, Jk,i : Um → R, over γk,i ∈ U .
Then a vector (m-tuple) γ∗

k = (γ∗
k,1, . . . , γ

∗
k,m) is called a

NE solution of this game if, for each k ∈ K,

Jk,i(γ∗
k) ≤ inf

γk,i∈U
Jk,i(γk,i, γ

−i∗
k ), ∀i ∈ M

or, equivalently, for all i ∈ M
Jk,i(γ∗

k,i, γ
−i∗
k ) ≤ Jk,i(γk,i, γ

−i∗
k ), ∀γk,i ∈ U

Recall that the defined cost Jk,i, (19), which is related to
maximizing OSNR, depends implicitly on the actions taken
at previous spans, so that we need to write

Jk,i(γk,i, γ
−i∗
k , γ̂−k), Jk,i : UmK → R (21)

For simplicity of notation, we can drop the last argument.
Next we will define an appropriate kth γ-span cost func-

tion, Jk, that is related to the m channels’ cost functions,
Jk,i, (19), and has the natural interpretation as in (17). We
will make use of the following ”system-like” cost function
interpretation (see (4.10) in [17]). Definition 2 involves a set
of m inequalities that have to be satisfied simultaneously.
It can be equivalently formulated by a two-argument cost
function, Ĵk(·; ·), Ĵk : Um × Um → R, defined as

Ĵk(γk; γ∗
k) :=

m∑
i=1

Jk,i(γk,i, γ
−i∗
k ), ∀k ∈ K (22)

with Jk,i defined as in (19). From (21), it follows that

Ĵk(γk; γ∗
k , γ̂−k∗) :=

m∑
i=1

Jk,i(γk,i, γ
−i∗
k , γ̂−k∗) (23)

Each γ-span cost function is taken as in (23) with Jk,i, (19).

V. EXISTENCE AND UNIQUENESS OF THE NE
SOLUTION

Next we give conditions for existence and uniqueness of a
Nash equilibrium (NE) for the overall game between γ-spans
and channels.

Theorem 2: Assume that Jk,i, k ∈ K, is defined as in
(19), and (A.1) holds. Then the K-player game between γ-
spans, with cost function Ĵk, (23), admits an NE solution,
γ̂∗. If ak,i are selected such that∑

j �=i

Γki,j
< ak,i ∀i ∈ M (24)
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with Γki,j
as in Lemma 2, then the NE solution is unique.

Proof: We prove the result by applying twice Theorem
4.3 in [17]. Consider the cost Ĵk (23) with Jk,i as in (19).
It can be seen that Ĵk is continuous in all its arguments, and
is separable in γk,i, for every given γ̂−k and γ∗

k . Its gradient
with respect to γk, is given component-wise as

∂Ĵk

∂γk,i
=

∂Jk,i

∂γk,i
(25)

The Hessian, ∂2Ĵk

∂γ2
k

= [ ∂2Ĵk

∂γk,j∂γk,i
] is given as

∂2Ĵk

∂γk,j∂γk,i
=

{
0, j �= i
∂2Jk,i

∂γ2
k,i

, j = i

From (19), for any given γk,j and pk−1,i �= 0, we see that
∂2Jk,i

∂γk,i
2 > 0, i.e., Jk,i is strictly convex in γk,i. Hence the

Hessian is positive definite and Ĵk is strictly convex in γk, for
every given γ̂−k and γ∗

k . Then, for each k ∈ K, there exists
a minimizing γ∗

k,i on the closed and bounded (compact) set
U such that,

Jk,i(γ∗
k,i, γ

−i
k ) < Jk,i(γk,i, γ

−i
k ), ∀γk,i �= γ∗

k,i, ∀i ∈ M
for every given γ−i

k . By Theorem 4.3 in [17], for each k
there exists a vector solution γ∗

k to the set of m foregoing
inequalities, which is an NE solution to the m-player game.
Furthermore by (A.1) γ∗

k,i is inner. With the notation in (21),
for any given γ̂−k

Jk,i(γ∗
k,i, γ

−i
k , γ̂−k) < Jk,i(γk,i, γ

−i
k , γ̂−k), ∀γk,i �= γ∗

k,i (26)

For the K-player game, since for every given γ̂−k and γ∗
k ,

Ĵk, the cost (23), is strictly convex in γk on the compact
and convex set Um, there exists a unique mapping Tk that
uniquely minimizes Ĵk. This mapping is the reaction function
of the kth player defined as

Tk(γ∗
k , γ̂−k) = {γk ∈ Um|

Ĵk(γk; γ∗
k , γ̂−k) < Ĵk(vk; γ∗

k , γ̂−k), ∀vk ∈ Um}
for any given γ∗

k , and γ̂−k. Then applying again Theorem
4.3 in [17], there exists a vector solution, γ̂∗, to the set of
K foregoing inequalities, which is an NE solution to the K-
player game. Such an NE is given by the intersection of all
reaction functions, so that γ̂∗ is a fixed point of T ,

γ̂∗ = T (γ̂∗) (27)

where γ̂∗ = [γ∗
k ], T = [Tk] in vector notation. Note that

using (23, 26) yields,

Ĵk(γ∗
k ; γ∗

k , γ̂−k∗) < Ĵk(γk; γ∗
k , γ̂−k∗), ∀γk ∈ Um (28)

for any given γ̂−k, for k ∈ K. Therefore, given a γ∗
k,i that

minimizes Jk,i, (19), as in (26), we see that the vector γ∗
k =

[γ∗
k,i], i ∈ M, minimizes Ĵk as in 28. Hence, γ∗

k are the
individual components of γ̂∗ and constitute an NE solution
to the K-player game.

In the following we prove the uniqueness of this NE
solution, which by (A.1) is also inner. To find γ̂∗, or its
components γ∗

k we solve the necessary conditions

∂Ĵk

∂γk
= 0, ∀k ∈ K

which defines the kth player’s reaction curve, Tk.
The vector solution of this set of equations is an NE

solution to the K-player game. Recalling (25), this reduces
to

∂Jk,i

∂γk,i
= 0 ∀k ∈ K, ∀i ∈ M (29)

We show next that (29) admits a unique solution. For each
k ∈ K, the solution of (29), is an NE solution for the m-
player game with cost functions Jk,i, (19). Using (5), Jk,i

(19) is equivalently written for each k as

Jk,i(uk,i,uk
−i) = αk,i uk,i − βk,i ln

(
1 + ak,i

uk,i

X−i
0k

)
(30)

with uk,i = γk,i pk−1,i, and X−i
0k =

∑
j �=i Γki,j

uk,j . Then
Jk,i (30) is similar to Ji (2). For each k we use Theorem 1
to characterize the NE solution to the m-player game with
costs Jk,i (30). We will express this solution in terms of γk,i.
Using (5), the necessary conditions become

∂Jk,i

∂γk,i
=

∂Jk,i

∂uk,i
pk−1,i = 0

which leads to ∂Jk,i

∂uk,i
= 0 since pk−1,i > 0. Then using (30)

yields,

ak,i u∗
k,i + X−i∗

0k =
ak,iβk,i

αk,i
∀i (31)

By (24), from Theorem 1 it follows that for each k, this
game admits a unique NE solution in terms of uk,

u∗
k = Γ̃−1

k b̃k

or, equivalently using (20) for each given pk−1, in terms of
γk given as

γ∗
k = Diag(vk−1)Γ̃−1

k b̃k (32)

where vk−1 = [1/pk−1,1, . . . , 1/pk−1,m], also denoted as
vk−1 = 1./pk−1. In the above Γ̃k = [Γ̃i,j ] and b̃k = [b̃k,i]
are defined as

Γ̃ki,j
=

{
ak,i, j = i
Γki,j

, j �= i
b̃k,i =

ak,iβk,i

αk,i

Recall that pk−1 is the output of the previous span, given
recursively as in Lemma 2, (i), or compactly, as in (8),

pk−1 = Fk−1(pk−2, γk−1) (33)

Therefore the optimal γ∗
k (32) depends recursively on γ∗

k−1

via pk−1 (33) and hence depends on γ̂−k. Then the full
NE solution will be the mK vector solution of the set of
equations (32, 33) for all k. It can be seen that (32, 33) has
a triangular structure, and therefore, for any given p0, the
unique solution γ̂∗ can be easily found component-wise, by
forward substitution.

Remark 3: The formulation developed here corresponds
to a ladder-nested structure of the game between the γ-spans,
where kth player decision is taken after (k − 1)th player’s
action. This enabled us to obtain a decoupled existence
condition, while the overall coupled NE solution can be
computed recursively.
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VI. ITERATIVE ALGORITHM

Based on (31), consider the recursive algorithm

uk,i(n + 1) =
βk,i

αk,i
− X−i

0k (n)
ai

∀i ∈ M (34)

for updating channel power level. Note that (34) corresponds
to a parallel adjustment scheme, [17], whereby each player
responds optimally to the previously selected action of the
other players. From the definition (30),

X−i
0k =

∑
j �=i

Γki,j uk,j

where uk,j = γk,jpk−1,j from (5). X−i
0k needs measurements

of all input channel powers, uk,j , of γ-span k and all channel
gains, hence centralized information. However, using Lemma
2, (ii) and (5) we can write

X−i
0k = uk,i

(
1

OSNRk,i
− 1

OSNRk−1,i
− Γki,i

)
and X−i

0k is expressed in terms of OSNR at the output of
kth γ-span and (k− 1)th γ-span (which can be measured in
real-time). Using this and

uk,i(n) = γk,i(n) pk−1,i(n − 1)

into (34), we obtain the following algorithm for channel
adjustment γk,i at the input of the kth span

γk,i(n + 1) = βi

αi

1
pk−1,i(n)

−γk,i(n)
ai

(
1

OSNRk,i(n) − Γk,i,i

)
pk−1,i(n−1)

pk−1,i(n)

+γk,i(n)
ai

1
OSNRk−1,i(n)

pk−1,i(n−1)
pk−1,i(n)

(35)

The next result can be proved using arguments as in [11].
Lemma 4: If (24) holds, then algorithm (35) converges to

the NE solution.
Remark 4: Algorithm (35) is distributed with respect to

both channels and γ-spans. The only information fedback
is local: individual channel OSNR and power from the
current γ-span and the (neighboring) previous γ-span, and
the channel ”gain” Γki,i

.

VII. CONCLUSIONS

In this paper we extended the approach in [11], for
optimization of optical signal to noise ratio (OSNR) in
optical networks, to a more general configuration. Instead
of a lumped end-to-end model, whereby channel powers can
be adjusted independently only at the transmitter sites, we
considered a more flexible model with adjustable channel
powers at intermediary dynamic sites. For this inherent dis-
tributed configuration specific to optical networks, a nested
Nash game was formulated, towards maximizing channel
OSNR at Rx that is distributed with respect of spans and
channels. Existence and uniqueness of the NE solution was
shown and a recursive procedure for constructing the NE
solution was given. We proposed an iterative algorithm,
that is distributed with respect to both channles and γ-
spans, based on local feedback of channel parameters from
neighboring spans. Interesting future directions are adjusting
the pricing parameters for capacity constraints.
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