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Abstract— Tensegrity systems are selfstressed reticulate space
structures. As lightweight frames, they are subject to deforma-
tion and vibration issues when faced to natural stimulations
such as temperature gradients or wind. Classical passive solu-
tions impose to rigidify components or to add damping in the
structure using heavy devices. Active systems, mainly developed
in space and seismic fields, are controlled using external energy
brought by activators. We describe in this paper a mixed
geometric and dynamic active control of tensegrity structures
using a robust control design technique. An experiment is
carried out on a six selfstress states plane tensegrity grid.

I. INTRODUCTION

TENSEGRITY systems appeared in the Fifties [1][2] as a

new class of reticulate space systems. They are defined

[3] as systems in a stable selfstressed equilibrium state

composed of a discontinuous set of compressed components

inside a continuous set of tense components. We can compare

selfstress to the pressure of the air inside an inflatable object.

This equilibrium between tensioned (usually cables) and

compressed components is required to keep them stressed

in accordance with unilateral rigidity, thus stabilizing the

system and taking advantage of materials. Tensegrity systems

present great interest for artists and architects, who design

from this principle lightweight and transparent structures

(Fig. 1).

(b)(a)

Fig. 1. (a) Needle Tower (Keneth Snelson, 1968), (b) Tensarch project
(LMGC/SLA, 2002)
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A. Context

At the present time, only a few structures of this kind have

yet been built. The necessity to sustain an internal stress state

certainly slows down their development because it requires

specific design and setting procedures that are often costly

to implement. We have developed recently methods to build

tensegrity grids. The first step is to define the target selfstress

in order to resist the external loads [4][5]. Then we propose

a process of adjustment which makes it possible to reach the

target selfstress [6].

Tensegrity structures, like any others, are subject to exter-

nal loads that modify their geometry and selfstress state. In

some cases, these forces can be a threat to their stability and

integrity, particularly when they are used to support fragile

materials such as in the case of a glass covering. This is why

we focus here on the control of their behavior under static

and dynamic loading.

B. Control of structures

The control of structures is originally motivated by the

need to lower vibration effects due to climatic and seismic

perturbations. Rather than reinforcing and rigidifying so as to

face those rare situations, one wishes to cancel these effects

by producing controlled reaction forces. We focus here on an

active control scheme. When passive and semi-active controls

use the self-oscillatory energy of the structure, active systems

inject directly the needed control forces through activators.

Costly in the case of heavy buildings, this kind of control

is very well adapted for lightweight structures. It allows

regulating different kind of variables such as displacement

or acceleration, with the best efficiency permitted by the

activators.

We study here the active control of a plane tensegrity

grid. This kind of system is an attractive inspiration for

smart structures that make use of active components so as

to actively control the geometry [7][8] or cancel vibrations

in modular structures [9]. In our study, we use a tensegrity

grid comprising an important number of elements. There are

two complementary objectives : first, a geometrical control

in which perturbations results from static service loading

or evolving characteristics (tension loss, relaxation. . . ). Sec-

ondly, a dynamic vibration control which is an active damp-

ing of the firsts eigenmodes, in torsion and flexion.

II. MODEL AND ACTIVATORS

The studied structure is a plane double layer tensegrity

grid (Fig. 2). It represents a quarter of the Tensarch project

structure [10] (Fig. 1b). It is composed of 64 nodes and

177 components : 52 compressed bars and 125 tensioned
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elements. Its initial internal forces state is a combination of

six fundamental selfstress states that are determined from

the static equilibrium [11][12]. This state is chosen for

its regularity and such that the forces allow to face the

expected loading. We follow a precise procedure for the

implementation of this selfstress state after the assembly

phase [13].

3,2 m

6,4 m

0,8 m

0,8 m

Fig. 2. The studied plane grid

A. Static and dynamic behavior

This plane grid is loaded uniformly in the vertical direction

and supported so that finite mechanisms are no longer

present. We study numerically its static behavior using the

displacement method but taking into account the unilateral

response of cables. We observe a classical linear response

in small perturbations but the vertical displacement softens

in function of the applied load as an increasing number

of cables slacken off. The objective of the static geometric

control is to reduce the vertical deformation of the structure

while maintaining the cables in tension.

We describe in Fig 3 a significant fraction of the dynamic

behavior of the studied structure. It represents the transfer

function of the output acceleration over an input force along

the vertical axis in node nb. 6, near the centre of the grid.

This response is computed in the geometric reference state

and reveals the characteristic first resonance peaks of the

system in torsion and flexion that are to be attenuated by

dynamic control.

B. Activation

We integrated linear activators so as to influence at the

same time the vertical displacements and the vibration

modes. The idea behind their positioning is to provoke a local

tension increase in the lower layer so as to induce a global

vertical deformation. To achieve this target, we put them

vertically in order to pull away one node from its layer, thus

increasing tension in the four adjacent cables (see Fig. 4).

This mode of integration is also the less perturbing for the

system. In the initial configuration, with a zero lengthening

of the activators and no energy, we retrieve the system in its

initial selfstressed configuration.
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Fig. 3. Transfer function acceleration on force in node 6, vertically (arrow)

The theoretical vertical displacement in C0 and C1 (Fig. 5)

when activator Act. 0 is lengthened along its whole course

reveals a non-linear influence on the vertical deflection in

the static domain. In the dynamic domain, we can observe

on the frequency response function between each activator

and the vertical acceleration at the node 6 that the main

eigenfrequencies of the active system are affected (Fig. 6).

Activators are localized there to have the best impact possible

on the dynamic behavior of the structure.

As a matter of fact the activators are hydraulic jacks with

a course of 100 mm and a maximum effort of 2 kN. We

chose this solution for this model of modest proportions

because it authorizes dynamic performances that go up to

50 Hz, a domain that covers the most part of the dynamic

behavior of the structure. We operate the actuators through

two programmable axis cards and from a computer that

generates and gathers data running LabViewTMṀeasures are

collected at C0 and C1 (respectively nodes 54 and 56,

see Fig. 4) by a laser distance sensor and a piezoelectric

accelerometer.

III. CONTROL LOOPS

The control loop represents the architecture of the active

system. It takes the usual form presented Fig. 7 where

the active system, which is the structure and its activators,

is represented by the block noted G. K represents the

controller, a z filter generating the order u from the error

e between the order r and measures y. On this diagram, we

materialize some uncertainties : wi in input, wo on the output

and n on the measures. In fact, the control is split in two

complementary parts, each dedicated to a measurement type

and dynamical domain (Fig. 8).

A. Static control loop

We control the geometry from the vertical displacements

and an external shape order using a simple PI law with a

reaction time of several seconds. In our case, it is sufficient

to respect the target geometry exploiting the whole course
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Fig. 4. Integration of activators
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Fig. 5. Static influence of the activators
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Fig. 6. Dynamic transfer functions between the activators and the output
(node 6, see Fig. 3)
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Fig. 7. Closed loop control scheme
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Fig. 8. Mixed control from two measurement types

of the activators. We use the relatively large reaction delay

to perform an averaging of the displacement measures that

filters the signal noise. It allows also to clearly isolate this

control loop from the dynamic domain.

B. Dynamic control loop

Apart from the static control, a dynamic controller is

designed to attenuate vibrations using vertical acceleration

measures. The control movements will be small around

a static equilibrium position, but as seen on Fig. 5, the

relation between the activator lengthening and the vertical

displacement is non-linear. So the dynamic influence of the

activators will depend for the static position. This is why we

have to take into account this variability on the active system

behavior.

C. Robust control synthesis

Modern control methods [14], and particularly the robust

synthesis algorithms (LQG, PRLQG, H∞, μ) consider for

the design of an appropriate controller Kdyn the uncertainties

that affect the model G of the active system and the pertur-

bations on the signals. For example, if an attenuation of the

external vibration effects that disturb the output is required,

one has to minimize the transfer function between wo and the

output y. In our case, we also require a robust control that

must be the less sensible to the variations of the system’s

characteristics due to unmodeled dynamics, identification

errors or any selfstress evolution. So, at the same time, we

have to minimize the influence of an input perturbation wi

over y.

With the notations introduced Fig. 7, the output y can be

written :

y = (1 + G.K)−1.w0+
(1 + G.K)−1.G.wi + (1 + G.K)−1.G.K.(r − n) (1)

We note S = (1+GK)−1 and T = (1+GK)−1 = 1−S.

S is the output sensibility, the transfer function between wo

and y. T is the complementary output sensibility, between
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(r − n) and y. The transfer between wi and y is SG. These

functions serve to build specifications on the controller. In

our case, in order to have good performances, T must be

great in the bandwidth of the system and weak beyond in

order to eliminate the measurement noise n. To attenuate

the external actions requires a small sensibility S. Finally,

the uncertainties of the system can be seen as an input

perturbation wi, so robustness requires a small SG transfer

function. To these conditions, we add the necessity to limit

the intensity of loop signals, for example the orders u, to

avoid an inefficient saturation of the activators.

Using the formulation of the H∞ method, we write this set

of conditions under a convenient form, “the standard form”

(Fig. 9), centered on the researched controller K. In this

P

K
u e

w z {
z
e

}
=

[
P11P12
P21P22

]{
w
u

}

Fig. 9. The “standard” form

diagram, P is an enriched description of the system G, that

admits in input a vector of orders u and perturbations w.

In output are the error e (input of the controller) and the

criteria z. These are signals that are extracted from the loop

and pondered by functions Wi which shape the signals (S,

T . . .) into normalized criteria zi to be minimized (Fig. 10).
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Fig. 10. Loop diagram, constitution of the augmented “standard"" form
and normalized criteria

Under this form, the closed-loop transfer Gzw(s) between

w and z writes:

Gzw(s) = Fl(P, K)
= P11(s)+

P12(s).K(s) (I − P22(s).K(s))−1
.P21(s)

(2)

The robust synthesis problem consists in determining the

controller K(s) that stabilizes and minimizes the H∞ norm

of the signal.

IV. EXPERIMENTAL RESULTS

We present in this paragraph the results of the mixed

control. First we show those concerning the static deflection.

Then we describe the characteristics of the synthesized

dynamic controller for the first flexion mode of the plane

grid and its influence on external forced vibrations.

A. Static deflection control

The objective in this figures were to keep the deflections

at zero. We applied a uniform load in two progressive steps

for each half of the grid. We suspended calibrated weights

under each node. This causes temporarily torsion that is

visible in Fig. 11 where we see a difference between the

displacement measure C0 and C1. This torsion is entireltly

cancelled after 15 seconds at the end of the first step. Finally,

after the second step, the flexion deflection is reduced to

zero. We reach similar results whith other shape order, like an

imposed flexion or torsion. This result confirms that a simple

PI control is very efficient in following a static geometric

order.
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Fig. 11. Time history of the vertical deflection. Conservation of a shape
consign

B. Dynamic controller synthesis

In comparison, the design of a dynamic controller is less

trivial. In our case, the transfer function of the system G was

identified by swept sine analysis between the length consign

and the vertical acceleration in C0 and C1 (Fig. 4). Fig. 12

shows the frequency responses of this model G reduced here

to the first mode of flexion. GS is the transfer between wi

and output y in the resulting closed loop. We see that GS
remains weak around the peak frequency, which shows the

robustness of the system in presence of a perturbation wi on

the model.

C. Vibration control results

The controller is implemented as a digital z filter. It is

inserted in a software control loop built under LabViewTM

refreshed at a rate of 200 cycles/s. The performances of

the activators are also high above (50 Hz max.) the first

controlled mode. In Fig. 13 and Fig. 14, we reveal the impact

of the dynamic control on the behavior of the structure
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Fig. 12. Transfer function of the nominal (G) and controlled (GS) system

when it is excited in a central point of the lower layer.

Fig. 13 is a comparison between two swept sine analyses
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Fig. 13. Frequency response comparison between the free and controlled
system, around the first resonance of flexion

around the first mode of flexion. It is the frequency response

between the external perturbation in input and the output

vertical acceleration in C0. We see that there is a noticeable

attenuation when control is switched on. A quantification of

the equivalent damping factor for this mode shows that it

goes from 2.2 to 3.06 %. The same effect is obvious on the

time history plots of the displacement in C0 (see Fig. 14)

and reveals an attenuation of nearly 30 %.

V. CONCLUSION

Being lightweight structures, tensegrity systems are sen-

sible to static and dynamic loads coming from their envi-

ronment. We present a mixed control of the displacements

and the vibrations of a plane grid of 20 m2 using a non-

perturbing device. This kind of activator does not interfere

with the integrity of the structure since it does not take the

place of any element.

We synthetised the dynamic control law using the H∞ ro-

bust control method. It showed theoretically a good efficiency

when faced to perturbations in the analytically determined

model. The experiment raised on a 1:1 scale model confirms,

with encouraging results, the positive influence of this control
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Fig. 14. Time response comparison of the free and controlled system under
external dynamic loading

on the behavior of such systems. It revealed robustness

and allowed good performances even with a poorly known

system or when it’s characteristics varied because of an

evolution of the selfstress state or a mass loading change.

This experiment opens large possibilities and we are look

toward other robust approach like sliding mode control. This

quality appears necessary for the development of light and

efficient smart tensegrity structures.
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