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Abstract— A model for the inverse radiotherapy treatment
planning is studied and discussed here. The dose calculation
(forward problem) is based on the Boltzmann transport equa-
tion for charged particles. The required treatment optimization
(inverse problem), which is always present in the real situations,
is solved by the boundary control optimization theory for
variational forms. We obtain the variational equations, where
finite element methodology can be directly applied. Two finite
element simulations are presented to show how boundary
control optimization works in practice.

I. INTRODUCTION

The Boltzmann transport equation (BTE) models various
kind of transport phenomena of particles. The equation
takes rigorously into account the scattering effects in inho-
mogeneous material. In the general situation, the transport
of particles (photons, electrons, positrons) is covered by a
system of three coupled Boltzmann transport (partial integro-
differential) equations. Although the incoming radiation in-
volves only one type of particles the interactions in media
mobilize other types of particles. Hence it is necessary to
consider at the same time the above mentioned three species
of particles. For the transport theory of particles we refer to
the monographs [3], [5], [7], [13]. The mathematical analysis
related to the BTE can be found in [6]. Typical applications
can be found e.g. in nuclear processes, cosmic radiation,
material physics, and radiation therapy. Here we consider
the inverse radiation treatment planning, where the inflow of
particles is on the boundary of the region. We deduce the
variational equations whose solution contains the optimal
control. We suppose that the equations are linear. This
assumption neglects some interactions between the particles
which are not essential in our application.

Our application contains a problem arising in radiation
therapy. In the radiation therapy treatment planning one
tries to optimize the dose distribution to ensure high and
homogeneous dose in the tumor, but on the other hand to
spare the normal tissue and critical organs. This is called the
inverse treatment planning problem which is mathematically
a typical inverse problem. The dose distributions can be
generated with different techniques. The most recent of
them is the so-called multileaf collimator (MLC) delivery
technique. For some reviews of radiation treatment planning
we refer to [2], [4], [14], [18].
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Business and Information Technology, Department of Mathematics and
Statistics, and M. Vauhkonen and E. Boman are with the Fac-
ulty of Natural and Environmental Sciences, Department of Applied
Physics, University of Kuopio, P.O.Box 1627, FI-70211 Kuopio, Fin-
land {jouko.tervo; marko.vauhkonen; eeva.boman;
petri.kokkonen; markku.nihtila}@uku.fi

Calculation of the dose distribution from the given incom-
ing radiation is a forward problem. Its solving demands some
dose calculation model. The present paper applies the BTE
in dose calculation which has solid physical foundations.
In [1] we have preliminarily studied the dose calculation
applying the BTE model. The inverse problem is considered
as an optimal boundary control problem. To our knowledge
this approach is not previously applied in the literature. In
[15], [16], [17] we have modeled and solved the related
problems utilizing (global) optimization. In practice, the
arising (variational) equations must be handled numerically.
The discretization leads to very large dimensional problems.

II. TRANSPORT MODEL

A. Boltzmann transport equation

In the case where elastic collision, inelastic collision
and ”bremsstrahlung” are taken into account the stationary
particle transport model consists of the following coupled
system of partial integro-differential equations

Ω · ∇ψ1 + K1(ψ1, ψ2, ψ3) = Q1(x, E, Ω)

Ω · ∇ψ2 + K2(ψ1, ψ2, ψ3) = Q2(x, E, Ω) (1)

Ω · ∇ψ3 + K3(ψ1, ψ2, ψ3) = Q3(x, E, Ω)

for (x, E, Ω) ∈ V × I × S. In (1) ψj = ψj(x, E, Ω), j =
1, 2, 3 are the phase space densities of (angular) fluxes
for photons, electrons and positrons, respectively. x =
(x1, x2, x3) is the point in a domain V ⊂ R

3 which is
assumed to be open and bounded. S is the surface of the unit
sphere in R

3. Ω = (cosφ sin θ, sin φ sin θ, cos θ) := h(φ, θ)
is a point on S, where φ, θ are the standard spherical coordi-
nates on S. In the following the integral

∫
S f(Ω)dΩ denotes

the surface integral
∫

S f(Ω)dΩ =
∫

W (f◦h)(φ, θ) sin θdφdθ,

where W := [0, 2π[×[0, π[. I is the energy interval, say
[E0, Ef ]. ∇ is the gradient with respect to the x-variable.
We are able to identify S with W . Hence the solution
ψ is essentially defined in the 6-dimensional state space
G := V × I × S.

The functions Kj(ψ1, ψ2, ψ3), j = 1, 2, 3 are collision
terms resulting from different kinds of interactions. As men-
tioned above we assume that the model is linear. Hence the
terms K1, K2, K3 are linear functions of ψ := (ψ1, ψ2, ψ3).
The interactions can be described by the differential and total
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cross sections σj,k(x, E′, E, Ω′, Ω), Σj,k(x, E) as follows

Kjψ = −
3∑

k=1

Σj,k(x, E)ψk

+

3∑
k=1

∫
S

∫
I

σj,k(x, E′, E, Ω′, Ω)ψk(x, E′, Ω′)dE′dΩ′.

Some analytical expressions and /or numerical values for the
cross sections σj,k(x, E′, E, Ω′, Ω), Σj,k(x, E) can be found
in the radiation therapy literature.

Finally, Qj(x, E, Ω) are the source terms. These describe
sources in V .

Physically the given Boltzmann equation (1) is based on
a simple particle balance in an infinitesimal volume element
expressed by the above concepts, see e.g. [13].

B. Inflow boundary condition for photon invasion

We consider especially the photon invasion in the station-
ary case. We assume that the boundary ∂V is a Lipschitz-
boundary [6]. Then the outward normal n(x) exists and it is
continuous on ∂V possibly except a set with surface measure
zero.

Let Γl, l = 1, ..., L be (sufficiently smooth) patches of
∂V . To take into account the incoming external flux we
must put some (boundary) conditions for the solution. In
applications the typical conditions for the solution ψ are of
the form

ψ2(x, E, Ω) = ψ3(x, E, Ω) = 0, for

(x, E, Ω) ∈ ∂V × I × S such that n(x) · Ω < 0;

ψ1(x, E, Ω) = ul(x, E, Ω), for (2)

(x, E, Ω) ∈ Γl × I × S such that n(x) · Ω < 0;

ψ1(x, E, Ω) = 0, for

(x, E, Ω) ∈ (∂V \ Γl) × I × S such that n(x) · Ω < 0.

Above n(x) is the unit outward normal vector on the bound-
ary surface ∂V . ul is the photon flux per unit area incident
on Γl. The condition ψ1 = ul for n(x)·Ω < 0, x ∈ Γl means
that the beam (the flux ul) is incoming from outwards on the
patch Γl. The conditions ψ2 = ψ3 = 0 for n(x) ·Ω < 0, x ∈
∂V , ψ1 = 0 for n(x) · Ω < 0, x ∈ ∂V \ Γl mean that no
outward fluxes (of corresponding particles) exist on ∂V and
on ∂V \ Γl, respectively.

C. Variational formulation of the problem

Let L2(G) be the Lebesque space of (real-valued) square
integrable functions on G with the usual inner product.
Furthermore, let H be the linear (Sobolev) space

H = {f ∈ L2(G)|Ω · ∇f ∈ L2(G)}.
H is a Hilbert space equipped with the inner product

〈f, g〉H = 〈f, g〉L2(G) + 〈Ω · ∇f, Ω · ∇g〉L2(G) .

In the product space H3 the usual inner product

〈f, g〉H3 =
3∑

j=1

〈fj , gj〉H

for f = (f1, f2, f3), g = (g1, g2, g3) ∈ H3 is defined.
Define further linear operators Ω · ∇ : H3 → L2(G)3 and

K : L2(G)3 → L2(G)3 by

Ω · ∇ψ := (Ω · ∇ψ1, Ω · ∇ψ2, Ω · ∇ψ3) (3)

and
Kψ := (K1ψ, K2ψ, K3ψ) (4)

for ψ = (ψ1, ψ2, ψ3) ∈ H3. We find that Ω · ∇ is a
linear partial differential operator and K is a linear integral
operator.

We assume the boundary conditions (2). Denote Q =
(Q1, Q2, Q3). Then the problem gets the form

(Ω · ∇ + K)ψ = Q(x, E, Ω) (5)

where ψ satisfies the boundary conditions (2).
In the following the subscripts ” − ” and ” + ” refer

to the negative part and to the positive part of a function,
respectively. The variational formulation of the problem (5)
& (2) under physically relevant assumptions is given by

Theorem 1: Assume that

1. Σj,k ∈ L∞(V × I), (6)

2. σj,k ∈ L∞(V × I2 × S2), (7)

3. Qj ∈ L2(G), ul ∈ L2(Γl × I × S). (8)

Then the variational form of the equation (5) with the stated
boundary conditions (2) is given by

B(ψ, v) = F (v), v ∈ H3 (9)

where B(·, ·) : H3 × H3 → R is the bilinear form

B(ψ, v) = −〈ψ, Ω · ∇v〉L2(G)3 + 〈Kψ, v〉L2(G)3 (10)

+

3∑
j=1

∫
S

∫
I

∫
∂V

(Ω · n)+ψjvjdσdEdΩ,

F (v)=〈Q, v〉L2(G)3+

L∑
l=1

∫
S

∫
I

∫
Γl

(Ω·n)−ulv1dσdEdΩ. (11)

Define a norm for ψj ∈ H by

||ψj ||2H1
=

∫
S

∫
I

∫
∂V

|Ω · n|ψ2
j dσdEdΩ + ||ψj ||2L2(G).

For ψ ∈ H3 we define ||ψ||2
H3

1

=
∑3

j=1 ||ψj ||2H1
. By the

Trace Theorem [6] we find that ||ψj ||H1
≤ C||ψj ||H . Hence

also ||ψ||H3

1

≤ C||ψ||H3 for ψ ∈ H3.
The adjoint (dual) spaces and operators are indicated by

the superscript ∗. We formulate the following theorem
Theorem 2: Assume that (6), (7), (8) are valid, and that

there exits κ > 0 such that for ψ ∈ H3

〈Kψ, ψ〉L2(G)3 ≥ κ||ψ||2L2(G)3 (12)

Then the bilinear form B(ψ, v) satisfies

B(ψ, v) ≤ C||ψ||H3 ||v||H3 (H3−boundedness) (13)

for ψ, v ∈ H3 and

B(ψ, ψ) ≥ c||ψ||2H3

1

(H3
1−coercitivity) (14)

1632



for ψ ∈ H3. In addition, F ∈ (H3
1 )∗ and there exists C > 0

such that
||ψ||H3

1

≤ C||F || (15)

where

||F || := ||Q||L2(G)3+

L∑
l=1

√∫
S

∫
I

∫
Γl

|(Ω · n)−|u2
l dσdEdΩ.

The assumptions of Theorem 2 imply a sufficient condition
for the unique existence of the (variational) solution ψ ∈
H3

1 . We remark that also the adjoint problem B(v, ψ∗) =
F ′v, v ∈ H3 has a unique solution ψ∗ ∈ H3

1 for F ′ ∈ (H3
1 )∗

(below F ′ is given by the inner product).
In [1] we have proved the following sufficient algebraic

criterion for the coercitivity assumption (12)
Theorem 3: Assume that Σj,j(x, E, Ω) ∈ L∞(V × I×S)

and σk,j(x, E′, E, Ω′, Ω) ∈ L∞(V × I2 × S2). Suppose
that there exists γ > 0 such that almost everywhere
(x, E, Ω) ∈ G

Σj,j(x, E, Ω)−
∫

S

∫
I

3∑
k=1

σk,j(x, E
′, E, Ω′, Ω)dE′dΩ′ ≥ γ (16)

Σj,j(x, E, Ω)−
∫

S

∫
I

3∑
k=1

σj,k(x, E′, E, Ω′, Ω)dE′dΩ′ ≥ γ (17)

for j = 1, 2, 3. Then the inequality

〈Kψ, ψ〉L2(G)3 ≥ γ ‖ψ‖2
L2(G)3 , ψ ∈ H3 (18)

is valid.
The assumptions (16)-(17) have physical foundations.

III. INVERSE RADIATION TREATMENT PLANNING

A. Optimal boundary control problem

The patient domain V ⊂ R
3 contains tumor’s (target’s)

region T, the region of critical organs C, and normal tissue’s
region N, whose disjoint union is V = T ∪ C ∪ N. Assume
that we have L fields Sl, l = 1, ..., L. This means that
gantry, couch and collimator angles are determined and the
whole treatment contains L different angle settings. Let the
incoming (initial) flux distribution of the lth field Sl be ul.
Denote the corresponding (disjoint) patches of ∂V by Γl.

We have no internal sources. So Ql = 0 for each field Sl.
The effect of incoming flux is given by the functional

F (v) =

L∑
l=1

∫
S

∫
I

∫
Γl

(Ω · n)−ulv1dσdEdΩ. (19)

The bilinear form B is independent of the incoming flux.
The total dose D = D(x) = D(x, ψ) is obtained from the

functional

D(x)=
3∑

j=2

∫
S

∫
I

κj(x, E)ψj(x, E, Ω)dEdΩ =:Lψ(x) (20)

where κj(x, E) are known factors (so-called stopping pow-
ers). We assume that κj ∈ L∞(V × I).

Applying the above concepts the inverse radiation treat-
ment planning problem is stated as:

Suppose that D0 is the prescribed (uniform) dose in tumor
T and that DC and DN are the upper bounds of dose in the
critical organs C and in the normal tissue N, respectively.
Furthermore, suppose that the number L and the gantry,
coach and collimator angles of fields Sl are given.

For each l = 1, ..., L determine the incoming flux ul ∈
L2(Γl × I × S) such that

D(x) = D0, x ∈ T

D(x) ≤ DC, x ∈ C (21)

D(x) ≤ DN, x ∈ N.

subject to the constraints ul ≥ 0.
Besides the requirements (21) one often demands that so-

called dose volume constraints, see [2] & [18], are fulfilled.
In addition, the tumor, critical organs and normal tissue may
be divided into many separate parts.

We denote

L2(Γ× I × S) = L2(Γ1 × I × S)× · · · × L2(ΓL × I × S).

Furthermore we denote u = (u1, ..., uL) ∈ L2(Γ × I × S)
where ul ∈ L2(Γl × I × S). The space L2(Γ × I × S) is
equipped with the inner product

〈u, u′〉L2(Γ×I×S) =

L∑
l=1

〈ul, u
′
l〉L2(Γl×I×S) .

To clarify the u-dependence of variables we denote ψ =
ψ(u).

Let F̃ : L2(Γ × I × S) → (H3)∗ be the operator defined
by

(F̃ u)(v) =

L∑
l=1

∫
S

∫
I

∫
Γl

(Ω · n)−ulv1dσdEdΩ.

Note that F (v) = (F̃ u)(v).
Using these notations the solution ψ = ψ(u) satisfies the

variational equation B(ψ(u), v) = (F̃ u)(v), v ∈ H3. Since
F̃ is a linear function of u one can show by the uniqueness
of solutions that the solution ψ is a linear function of u as
well. Furthermore, L (defined by (20)) is a linear function
of ψ.

Lemma 1: ψ is a bounded operator L2(Γ × I × S) →
L2(G)3 and L is a bounded operator L2(G)3 → L∞(V )
that is,

||ψ(u)||L2(G)3 ≤ C1||u||L2(Γ×I×S) (22)

for u ∈ L2(Γ × I × S) and

||Lψ||L∞(V ) ≤ C2||ψ||L2(G)3 (23)

for ψ ∈ L2(G)3.
Since L and ψ are bounded operators L ◦ ψ is Fréchet

differentiable and (L ◦ ψ)′(u) = L ◦ ψ

The dose D(x) must be as near as possible the described
dose D0 in tumor and the upper bounds of dose in critical
organs and normal tissue may not be violated. Hence we
try to optimize the incoming fluxes ul so that this holds.
The concrete implementation of this leads to the following
optimization problem.
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Define a cost functional by

J(u) = c1||D0 − D(·, ψ(u))||2L2(T) (24)

+ c2||(DC − D(·, ψ(u)))−||2L2(C)

+ c3||(DN − D(·, ψ(u)))−||2L2(N)

+ c4||(u)−||2L2(Γ×I×S) + a||u||2L2(Γ×I×S),

where c1, c2, c3, c4, a are positive weights. In this
contribution, we do not present any mathematical theory
to choose the weights cj . In simulations, these parameters
are chosen experimentally. The minimization of the second
and the third terms tries to take care of the requirements
D(x) ≤ DC, x ∈ C and D(x) ≤ DN, x ∈ N. To keep
the admissible control set as the whole space L2(Γ × I ×
S) or its suitable linear subspace U we added a penalty
term c4||(u)−||2L2(Γ×I×S) which hinders the violation of the
constraint ul ≥ 0. The last (convex) term regularizes the
schemes and helps the optimization process in theory and in
numerical considerations. To diminish (that is, minimization
of ||u||2L2(Γ×I×S)) the incoming fluency u may also be of
practical importance. Also the dose volume constraints can
be added to the cost function.

As a conclusion we find that the corresponding optimiza-
tion problem states : Find the minimum

min
u∈U

J(u) (25)

such that

B(ψ(u), v) = (F̃ u)(v), v ∈ H3. (26)

B. Optimal solution

The optimal control u0 minimizes the functional J among
the set, say Uad, of admissible controls u. The well known
necessary condition for the optimal control u0 is that [6]

B(ψ(u0), v) = (F̃ u0)(v), v ∈ H3

and that

J ′(u0)(u − u0) ≥ 0 for all u ∈ Uad. (27)

In the case where Uad is the linear space U (as in our case)
the condition (27) reduces to

J ′(u0) = 0. (28)

In the case where J is a convex function the condition (28)
is also sufficient for the optimal control. Our functional J ,
however contains also nonconvex terms.

The adjoint L∗ : L∞(V )∗ → L2(G)3 of L can be
computed and

L∗w = (κ1w, κ2w, κ3w), w ∈ L1(V ).

In addition, the adjoint F̃ ∗ : H3 → L2(Γ × I × S) of F̃ is

F̃ ∗v =
(
rΓ1

((Ω · n)−v1), ..., rΓL
((Ω · n)−v1)

)
(29)

where rΓl
is the restriction operator on Γl.

We replace the negative part of a function by a Fréchet
differentiable approximation. This can be done as follows,
for example. Let Hε be some approximation of the Heaviside
function. We can choose

Hε(x) = erfε(x) =
1√
πε

∫ x

−∞

e−s2/ε2ds. (30)

Then the negative part f− of a function f ∈ L2(V ) is
approximately given by

f− ≈ −(Hε ◦ (−f))f. (31)

Note that Hε ∈ L∞(R).
Let A be a Lebesgue measurable subset of V . Furthermore,

let rA be the restriction operator rAf = f|A and let eA be
the ”extension by zero operator” from a set A on V .

Lemma 2: The function gA : L∞(V ) → L2(A) defined
by gA(f) = rA(−Hε ◦ (−f))f) is Fréchet differentiable and

g′A(f)h = rA([(H ′
ε ◦ (−f)) · f − Hε ◦ (−f)] · h). (32)

In addition, g′A(f)∗w ∈ L1(V ) and

g′A(f)∗w = eA([(H ′
ε ◦ (−f)) · f − Hε ◦ (−f)] · w), (33)

where w ∈ L2(A).
Similarly we approximate u− ≈ −(Hε◦(−u))u =: g0(u).

The function g0 : L∞(Γ × I × S) → L2(Γ × I × S) is
Fréchet differentiable and its derivative g′0(u) and the adjoint
g′0(u)∗ are calculated analogously to Lemma 2. Using these
approximations the object function is

J(u) = c1||rT(D0 − Lψ(u))||2L2(T) (34)

+ c2||gC(DC − Lψ(u))||2L2(C)

+ c3||gN(DN − Lψ(u))||2L2(N)

+ c4||g0(u)||2L2(Γ×I×S) + a||u||2L2(Γ×I×S).

Define
N1(ψ) := c1L

∗(eT (D0 − Lψ)) (35)

+ c2L
∗(g′C(DC − Lψ)∗gC(DC − Lψ))

+ c3L
∗(g′N (DN − Lψ)∗gN (DN − Lψ)),

N2(u) := c4g
′
0(u)∗g0(u) + au. (36)

Replacing the objective function (24) by (34) and assuming
that u0 ∈ L∞(Γ× I ×S) (this is always true in practice) we
have, see [8],

Theorem 4: Suppose that the assumptions of Theorem 2
are valid. Then the optimal control u0 ∈ L∞(Γ × I × S)
satisfies the following equations

B(ψ(u0), v) = (F̃ u0)(v), v ∈ H3 (37)

B(v, ψ∗(u0)) = 〈v, N1(ψ(u0))〉L2(G)3 , v ∈ H3 (38)

F̃ ∗ψ∗(u0) = N2(u0) .(39)

Proof. Denote
J1(u) := 〈D0−Lψ(u), D0−Lψ(u)〉L2(T ) ,

J2(u) := 〈gC(DC−Lψ(u)), gC(DC−Lψ(u))〉L2(C) ,

J3(u) := 〈gN (DN−Lψ(u)), gN(DN−Lψ(u))〉L2(N) ,

J4(u) := 〈g0(u), g0(u)〉L2(Γ×I×S) ,

J5(u) := 〈u, u〉L2(Γ×I×S) .
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Then
J(u) = c1J1(u)+c2J2(u)+c3J3(u)+c4J4(u)+aJ5(u).

From these we calculate
J ′

1(u)w = −2 〈L∗eT (D0 − Lψ(u)), ψ(w)〉L2(G)3 ,

J ′
2(u)w = −2 〈L∗[g′C(DC − Lψ(u))∗ ·

· (gC(DC − Lψ(u)))], ψ(w)〉L2(G)3 ,

J ′
3(u)w = −2 〈L∗[g′N (DN − Lψ(u))∗·

· (gN (DN − Lψ(u)))], ψ(w)〉L2(G)3 ,

J ′
4(u)w = 2 〈g′0(u)∗g0(u), w〉L2(Γ×I×S) ,

J ′
5(u)w = 2 〈u, w〉L2(Γ×I×S) .

We see that J ′(u)w = 0 if and only if

2 〈N1(ψ), ψ(w)〉L2(G)3 − 2 〈N2(u), w〉L2(Γ×I×S) = 0.

Suppose that ψ∗ = ψ∗(w) is the solution of the dual
problem B(v, ψ∗) = 〈v, N1(ψ)〉L2(G)3 , v ∈ H3. Then we
find that

〈ψ(w), N1(ψ)〉L2(G)3 = B(ψ(w), ψ∗) = (F̃w)(ψ∗)

=
〈
F̃ ∗ψ∗, w

〉
L2(Γ×I×S)

.

From the previous equations we see that

2
〈
F̃ ∗ψ∗−N2(u), w

〉
L2(Γ×I×S)

= 0, ∀w ∈ L∞(Γ×I×S),

and by denseness of L∞(Γ × I × S) in L2(Γ × I × S) we
have

F̃ ∗ψ∗ − N2(u) = 0

which completes the proof.
Note that the equation (39) can be given in the variational

form

(F̃w)(ψ∗(u0)) =
〈
F̃ ∗(ψ∗(u0), w

〉
L2(Γ×I×S)

(40)

= 〈N2(u0), w〉L2(Γ×I×S) .

The derivatives and their adjoints are calculated along
Lemma 2. In general, the equations (37)-(39) may have many
solutions u0 corresponding to local extrema. After an appro-
priate discretization the equations (37)-(39) form a system of
nonlinear algebraic equations. This system must be solved
with some iterative scheme (Newton, quasi-Newton,...). To
help the search of the (global) minimum it is useful to apply
some kind of initial solution.

C. Initial solution

The above equations for the optimal control contain non-
linearities. One possibility to help the computations is to
diminish the required restrictions. For example, we can at
first consider simply the cost functional

J(u) = c||D0 − Lψ(u)||2L2(T) + a||u||2L2(Γ×I×S). (41)

In this case, the optimal boundary control is

u0 = −1

a
F̃ ∗ψ∗, (42)

where ψ∗ is uniquely obtained from the equations (note that
J is convex)

B(ψ, v) = − 1
a F̃ (F̃ ∗ψ∗)(v), v ∈ H3 (43)

B(v, ψ∗) = −c 〈v, L∗eT(D0−Lψ)〉L2(G)3 , v ∈ H3 (44)

IV. NUMERICAL SIMULATIONS

In simulations, we solve for simplicity only the control
problem (42-44) using finite element method (FEM) and
one Boltzmann equation for one type of particles in two
dimensional (2D) spatial domain. We define a linear hull
[φ1, ..., φN ] in a finite dimensional subspace of H . The finite
element approximations ψh and ψ∗h of the solutions ψ and
ψ∗ are

ψh(x, E, θ) =

N∑
k=1

αkφk(x, E, θ) (45)

ψ∗h(x, E, θ) =

N∑
k=1

α∗
kφk(x, E, θ) (46)

where φk are the basis functions for fluxes ψ(x, E, θ) and
ψ∗(x, E, θ), θ ∈ [0, 2π[. The unknown parameters αk and
α∗

k are found by demanding

B(ψh, v) = − 1
a F̃ (F̃ ∗ψ∗h)(v),

B(v, ψ∗h) = −c
〈
v, L∗eT(D0 − Lψh)

〉
L2(G)3

.

for all v ∈ [φ1, ..., φN ]. The basis functions are used as a
test functions v = φt, t = 1, ..., N .

For FEM matrix definitions we refer to [1], in which
we have solved BTE forward problem using FEM. If the
problem Aα = b describes the linear forward BTE problem
(9), in which ψh(x, E, θ) =

∑N
k=1 αkφk(x, E, θ), then the

control problem (43-44) can be written in a matrix form(
A MΓ

MT A∗

) (
α

α∗

)
=

(
0
bT

)
,

where ∗ denotes the matrix transpose operation,

MΓ(t, k) = −1

a

L∑
l=1

∫
Γl

∫
S

∫
I

((sin θ, cos θ)·n)2−φtφkdEdθdσ,

MT (t, k) = −c

∫
T

∫
S

∫
I

[
κφt

∫
S

∫
I

κφkdE′dθ′
]

dEdθdx,

bT (t) = −c

∫
T

∫
S

∫
I

D0κφtdEdθdx

and
∫

T
is the integration over the target.

V. SIMULATION RESULTS

The simulations demonstrate the use of control in BTE
problems. The used parameters for particle cross sections
and stopping powers are artificial.

The first simulation was done in a [−5, 5] × [0, 10] cm2

domain, which was assumed to be homogeneous. The target
was located at [−1, 4] × [1, 6] cm2. Two radiation fields
are assumed to locate on the surface. The geometry and
source nodes for the fields are shown in figure 1. The same
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figure also shows the spatial grid (100 evenly distributed
elements) and optimized dose distribution in the spatial
domain. Angular domain θ ∈ [0, 2π[ was divided into 16
evenly distributed elements and energy domain E ∈ [0.01, 1]
MeV was divided into 6 evenly distributed elements. The
used control parameters were c = 100000, a = 0.1 and for
desired dose in the target D0 = 10 (in arbitrary units).

The simulation was run in a normal PC (2GHz IV Pentium
with 2GB memory) using MATLAB�. It took 4 hours to
run the simulation. The control u0 = (u1, u2) was computed
from equation (42). The field intensities can be computed by
integrating the control flux ul(x, E, Ω) (l = 1, 2) over energy
and angle. Those intensities Il are shown in figure 2. Figure
3 shows the control fluxes ul(x, E, Ω) for selected energies
E = 0.2, 0.7, 1 MeV. The controlled dose distribution,
which is computed from ψh, is shown in figure 1.

The second simulation was also done in a [−5, 5]× [0, 10]
cm2 homogeneous domain. Now the target was located at
[0.5, 4.5] × [3, 6] cm2 and three control fields were used as
shown in figure 4. Same values for c, a and D0 were used
as in the first simulation. Also the same energy and angle
discretizations were used. Spatial domain were divided into
225 evenly distributed elements. Simulation took 5 hours to
run in a normal PC using MATLAB�. The field intensities
are shown in figure 5. The control fluxes ul(x, E, Ω) for
selected energies E = 0.2, 0.7, 1 MeV are shown in figure
6. The controlled dose distribution is shown in figure 4.

VI. SIMULATION DISCUSSION

The dose distributions, shown in figures 1 and 4, are in a
good agreement with the used cost function (41), in which
the desired dose D0 = 10 was demanded into the target.

In the first simulation, one would except to obtain wedge-
like intensity distributions, in which in the field 1 the
intensity profile would increase in positive x2 direction and
in the field 2 the intensity profile would decrease in positive
x1 direction. In our results, this is not the case. In fact,
the intensity profiles in figure 2 behave in opposite way.
This is because the directions of the control fluxes are not
constrained. It can be seen from figure 3 that for the field
2 the flux is directed mainly to the left (see for example
the point (4,0)) and similarly for the field 1 the flux is
directed mainly to the right (see for example the point (5,1))
to ensure homogeneous dose in the target area. However,
in the real treatment planning, these control fluxes could
not been used, since with the present technology it is not
possible to control the particle directions or energies for the
radiation fields. The directions should be constrained based
on the actual treatment direction. Also the incoming particle
energy distribution should be constrained to be the same that
is obtained from the treatment unit. These restrictions are
fairly easy to add in the method we have used here.

In the second simulation, fields 2 and 3 were selected not
to be directly under and over the target, respectively. Now
it is interesting to see that the direction of the particles is
towards the target (figure 6). The treatment plan is better in
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Fig. 1. The first 2D FEM control simulation. The spatial grid is drawn
with straight lines. Black circles at the boundaries are the source nodes for
the fields 1 and 2. The gray box inside the grid is the target. The optimized
dose profile is presented with contour lines describing the dose of 2, 4, 7,
9 and 10 in arbitrary units.
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Fig. 2. The control field intensity for different fields Il (l = 1, 2) in the
first simulation.
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Fig. 3. Control fluxes u0(x, E, θ) for different energies E = 0.2, 0.7, 1
MeV in the first simulation. The same scale is used for all the energies.

the second simulation, which is consistent with the practice
(because we have three fields instead of two).

VII. CONCLUDING REMARKS

Optimal dosing of radiation on tumors without affecting
too much the other parts of the body is a necessity in suc-
cessful radiation therapy treatment. Planning of the treatment
is here based on the Boltzmann transport equation model.
In the treatment planning, the cost functional minimization
is applied. A necessary ingredient in optimization is the
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Fig. 5. Controlled field intensities Il (l = 1, 2, 3) in the second simulation.
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Fig. 6. Control fluxes u0(x, E, θ) for different energies E = 0.2, 0.7, 1
MeV in the second simulation. The same scale is used for all the energies.

appearance of the adjoint variables.
By the simulations we have shown that it is possible to

control the field intensities in optimization problem. The sim-
ulations give a good overview about the problem, although
they are done in 2D and only for one Boltzmann equation
to simplify the computational burden.

Besides using the adjoint variables, one also could study
the elimination of the adjoint variables. This elimination

is based on the “compatibility operators”. Their existence
can be studied e.g. by homological-algebraic methodology
[12]. The compatibility conditions and their solution form
the essential part of the solution of the overall dosing
optimization problem. We shall consider this idea elsewhere
in the near future. Similar compatibility condition issues
were used also in open-loop control design for PDE systems
under the concept called parametrization, see [10] and [11].
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was supported by the European Commission, in Marie Curie
programme’s Transfer of Knowledge project Parametrization
in the Control of Dynamic Systems (PARAMCOSYS, No:
509223). All this support is greatly acknowledged.

REFERENCES

[1] E. Boman, J. Tervo and M. Vauhkonen, Modeling of transport of
ionizing radiation using the finite element method, Phys. Med. Biol.,
Vol. 50, 2005, pp. 265-280.

[2] C. Börgers, The radiation therapy planning problem, in Computational
radiology and imaging: Therapy and diagnostic (C. Börgers and F.
Natterer, eds), Springer-Verlag, Berlin; 1997.

[3] K.M. Case and P.F. Zweifel, Linear Transport Theory, Addison-
Wesley, 1967.

[4] Y. Censor and S.A. Zenios, Parallel optimization: theory, algorithms
and applications, UOP, 1997.

[5] C. Cercignani, The Boltzmann Equation and Its Applications, Springer-
Verlag, Berlin; 1988.

[6] R. Dautray and J.-L. Lions, Mathematical Analysis and Numerical
Methods for Science and Technology, vol. 6, Springer-Verlag, 1993.

[7] J. Duderstadt and W. Martin, Transport Theory, Wiley, 1979.
[8] J. Lions, Optimal Control of Systems Governed by Partial Differential

Equations, Springer-Verlag, 1971.
[9] L. Boutet de Monvel, Boundary Problems for Pseudo-Differential

Operators, Acta Math., Vol. 126, 1971, pp. 11-51.
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