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Abstract— In this paper, fault detection is examined using
condition systems. The method presented relies on existing
results for controller synthesis using these models. First we
present a generalized discussion of the controller module
called a taskblock. Then a method to incorporate on-line fault
detection into the taskblock framework is presented. We show
that the resulting modified controller module is effective for
control and detection.

I. INTRODUCTION

In this paper, we consider fault detection using condition
system models introduced by [1]. This modified form of a
Petri net allows for distributed and hierarchical modeling
where separate models communicate via condition signals.
In our work, we represent elements or subsystems of an
open loop system (called components) using this framework.
We also use condition systems to implement our component
controllers called taskblocks.

In [2] we presented a method to synthesize taskblocks
to control some component. These taskblocks can then be
used to generate control code. We also showed under what
situations these taskblocks could be combined to drive an
entire system to some target state. In this paper, we introduce
a method to add fault detection capability to taskblocks. This
work also builds upon that presented in [3] and [4].

A taskblock is a form of a condition system that can
be generated (under certain assumptions) given a model of
a component and a specification of desired behavior from
this component. For this paper we approach the detection
problem (i.e.-determining a fault has occurred) by appending
unexpected responses from the component (under direction
from a taskblock) into the taskblock itself. When an unex-
pected response is detected, the taskblock then moves to a
fault state.

Fault detection is a sub-problem of the classical diagnosis
problem in discrete event systems research as investigated
by [5], [6] and many others. Whereas diagnosis is the
identification of the faulty component(s) given observability
and other constraints, detection is the acknowledgment that a
fault has occurred, and does not include identifying the faulty
component. Diagnosis typically includes, by definition, fault
detection.
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One objective of this paper is to generalize the discus-
sion about taskblock synthesis in an effort to simplify the
discussion and to refine how a taskblock would behave in
the presence of potentially faulty behaviors. The nature of
taskblocks as presented in [2] has been modified in the
process. The main objective is to introduce a method to
transform a taskblock guaranteed to work under certain
conditions into a taskblock that also detects faulty behaviors.

The remainder of the paper is organized as follows. First
we will review condition systems and taskblocks. Next we
present a generalized description of taskblock synthesis and
the limitations we assume for this paper. We then present a
fault detection scheme, and show that the desired behavior
of the taskblock is preserved and that we do in fact detect
faulty behaviors.

II. CONDITION SYSTEMS

In this paper, we consider systems represented by con-
dition systems. Condition systems are a form of Petri net
with explicit inputs and outputs called conditions. These
conditions allow us to represent the interaction of subsystems
(here called components) as well as the interaction of a
system with a controller [2].

The systems that we consider interact with each other
and with their outside environment through conditions. A
condition is a signal that either has value “true”, or “false”.
Let AllC be the universe of all conditions, such that for each
condition c in AllC, there also exists a negated condition
denoted ¬c , where ¬(¬c) = c.

Definition 1: A condition system G is characterized by a
finite set of states MG , a next state mapping fG : MG ×
2AllC −→ 2MG , and a condition output mapping gG :
MG −→ 2AllC. In this paper, we assume that MG , fG , and
gG are defined through a form of Petri net consisting of a
set of places PG , a set of transitions TG , a set of directed
arcs AG between places and transitions, and a condition
mapping function ΦG(·), where (∀p)ΦG(p) ⊆ AllC maps
output conditions to each place, and (∀t)ΦG(t) ⊆ AllC maps
enabling conditions to each transition. The net is related to
MG , fG , and gG in the following manner:

1) The states are the markings of the Petri net: each
state m ∈ MG is a function over PG that represents a
mapping of non-negative integers to places.

2) The output conditions have their truth value estab-
lished by marked places: for any m ∈ MG ,
gG(m) = {c|∃p s.t. c ∈ ΦG(p) and m(p) ≥ 1} ,
where gG(m) is the set of output conditions forced
”true” by marking m.
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3) Next-state dynamics depend on state enabling and
condition enabling: for any m ∈ MG and any C ⊆
AllC of conditions with value “true”, m′ ∈ fG(m,C)
if and only if there exists some transition set T such
that

a) T is state-enabled, meaning (∀p ∈ PG) m(p) ≥
|{t ∈ T |p
is input to t}|

b) T is condition-enabled, meaning (∀t ∈ T )
ΦG(t) ⊆ C

c) the next marking m′ satisfies ∀p ∈ PG , m′(p) =
m(p) − |{t ∈ T | p is input to t}| + |{t ∈
T | p is output of t}|

4) MG is closed under fG(·): if m ∈ MG and m′ ∈
fG(m,C) for some C ⊆ AllC, then m′ ∈ MG .

We define the output condition set for a system G as
Cout(G) = {c ∈ ΦG(p)|p ∈ PG}. Similarly, define
Cin(G) = {c ∈ ΦG(t)|t ∈ TG}. Note that a condition system
can be subdivided into components, where each component
is a condition system over a set of connected places and
transitions which are disconnected from all other places and
transitions. For the remainder of this paper we will use the
notation G to indicate the complete system, and the notation
{G1, . . . Gn} to indicate the set of components in G. Given
an initial marking m0 of G, we let m0,i denote the marking
over the places in Gi ∈ G.

We also make the following assumption on the structure
of our components.

Assumption 1: For any component Gi ∈ G and any
condition c ∈ Cout(Gi), the following are assumed to hold:

1) c is not an output of any other component: ∀j �= i,
c �∈ Cout(Gj).

2) Gi does not output contradictions: the condition sys-
tem Gi is such that for all markings m ∈ MGi

, either
c ∈ gGi

(m) or ¬c ∈ gGi
(m), but not both.

Item 1 ensures the modularity of the system by requiring
that each condition is output by at most one component, Gi.
Due to item 2 of the assumption above, we will simplify our
examples by only labeling places which output the positive
value of a given condition c, and we omit the explicit labeling
of places of the negation ¬c. We similarly will omit the
negation of conditions when discussing condition sets.

The behavior of a condition system can be described by
sequences of condition sets. A condition set sequence, called
a C-sequence, is a finite length sequence of condition sets.
Each condition set sequence is of the form (C0C1 . . . Ck)
for some integer k and sets Ci ⊆ AllC for all 0 ≤ i ≤ k.
A set of C-sequences is called a language, and the language
consisting of all C-sequences is denoted L. A C-sequence is
also the mechanism used for specifying the desired behavior
of some system used for controller synthesis. Details can be
found in [2].

The empty condition set, ∅, is important in specifying de-
sired behavior for controller generation. It represents a ”don’t
care” condition in a C-sequence meaning we don’t care what
output (via conditions) a system takes in completion of some

task under direction. We will also assume that some of the
C-sequences we consider are trim. A trim C-sequence is of
minimal length for its respective equivalence class. For a
trim C-Sequence, (C1, C2, . . . , Ck) the following holds true,
Ci �= Ci+1 for 1 ≤ i ≤ k − 1. We note that we can easily
make any such C-sequence trim by repetitively removing
repetitive condition sets.

For a given system, we use superscripts to distinguish
between the “real” system, GR, and our “model” system
of expected behavior, GE . We also extend the superscript
to the C-sequences and markings that we consider. For
example, a C-sequence of the ”expected” system is denoted
by (CE

0 · · ·CE
k−1C

E
k ) and the initial marking by mE

0 .
A subsystem is said to have a fault if the language of the

real component (GR
i ) is not contained within the language

of the corresponding model (GE
i ) of the expected behavior,

i.e. L(GR
i ,mR

0,i) �⊆ L(GE
i ,mE

0,i). A fault is detected if the
observed condition sequence from the real system is not
contained within the expected language of the system, i.e.
sobs �∈ L(GE ,mE

0 ) [3].

III. A BLOCK DIAGRAM PERSPECTIVE OF TASKBLOCKS.

In [2] we were interested in using an open-loop system
composed of component models to develop controllers that
would drive a system to a targeted state. In that work, these
controllers are generated by a set of connected taskblocks
that are generated by analysis of the component models. We
did not consider faulty behavior and so the basic assumption
was that the real system would behave exactly as expected
(i.e. L(GE

i ,mE
0 ) = L(GR

i ,mR
0 )).

The plants that we consider to be controlled are modeled
by collections of condition models representing the compo-
nents of the plant. Let this set of condition models repre-
senting components be denoted as GE

compo. These represent
the subsystem models of the plant and are used in controller
synthesis. Let the set of real system components be denoted
by GR

compo.
The controllers that we consider are also represented as

collections of condition models. The set of these controller
models, representing elements of the control logic, are called
taskblocks, and are denoted as the set Gtasks. A system G
then can consist of a collection of both component models
and taskblocks operating together. For control synthesis
define the system as GE ⊆ GE

compo ∪ Gtasks, and define the
system while in actual use (i.e. during control of the real
system) as GR ⊆ GR

compo ∪ Gtasks.
Each taskblock has a specific control function. Let x

denote the intended control function. In [2], such a control
function may represent either driving the system to a given
condition or controlling the system to maintain a condition
as true. A taskblock becomes activated to begin its con-
trol function upon its activation condition, which uniquely
identifies the taskblock. Let Cdo ⊂ AllC be the set of
activation conditions associated with taskblocks. For each
element dox ∈ Cdo we associate the following:

• TB(dox) ∈ Gtasks is the unique taskblock (condition
system model) for which dox ∈ Cin(TB(dox)). No
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other taskblocks or components have dox as an input.
• compl(dox) ∈ Cout(TB(dox)) is a condition output

from the taskblock, indicating task completion.
• idle(dox) ∈ Cout(TB(dox)) is a condition output from

the taskblock and indicates that the taskblock is not ac-
tivated. There exists exactly one place p in TB(dox) for
which idle(dox) is an output, and furthermore, it is the
only output of that place, ΦTB(dox)(p) = {idle(dox)}.
In all subsequent discussion, we will assume each task
block has only this place marked under any initial
marking considered.

• Gcompo(dox) ∈ GE
compo is a component model associ-

ated with the task dox. The same component model may
be associated with many different tasks.

• goal(dox) ∈ Cout(Gcompo(dox)) is a condition output
from the component model.

• Cinit(dox) ⊆ Cin(TB(dox)) ∩ Cout(Gcompo(dox)) is
a set of initiation conditions for the taskblock that are
output from the component Gcompo(dox).

Activation conditions are only associated with taskblocks.
These conditions come from a higher level supervisor and
do not communicate with component models directly. We
note however, that in our hierarchical scheme, the higher
level supervisor can be another taskblock. We will call
the conditions idle(dox) and compl(dox) status conditions.
They are used for taskblock to supervisor communication,
and they do not communicate to the open loop system
directly(either the real or expected system).

We interpret a taskblock as follows: The output condi-
tion idle(dox) indicates that the taskblock is not currently
outputting any other conditions. A taskblock TB(dox) be-
comes active (and thus idle(dox) becomes false) upon the
conditions {dox}∪Cinit(dox) becoming all true. As long as
dox remains true, the taskblock and system component will
interact until eventually the condition goal(dox) is output
from the component model Gcompo(dox) and the condition
compl(dox) is output from the task block, indicating comple-
tion of the task. Whenever dox becomes false, the taskblock
returns to the idle state. The following definition of effective
formally describes the behavior of a taskblock when it is
interacting with a system in its intended manner.

Definition 2: Given a system GE ⊆ Gtasks ∪GE
compo with

initial state mE
0 and a condition dox ∈ Cin(GE)∩Cdox

such
that idle(dox) ∈ g(mE

0 ), dox is effective for control for GE

under mE
0 if each of the following statements are true:

1) Continued activation implies eventual completion: For
all s ∈ L(GE ,mE

0 ), if (∅ ({dox} ∪ Cinit(dox))) ≤ s,
then for any set Cext ⊆ AllC such that dox ∈ Cext

and Cext ∩ (Cout(GE) ∪ {¬dox}) = ∅, there exists
s′ such that ss′ ∈ L(GE ,mE

0 ), (Cext) ≤ s′, and
({dox} {dox, compl(dox)}) ≤ s′

2) Completion implies earlier activation: For all s ∈
L(GE ,mE

0 ), if (∅{compl(dox)}) ≤ s, then

(∅ ({dox} ∪ Cinit(dox) ) ∅) ≤ s

3) Completion implies achieved goal: For any condition
set string s and any condition set C such that sC ∈

L(GE ,mE
0 ), if {compl(dox)} ⊂ C, then

{compl(dox), goal(dox)} ⊆ C

4) Leaving completion implies earlier de-
activation: For all s ∈ L(GE ,mE

0 ), if
(∅{compl(dox)}{¬compl(dox)}) ≤ s, then

(∅ {¬dox} ∅) ≤ s

5) Deactivation implies eventual return to idle: For all
s ∈ L(GE ,mE

0 ), if (∅{¬dox}) ≤ s, for any set
Cext ⊆ AllC such that ¬dox ∈ Cext and Cext ∩
(Cout(GE) ∪ {dox}) = ∅, there exists s′ such that
ss′ ∈ L(GE ,mE

0 ), (Cext) ≤ s′, and

({¬dox} {¬dox, idle(dox)}) ≤ s′

The first statement states that after dox and Cinit(dox)
conditions are true, if dox remains true, then there will
eventually follow a completion condition compl(dox) from
the task block. Since the statement must be true for any Cext

such that dox ∈ Cext and Cext ∩ (Cout(GE)∪{¬dox}) = ∅,
then after the initial Cinit(dox), no external signal (other than
dox) from beyond the taskblock or the component model
is required to reach completion. Therefore, completion is
reached entirely through the interaction of the taskblocks
and components in GE , and not from any other external
conditions.

The second statement of the definition states that if
compl(dox) is true at the end of s, then at some prior
time in s the conditions dox and Cinit(dox) were true. The
third statement in the definition states that whenever dox and
compl(dox) are simultaneously true, then goal(dox), output
from component Gcompo(dox), must be true also. Statement
4 says that once a taskblock achieves completion, it will stay
there until dox becomes false. Finally, the last statement says
that if dox is false, then eventually idle(dox) will become
true.

The definition above can be expanded in the obvious
manner to sets of conditions C ′ ⊆ Cin(GE) ∩ Cdox

by
replacing occurrences of dox with all elements of C ′, oc-
currences of compl(dox) with all the set of completion
conditions corresponding to elements of C ′, and occurrences
of goal(dox) with the set of goal conditions corresponding
to elements of C ′. Thus, for example, for C ′ = {dox, doy},
statement 1 would imply that following the simultaneous
activation of both TB(dox) and TB(doy), eventually both
compl(dox) and compl(doy) must be simultaneously true.

Example 1: Figure 1 illustrates the ideas presented
above. The activation condition doA

mid has associated
with it a taskblock TB(doA

mid) and a component model
Gcompo(doA

mid). (The superscript “A” in the condition doA
mid

will be explained in section IV). The component model
represents a robot position as either arm up, mid, or
arm down. To move the arm requires conditions m up or
m down, indicating motor on up and motor on down. We
have goal(doA

mid) = mid.
The taskblock has an initial state with pidle marked and

condition output idle(doA
mid). Upon receipt of the activation
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signal doA
mid, the marking changes and is no longer idle.

Since the component has place p3 marked and outputs
condition arm down, then the taskblock marking moves
from pidle to pinit to p8. From that state, the taskblock
outputs condition doA

m up. If that condition is effective for
Gsys, then by definition 4, Gsys eventually outputs condition
goal(doA

m up) = m up. This then enables a transition in
the component model, which then changes state and outputs
condition mid. This enables a transition in the taskblock,
allowing the taskblock to change state to pcmpl which outputs
condition compl(doA

mid), indicating completion.

Gsys

pidle pinit

pcompl

p7

p8
{doA

mid}

{¬doA
mid}

{¬doA
mid}

{¬doA
mid}

{arm_down}

{arm_up}

{mid}
{mid}

{mid}

{doA
m_up}

{doA
m_dn}

TB(doA
mid) Gcompo(doA

mid)

arm_up

mid

arm_dn

doA
m_dn doA

m_up doM
mid m_up m_dn

{arm_up}

{mid}

{arm_dn}

{m_up}

{m_up}

{m_dn}

{m_dn}

Fig. 1. An example of effective dox.

In our analysis of taskblocks, it is important for us to as-
sume that the controller reacts faster than the component that
it controls. In [2] we defined a control wait state as a marking
within a component model such that the marking cannot be
changed without some condition input change. This leads to
the Prompt Controller Assumption which guarantees that a
controller can react fast enough to direct a component in a
desired manner.

Finally, we introduce the following property that states
that a taskblock will not output a signal dox unless the
initiation conditions Cinit(dox) are assured to be already
true. This property can be violated under the presence of a
faulty behavior as we shall see.

Definition 3: Given a system GE , a task block TB′ ∈ GE

is well-structured under GE if for every activation signal
dox ∈ Cout(TB′), the initial conditions Cinit(dox) are
necessarily true whenever dox becomes true from TB′.

IV. A GENERALIZED DISCUSSION OF TASKBLOCK

SYNTHESIS

In this section, we consider the modeling details of
taskblocks. In [2] we present methods for synthesizing
taskblocks. Here, we wish to present the ideas of that paper
in a generic way without going into the details of synthesis.
For each component model and each output condition of
the components, we consider two types of taskblocks. The
first type is called a maintain-type, and its purpose is to
keep a condition of the system true, given that it was
already true when the taskblock was activated. The second
type is called an action-type. Its purpose is to drive the

system to a given condition from any initial state. For a
given condition x, we distinguish between the action-type
and maintain-type taskblocks through the activation signals:
doA

x is the activation condition for the action-type taskblock
TB(doA

x ) with goal(doA
x ) = x, and doM

x is the activation
condition for the maintain-type taskblock TB(doM

x ) with
goal(doM

x ) = x. The following assumptions will define the
nature of taskblocks for the remainder of this paper and
hold for both action-type and maintain-type taskblocks. As
a result, we will not use the superscript notation in the
following discussion.

First we to define the following. Define, the full con-
dition mapping for some condition system as C�

G :=⊗
c∈Cout(G){c,¬c} where

⊗
is defined as the cross prod-

uct. Thus, for example, if non-negated outputs of G are
{c1, c2, c3} then C�

G = {c1,¬c1} × {c2,¬c2} × {c3,¬c3}.
In [2] we assumed the component models were constrained

by the System Structure Assumption. In this work, we wish
to generalize our discussion about taskblocks and render
it relatively independent of the nature of the component
models.

Assumption 2: Taskblock Structure Assumption (TSA):
Given an activation condition, dox, its taskblock, TB(dox),
and component model, Gcompo(dox), we assume the follow-
ing:

1) dox is effective for control for Gcompo(dox).
2) TB(dox) is a state graph.
3) For each place p in TB(dox) there exists a condition

set C such that:
a) ∀t ∈ (t)p,Φ(t) = C.
b) If Φ(t) �= {dox} and Φ(t) �= {¬dox}, then C ∈

C�
Gcompo(dox).

4) Except when idle, the state of TB(dox) always
changes in response to expected changes in condition
outputs of Gcompo(dox).

5) The state of TB(dox) does not change in re-
sponse to unexpected change in conditions output of
Gcompo(dox).

Here we are assuming that we are effective for control
(item 1), and that the model within contains only one marked
place at any time (item 2). Item 3 part (a) insures that each
state corresponds to some specific behavior from the plant (
dox, ¬dox also work here). Item 3 part (b) insures that each
transition that inputs to a place in the taskblock has a full
condition mapping from the component model. Item 4 states
that the taskblock always recognizes expected responses from
the component model. The implication of item 5 is that the
original taskblock TB(dox) doesn’t respond to unexpected
output changes from Gcompo(dox), and thus we have an
opportunity to add fault detection by adding recognition of
these unexpected output changes.

V. A FAULT DETECTION SCHEME FOR TASKBLOCKS

In this section, we outline a method to modify a taskblock
that meets the taskblock structure assumption to include the
ability to detect deviations between the real and expected
behavior of the component model (i.e. a fault).
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For fault detection, we will assume that under execution
of some task dox will be output continually. Thus fault
detection occurs under an activated taskblock. Taskblocks
provide stimuli to the component to drive it to some specific
target state, and the taskblock model then waits for responses
from the system (i.e. output conditions) that trigger a state
change in the task model. This in turn triggers a new stimuli
to the system, and the component’s response. In this way our
taskblocks are intended to unfailingly guide the component
model to this target state, except under behavior that is not
”expected”.

The following defines for the whole system the notion of
effective for detection. In essence, it says any unexpected
stimuli from the system (under direction of a taskblock),
leads to a fault state. First, define fault(dox) as a fault
condition that is associated with a single new place within a
taskblock.

Definition 4: Given a system GE ⊆ Gtasks ∪GE
compo with

initial state mE
0 and a condition dox ∈ Cin(GE)∩Cdox

such
that idle(dox) ∈ g(mE

0 ), we define that dox is effective for
detection for GE under mE

0 if :
Unexpected component behavior while taskblock acti-

vated implies eventual fault: Given any (C1 · · ·CkCk+1) ∈
L(GR,mR

0 ) such that:

1) Observations are in the expected language up to the
k’th observation from the component, or (C1 · · ·Ck) ∈
L(GE ,mE

0 ),
2) At the k + 1 observation of the component, an unex-

pected behavior is encountered, or (C1 · · ·CkCk+1) /∈
L(GE ,mE

0 ), and
3) for any Ck+2 consistent with the taskblocks, i.e.

(C1 · · ·CkCk+1Ck+2) ∈ L(Gtasks,m
E
0 ), with dox ∈

Ck+2, then fault(dox) ∈ Ck+2, so the taskblock
indicates a fault state.

While this definition applies to the whole system, we
note that in this initial work we will show that a single
taskblock and component model pair are effective for control
and effective for detection under the assumptions we have
presented. Define (t)p as the set of transitions that are inputs
to place p, and p(t) as the set of transitions leading from
place p (i.e. output transitions).

The following defines the set of condition sets which
represent unexpected behaviors from the component for
each place within a taskblock that provides stimuli to the
component. This definition is used in algorithm 1.

Definition 5: Given a taskblock TB(dox) not effective
for detection define for all p ∈ PTB(dox) − {pidle, pcompl},
the set CSetfault(p) as:

CSetfault(p) := C�
Gcompo(dox) − (∪t∈p(t),(t)pΦ(t))

This is the set of all possible combinations of output
conditions minus output conditions that were either expected
(i.e. they triggered a state change in TB(dox) that led to state

p being marked), and the ones that are expected (i.e. legal
responses given stimuli provided by p).

We are now ready to present the algorithm that we will
use to transform TB(dox) into a new taskblock that detects
faults. We will show in the result for this paper that we do
in fact detect deviations between expected and real behavior,
and that the input/output behavior of the original taskblock is
preserved. Let TBF (dox) denote a transformed taskblock.

Algorithm 1: An algorithm to create TBF (dox)
from TB(dox).

Input: dox, TB(dox) that is not effective
for detection, Gcompo(dox)
Output: TBF (dox)
Copy TB(dox) as new taskblock
TBF (dox).
Create a place, pfault, Assign output con-
dition fault(dox) to this place.
∀p ∈ PTB(dox) − {pidle, pcompl, pfault}
{

∀C ∈ CSetfault(p)
{

Add new transition, t′, with C as the
enabling condition for this transition,
assign input place to t′ place p,
and the ouput place is pfault.

}
}

Note the places, pidle and pcompl associated with the status
conditions idle(dox) and compl(dox) do not interact with
the system and hence are excluded from consideration in
this algorithm, as is the newly created pfault state.

The algorithm adds, for all places that provide stimuli to
the component, transitions leading to the fault state. One of
these transitions is added for each combination of conditions
that are not expected given the current stimuli. We note
that if the component model, Gcompo(dox), has n output
conditions, then each place that provides stimuli in the new
TBF (dox) will have approximately 2n transitions added.
This is obviously an issue, but we believe we can exploit
simple and well known ideas to greatly reduce the number
of transitions considered (i.e. Karnaugh mapping reduction).
Another efficient solution might be found by simply checking
a changed condition set input to a taskblock against all of
the expected responses and if it is not one of these then it
must be a fault. This is a subject of future research.

The following result shows that our new taskblock that
detects fault behaviors is effective for control and effective
for detection.

Theorem 1: Given dox, a taskblock TB(dox) satisfying
the taskblock stucture assumption(TSA) but that is not effec-
tive for detection, the component model Gcompo(dox), and a
TBF (dox) constructed via algorithm 1, dox is effective for
control and effective for detection.

Proof: By assumption 2 (TSA) item 3(a), for any place in

3089



TB(dox) all transitions into that place(∀t ∈(t) p) have the
same condition map for the system, so by item 3(b) unless
the transition relates to activation or inactivation, there is a
complete mapping from conditions from the plant , and only
for that mapping will the place become marked. The place
place p in TB(dox) thus corresponds to a set of markings
in the component which have the same observation. (Note
that this might not correspond to all markings corresponding
to the same observation). Call this set of markings for this
place as M .

By TSA item 4, any expected change of observations has a
corresponding state change in the TB(dox), so there must be
a transition for leaving the place p for any expected change
of observations (corresponding to an expected movement
from plant marking set M to some observationally different
marking set M ′).

By the definition of CSetfault(p), there will now also
be a new transition leaving the place p corresponding to
all observation changes that were not in the original net.
These transitions have condition mappings corresponding to
unexpected observation changes.

In the TBF (dox) the original transitions are preserved
from TB(dox), and since all added transitions from
CSetfault(p) are distinct, then the taskblock, TBF (dox),
under expected observations will operate identically as be-
fore, and so will be effective for control.

Since each of the newly added transitions in TBF (dox)
(corresponding to CSetfault(p)) lead to the pfault state, and
since CSetfault(p) corresponds only to unexpected condi-
tion changes (corresponding to unexpected marking changes
from the set M ), then it follows that any unexpected behavior
while the system is activated will lead to the outputting of
fault(dox). Hence dox is effective for detection. 
 
 


The taskblock TBF (dox) contains the original taskblock
with the addition of transitions that capture unexpected
responses for each stimuli provided by TBF (dox). We note
that the states that provide stimuli from TBF (dox) are
identical to those of TB(dox)(with the addition of the fault
state pfault which does not provide stimuli to Gcompo(dox)).
And so, the only way that TBF (dox) does not reach the
completion state is if one of the unexpected responses leads
the system to the fault state.

Example 2: Consider pinit and p8 from figure 1 as shown
in figure 2. This figure shows the expansion of these places
that occur to construct TBF (domid) from TB(domid). To
make the figure easier to read, we represent the input
conditions arm up as up, and arm dn as dn.

We would also add additional outgoing transitions to the
fault state for p7 in a manner similar to p8. We also note that
the transitions associated with the deactivation condition for
the taskblock (i.e. ¬doA

mid) would remain unchanged in the
TBF (domid). We have omitted these in the figure, and pidle

for clarity.

VI. DISCUSSION

In this initial paper we have shown how to create a
taskblock that detects fault behaviors from the system under

pinit

Pfault

p7

pcompl

p8

up,¬md,¬dn

¬up,md,¬dn
¬up,¬md,dn

¬up,¬md,¬dn ¬ up,md,dn

up,¬md,dn up,md,¬dn

up,md,dn
¬up,¬md,¬dn ¬ up,md,dn

up,¬md,dn up,md,¬dn

up,md,dn

up, ¬ md, ¬ dn

Unexpected
Responses for 
p8

Unexpected
Responses for 
pinit

Expected
Responses 
for pinit

Expected
Response 
for p8

¬up,md, ¬dn

Fig. 2. The transformation of pinit and p8 from figure 1 to the new places
in TBF (dox).

control. We start with a taskblock satisfying the taskblock
structure assumption, and transform it into a new taskblock
that is both effective for control and effective for detection.

We have also included a generalized discussion of
taskblock structures and tied this work into the ideas of
the ”real” and ”expected” systems. We also note that we
do not require that faulty behaviors be encoded within the
component model, instead we automatically determine these
by the TBF (dox) transformation. Although, we can model
faults if desired.

We envision that a method such as this could be used
in conjunction with a diagnosis method such as the one
presented in [3] to provide a method to rapidly detect and
diagnose faulty behaviors. Areas of future research include:
determining a method to reduce the number of transitions in
TBF (dox); finding what types of component models lend
themselves to taskblock synthesis; and introducing timing
into this framework. We are also working on implementing
these ideas on fault detection in the Spectool software tool
detailed in [2].
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