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Abstract— This paper proposes a polynomial-time probabilis-
tic approach to solve the observability problem of sampled-data
piecewise affine systems. First, an algebraic characterization
for the system to be observable is derived. Next, based on
the characterization, we propose a randomized algorithm that
can determine with a probabilistic accuracy if the system is
observable or not. Finally, it is shown with some examples, for
which it is hopeless to check the observability in a deterministic
way, that the proposed algorithm is very useful.

I. INTRODUCTION

For the last decade, various topics on analysis and control
synthesis of hybrid dynamical systems have been studied,
while some problems have been negatively solved. In partic-
ular, it has been proven in [1], [2] that the controllability
and observability problems for a class of hybrid systems
are NP-hard or undecidable. This implies that it is hopeless
to derive efficient methods for solving in a deterministic
way these kinds of problems even for the class of relatively
small-dimensional systems with a small number of modes.
Thus an alternative way to deal with them will be to use
a probabilistic approach, which allows us to obtain an
approximate answer with a low computational complexity
even for the NP-hard problems.

Motivated by the above background, this paper proposes a
probabilistic approach to approximately solve the observabil-
ity problem of a class of hybrid systems. More precisely, we
focus on the sampled-data piecewise affine (PWA) systems,
where the switching action is determined at each sampling
time fixed in the digital device [3], and propose a randomized
algorithm that determines with a probabilistic accuracy by
randomly sampling the initial continuous state if this kind
of system is observable or not. It is proven under some
assumptions that the proposed algorithm is a polynomial-time
algorithm with respect to all parameters of the observability
problem such as the observation time period and the dimen-
sion of the continuous state. In contrast, in the deterministic
approaches based on the mixed-integer programming to
the observability problem (e.g., [4], [5]), their computation
amounts increase exponentially with the observation time
period. Thus it is shown by numerical experiments that the
proposed algorithm can give an approximate solution within
a practically short time for the example for which it is
hopeless to check the observability in a deterministic way.
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It is also stressed here that for the observability problem of
hybrid systems, no probabilistic approach has been obtained
so far. In fact, the existing results on this topic, e.g., [6],
[7], [8], [9], [10], in addition to [4], [5], are based on a
deterministic approach. Furthermore, the proposed approach
to the observability problem can not be directly applied to the
case of the discrete-time PWA systems, since the proposed
method fully exploits the good property of the sampled-
data PWA system model, namely, the continuous-time output
in the sampled-data PWA system gives more information
to estimate the initial state compared with the case of the
discrete-time output in the discrete-time PWA system. Note
that this does not necessarily imply that the class of the PWA
systems we focus on is restrictive. Most controlled plants
have the switching decision clock usually implemented in the
digital devices or can provide such a switching mechanism in
some programming. So we stress here that introducing the
sampled-data PWA system model in place of the discrete-
time model as a model of such controlled plants enables us
to determine the observability in a more efficient way.

Notation: let R and N (N+) denote the real number field
and the set of nonnegative (positive) integers, respectively,
and let PC (PC[0,T ]) denote the set of all piecewise contin-
uous functions (on the interval [0, T ] for the positive scalar
T ). We denote by 0n×m, In, and 1n (or for simplicity of
notation, 0, I, and 1) the n × m zero matrix, the n × n
identity matrix, and the n × 1 vector whose all elements
are one. The i-th element of the vector x is expressed as
x(i), the difference set of the sets X1 and X2 is expressed as
X1 −X2, and the cardinality of the finite set I is expressed
as card(I). For the measurable set X and its Hausdorff
dimension dH , we denote by vol(X ) the dH -dimensional
Hausdorff measure, e.g., for X given by a 2-dimensional unit
ball in R3, vol(X ) = π holds, although its (3-dimensional
Lebesgue) measure is zero. Finally, the set S given as the
form S := {x ∈ Rn| Ax + b ≤ 0, Cx + d < 0} is called
here the polyhedron, where A, C and b, d are some matrices
and vectors, respectively.

II. SAMPLED-DATA PWA SYSTEMS

The discrete transition, i.e., the transition of the discrete
state (mode), of hybrid systems is roughly classified into two
groups: the physical discrete transition such as the discontin-
uous phenomena of physical systems (e.g., collision) and the
logical discrete transition such as the logic actions designed
artificially (e.g., emergency measures). Contrary to the phys-
ical transition, the logical transition is mostly embedded in
the digital device, which means that the switching action
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of the discrete state is determined depending upon the state
at each switching time fixed in the digital device. In fact,
the gear switching in an automatic transmission car occurs
according to the clock-driven scheme in the digital device.
We call here such switching the sampled-data switching.

This paper focuses on the class of the hybrid systems
with the sampled-data switching in Fig. 1, which involves, in
addition to PWA dynamics, the digital device that consists of
the sampler, the logic, and the holder. To express the solution
behaviors in a rigorous way, the following model Σ, called
the sampled-data PWA system model [3], is introduced;

Σ :

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ẋ(t) = AI(t)x(t) + BI(t)u(t) + aI(t),

y(t) = CI(t)x(t) + DI(t)u(t),
I(t) = I(tk), ∀t ∈ [tk, tk+1),
x(tk+1) = φ(h, I(tk), x(tk), u[tk,tk+1]),
I(tk+1) = I+ if x(tk+1) ∈ SI+

(1)

where x ∈ Rn is the continuous state, I ∈ I is the discrete
state (it is sometimes called the mode, and the symbol “J”
is also used together with I), I := {0, 1, . . . , M − 1} is the
set of the discrete state values, M ∈ N+ is the number of
the discrete state, u ∈ Rm is the control input, y ∈ Rp is the
output, AI ∈ Rn×n, BI ∈ Rn×m, aI ∈ Rn, CI ∈ Rp×n,
and DI ∈ Rp×m are constant matrices for mode I , h ∈ R
is the switching decision time period, tk ∈ R is the time
defined as tk := kh for k ∈ N (note t0 = 0), which is
called here the switching decision time, and I+ ∈ I is the
value of the discrete state renewed at a switching decision
time. Note here that only at every time tk, it is determined
if the mode is switched or not; thus the mode is not be
changed within each time interval (tk, tk+1). We call (I, x) ∈
I × Rn the hybrid state (or simply the state). In addition,
φ(h, I(tk), x(tk), u[tk,tk+1]) denotes the solution x(tk + h)
of ẋ(t) = AI(tk)x(t) + BI(tk)u(t) + aI(tk) with the state
(I(tk), x(tk)) and the control input u on the time interval
[tk, tk+1], and SI denotes the subregion of the continuous
state assigned to I ∈ I, given by the polyhedron

SI := {x ∈ Rn| SIx + sI ≤ 0, ŜIx + ŝI < 0} (2)

where SI ∈ RqI×n, sI ∈ RqI , ŜI ∈ Rq̂I×n, and ŝI ∈ Rq̂I .
For this subregion, it is assumed that

⋃
I∈I SI = Rn and

SI ∩ SJ = ∅ for every I, J ∈ I such that I �= J . This
assumption guarantees that I is uniquely determined for each
x, in other words, Σ is well-posed.

In this paper, as the first step to develop a probabilistic
algorithm for observability analysis, we focus on the au-
tonomous system (BI = 0, DI = 0 for every I ∈ I). For
simplicity of notation, we often use x(0) = x0 ∈ Rn as
the initial state instead of the hybrid state (I(0), x(0)) =
(I0, x0)∈{(I, x)∈I×Rn|x∈SI}, since the initial discrete
state I0 ∈ I is uniquely determined by each x0. Furthermore,
let x(t, x0) and y(t, x0) denote the continuous state x(t) and
the output y(t) under the initial state x(0) = x0, respectively.

III. CHARACTERIZATION OF OBSERVABILITY

The following observability notion is considered.

LogicSampler Holder

u(t)

I(t)

I(tk)x(tk)

x(t)
System with

PWA Dynamics

Digital Device

y(t)

Fig. 1. Hybrid system with PWA dynamics and sampled-data switching.

Definition 1: For Σ, suppose that the observation time
period T ∈ {t1, t2, . . . } and the set X0 ⊆ Rn of the initial
continuous state are given. Then Σ is said to be (T, X0)-
observable if for every x0 ∈ X0, there does not exist an
x̃0 ∈ X0 satisfying x0 �= x̃0 and y(t, x0) = y(t, x̃0) for every
t ∈ [0, T ] (i.e., the initial state can be uniquely determined
by the output y on the time interval [0, T ]).

Note that the observation time period T and the set X0 of
the initial state are explicitly specified. Such a definition will
be useful in checking the feasibility of the state estimation
with the observation time period fixed. Note also that if Σ
is (T,X0)-observable, then Σ is (T + τ,X0)-observable for
every τ ∈ [0,∞).

Now, let us derive an observability condition. Using x̄ ∈
Rn+1, ĀI ∈ R(n+1)×(n+1), and C̄I ∈ Rp×(n+1) defined as

x̄ :=
[

x
1

]
, ĀI :=

[
AI aI

0 0

]
, C̄I := [CI 0],

for simplicity of notation, we rewrite the first and second
equations in (1) as

˙̄x(t) = ĀI(t)x̄(t), y(t) = C̄I(t)x̄(t), (3)

respectively. For the number f ∈N+ of the switching deci-
sion time on [0, T ) (i.e., T =tf ), let I :=[I0 I1 · · · If−1]�∈
If be a sequence of the mode (i.e., mode sequence) for
I0, I1, . . . , If−1 ∈ I (J := [J0 J1 · · ·Jf−1]� is also used
for the mode sequence). Let SI be the polyhedron defined as
SI := SI0 × SI1 × · · · × SIf−1 , and then the set of x0 ∈ X0

satisfying [I(t0) I(t1) · · · I(tf−1)]� = I for the initial state
x(0) = x0 is expressed by X I

0(T,X0) (or simply X I
0), i.e.,

X I
0(T,X0) := SI0 ∩ X0 for f = 1 and

X I
0(T,X0) :=⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x0∈X0

∣∣∣∣∣∣∣∣∣

⎡
⎢⎢⎢⎣

[In 0]x̄0

[In 0]eĀI0hx̄0

...

[In 0]eĀIf−2h · · · eĀI1heĀI0hx̄0

⎤
⎥⎥⎥⎦∈ SI

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(4)

for f ≥ 2, where x̄0 := [x�
0 1]� and note the relation x =

[In 0]x̄. It is remarked here that X I
0 is a polyhedron if SI∩X0

is a polyhedron for every I ∈ I, and that
⋃

I∈If X I
0 = X0

and X I
0 ∩ X J

0 = ∅ hold for every I, J ∈ If (I �= J) because
the solution x(t, x0) is uniquely determined for every x0 ∈
Rn. Then we obtain the following necessary and sufficient
condition for the two outputs y(t, x0) and y(t, x̃0), which are
generated from the initial states x(0) = x0 and x(0) = x̃0

(x0, x̃0 ∈ X0), to be the same on the time interval [0, T ].
Lemma 1: For Σ, suppose that T ∈ {t1, t2, . . . }, X0 ⊆

Rn, I, J ∈ If satisfying X I
0 �= ∅ and X J

0 �= ∅, x0 ∈ X I
0,
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and x̃0 ∈ X J

0 are given. Then the following statements are
equivalent.
(i) y(t, x0) = y(t, x̃0) for every t ∈ [0, T ].
(ii) ∆y(I, x0, J, x̃0) = 0 for

∆y(I, x0, J, x̃0) :=

⎡
⎢⎢⎣

x0

1
x̃0

1

⎤
⎥⎥⎦
�

GIJ

⎡
⎢⎢⎣

x0

1
x̃0

1

⎤
⎥⎥⎦ , (5)

GIJ := GI0J0 +
f−1∑
k=1

EIJ(k)�GIkJk
EIJ(k),

GIJ :=

[ ∫ h

0
eĀ�

I tC̄�
I C̄Ie

ĀItdt −∫ h

0
eĀ�

I tC̄�
I C̄JeĀJ tdt

−∫ h

0
eĀ�

J tC̄�
J C̄Ie

ĀItdt
∫ h

0
eĀ�

J tC̄�
J C̄JeĀJ tdt

]
,

EIJ(k) :=[
eĀIk−1h · · · eĀI1heĀI0h 0

0 eĀJk−1h · · · eĀJ1heĀJ0h

]
.

Proof: Statement (i) holds if and only if
∫ T

0
(y(t, x0)−

y(t, x̃0))�(y(t, x0)−y(t, x̃0))dt = 0. In addition, y(t, x0) =
C̄Ik

eĀIk
tx̄0 for t ∈ [tk, tk+1), and thus

∫ T

0
(y(t, x0) −

y(t, x̃0))�(y(t, x0) − y(t, x̃0))dt = ∆y(I, x0, J, x̃0). These
facts imply that (i) and (ii) are equivalent.

From Lemma 1, for given T ∈ {t1, t2, . . . }, X0 ⊆ Rn,
I ∈ If satisfying X I

0 �= ∅, J ∈ If , and x0 ∈ X I
0 , the

set of the initial state x̃0 ∈ X J

0 satisfying x0 �= x̃0 and
y(t, x0) = y(t, x̃0) for every t ∈ [0, T ] is expressed as

X̃ IJ

uob(T,X0, x0) :=

{x̃0 ∈ X J

0 |x0 �= x̃0, ∆y(I, x0, J, x̃0) = 0}, (6)

and the set of all x̃0 ∈ X0 satisfying the same condition
(x0 �= x̃0 and y(t, x0) = y(t, x̃0) for every t ∈ [0, T ]) is
denoted as

X̃ I
uob(T,X0, x0) :=

⋃
J∈If

X̃ IJ

uob(T,X0, x0). (7)

Thus the set of the initial state x0 ∈ X0 for which there
does not exist an x̃0 ∈ X0 satisfying x0 �= x̃0 and y(t, x0) =
y(t, x̃0) for every t ∈ [0, T ] is given by

Xob(T,X0) :=
⋃

I∈If

{x0∈X I
0 | X̃ I

uob(T,X0, x0)=∅}. (8)

Based on the above notation, the following result is
straightforwardly obtained.

Theorem 1: For Σ, suppose that T ∈ {t1, t2, . . . } and
X0 ⊆ Rn are given. Then Σ is (T,X0)-observable if and
only if the relation Xob(T,X0) = X0 holds.

The condition Xob(T,X0) = X0 can be further checked
by solving optimization problems as follows.

Lemma 2: For Σ, suppose that T ∈ {t1, t2, . . . } and
X0 ⊆ Rn are given, and assume

(A1) SI ∩ X0 is a polyhedron for every I ∈ I.

Then the following statements hold.
(i) The relation Xob(T,X0) = X0 holds if and only if for

every I, J ∈ If , the optimization problem OP 1(I, J) :

min
(x0,x̃0,ε1)∈R2n×[−1,∞)

ε1,

subject to

⎧⎨
⎩

WIx0 + wI ≤ 0, ŴIx0 + ŵI ≤ ε11,

WJx̃0 + wJ ≤ 0, ŴJx̃0 + ŵJ ≤ ε11,
x0 �= x̃0, ∆y(I, x0, J, x̃0) = 0

is infeasible or its optimal value, denoted by ε∗1, is nonneg-
ative, where ε1 is a scalar variable, and WI, ŴI and wI, ŵI

are matrices and vectors, respectively, satisfying

X I
0 = {x0 ∈ X0 |WIx0 + wI ≤ 0, ŴIx0 + ŵI < 0}, (9)

and WJ, ŴJ, wJ, ŵJ are defined in a similar way (note that
X I

0 can be expressed as (9) under (A1)).
(ii) The optimization problem OP 1(I, J) corresponds to a
convex quadratic programming (QP) problem for I �= J and
to a mixed-integer quadratic programming (MIQP) problem
for I = J.

Lemma 2 is obtained from (6)–(8) and the fact that in
OP 1(I, J), the constraint x0 �= x̃0 for I �= J is redundant
(X I

0 ∩ X J

0 = ∅ if I �= J) and that for I = J can be
expressed by mixed-integer linear inequalities with 2n 0-
1 variables. Statement (i) implies that if (A1) holds, the
condition Xob(T,X0) = X0 can be checked by solving the
optimization problem OP 1(I, J) for every I, J ∈ If , and (ii)
implies that OP 1(I, J) corresponds to a convex QP problem
or an MIQP problem. Thus we can verify the (T,X0)-
observability based on the optimization problem OP 1(I, J).

However, such a deterministic approach will not be prac-
tical from the viewpoint of computational complexity. More
precisely, as T (i.e., f ) and/or n are taken larger, the
computation amount becomes exponentially large because∑Mf

i=1 Mf − (i − 1) (very large) optimization problems (in-
cluding some MIQP problems with 2n 0-1 integer variables)
have to be solved in the worst case. Note also that OP 1(J, I)
is a kind of dual problem of OP 1(I, J); so we do not have
to solve the M2f optimization problems in practice.

IV. PROBABILISTIC OBSERVABILITY ANALYSIS

In this section, we propose a polynomial-time probabilistic
approach to the (T,X0)-observability analysis, which can
determine if Σ is (T,X0)-observable with a probabilistic
accuracy or Σ is not (T,X0)-observable. The key idea is
to successively check the local observability (for given x0 ∈
X0, whether there exists an x̃0 ∈ X0 satisfying x0 �= x̃0

and y(t, x0) = y(t, x̃0) for every t ∈ [0, T ], i.e., whether
x0 �∈ Xob(T,X0) or not) by randomly sampling the initial
continuous state x0 ∈ X0.

In the following subsections, for simplicity of notation,
the symbols X̃ IJ

uob(x0), X̃ I
uob(x0), and Xob are often used

instead of X̃ IJ

uob(T,X0, x0), X̃ I
uob(T,X0, x0), and Xob(T,X0),

respectively.

A. Main Algorithm for Probabilistic Observability Analysis

Let us consider the following algorithm, called Algo-
rithm POA, based on the random sampling of the initial
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continuous state x0 ∈ X0.

0: Given T ∈ {t1, t2, . . . }, X0 ⊆ Rn, and N ∈ N;
1: i := 1;
2: while i ≤ N

2.1: Generate an i.i.d. random vector xi
0∈X0;

2.2: If xi
0 /∈ Xob, then Halt: return “N”;

2.3: i := i + 1;
3: Halt: return “Yp”;

Algorithm POA repeatedly checks whether an i.i.d. ran-
dom vector xi

0 ∈ X0 satisfies the condition xi
0 /∈ Xob or

not; if xi
0 /∈ Xob holds for some i ∈ {1, 2, . . . , N}, the

algorithm outputs the symbol “N” (line 2.2); otherwise, that
is, if xi

0 ∈ Xob holds for all i ∈ {1, 2, . . . , N}, it outputs the
symbol “Y∗” (line 3).

Algorithm POA provides a practical method to approxi-
mately solve the (T,X0)-observability problem as follows.

Let x0 be a random vector with a uniform probability
density function on X0, and under assumption

(A2) The set X0 is bounded and measurable,

we formally define

Prob{x0 ∈ Xob} :=
vol(Xob)
vol(X0)

. (10)

Note that Xob ⊆ X0 and Prob{x0 ∈ X0 − Xob} =
1 − Prob{x0 ∈ Xob} hold. Then the following result is
straightforwardly obtained from the result in [11], [12], [13].

Lemma 3: For Σ, suppose that T ∈ {t1, t2, . . . } and
X0 ⊆ Rn satisfying (A2) are given. In addition, for Al-
gorithm POA, suppose that N ∈ N is given as the smallest
integer satisfying

N ≥ ln 1
δ

ln 1
1−ε

(11)

for arbitrarily given ε ∈ (0, 1) and δ ∈ (0, 1). Then the
following statements hold.
(i) If Algorithm POA outputs “Y∗”, then the following
relation holds:

Prob{Prob{x0 ∈ X0 −Xob} ≤ ε} ≥ 1 − δ. (12)

(ii) If Algorithm POA outputs “N”, then Σ is not (T,X0)-
observable.

Lemma 3 (i) implies that if Algorithm POA outputs “Y∗”,
vol(X0−Xob)/ vol(X0) ≤ ε holds with the probability more
than or equal to 1 − δ. Thus if ε and δ are sufficiently
small, it is guaranteed with sufficiently high probability 1−δ
that for almost all x0 ∈ X0 (i.e., for all x0 ∈ X0 except
for elements in a subset of X0 whose volume is less than
ε vol(X0)), there does not exist an x̃0 ∈ X0 satisfying
x0 �= x̃0 and y(t, x0) = y(t, x̃0) for every t ∈ [0, T ]. On the
other hand, (ii) implies that if Algorithm POA outputs “N”,
then it is verified that Σ is not (T,X0)-observable. In fact,
if there exists an i ∈ {1, 2, . . . , N} satisfying xi

0 /∈ Xob,
then Xob �= X0 holds. In this way, for given ε and δ as
accuracy parameters, Algorithm POA with N satisfying (11)
can determine if Σ is (T,X0)-observable in the sense of (12)
or not (T,X0)-observable. Note here that the number N of

samples is bounded by a polynomial function of ε and δ (see
(11)).

However, Algorithm POA may not terminate in a practi-
cally short time due to the following drawback. From (6)–(8),
it follows that for I ∈ If satisfying xi

0 ∈ X I
0 , xi

0 /∈ Xob holds
if and only if there exists a J ∈ If such that X̃ IJ

uob(x
i
0) �= ∅,

and that the condition X̃ IJ

uob(x
i
0) �= ∅ holds if and only if the

optimization problem OP 2(I, xi
0, J) :

min
(x̃0,ε2)∈Rn×[−1,∞)

ε2,

subject to
{

WJx̃0 + wJ ≤ 0, ŴJx̃0 + ŵJ ≤ ε21,
xi

0 �= x̃0, ∆y(I, xi
0, J, x̃0) = 0

is feasible and its optimal value, denoted by ε∗2, is negative,
where ε2 is a scalar variable, and WJ, ŴJ, wJ, ŵJ are
defined in a similar way to the case of OP 1(I, J). Note that
OP 2(I, xi

0, J) also corresponds to a convex QP problem for
I �= J and to an MIQP problem with 2n 0-1 integer variables
for I = J (it is proven in a similar way to Lemma 2 (ii)).
Thus the condition xi

0 /∈ Xob is verified by Mf times solving
OP 2(I, xi

0, J) in the worst case (note T = tf ). This implies
that the computation amount for verifying the condition
xi

0 /∈ Xob becomes, in general, exponentially larger with T
and n. Thus by focusing on a limited class of the systems, we
consider here an efficient algorithm for verifying xi

0 /∈ Xob.

B. Polynomial-Time Algorithm for Verifying x0 �∈Xob

We first give the following result.
Lemma 4: For Σ, suppose that X0 ⊆ Rn, I0, J0 ∈ I,

and x0 ∈ X I0
0 (t1,X0) are given. Then if

(A3) (CI , AI) is observable for every I ∈ I,
the following statements hold (note that X I0

0 (t1,X0) =
SI0∩X0 holds, and ∆y(I0, x0, J0, x̃0) and X̃ I0J0

uob (t1,X0, x0)
are defined in (5) and (6) for T := t1, I := I0, J := J0).
(i) X̃ I0J0

uob (t1,X0, x0) is a finite set satisfying
card(X̃ I0J0

uob (t1,X0, x0)) ≤ 1.
(ii) Let x̃∗

0(I0, x0, J0) := −1
2G−1

1 G�
2 [x̄�

0 1]� for the
nonsingular matrix G1 ∈ Rn×n and the matrices
G2 ∈ R(n+2)×n, G3 ∈ R(n+2)×(n+2) satisfying

∆y(I0, x0, J0, x̃0)= x̃�
0 G1x̃0+

[
x̄0

1

]�
G2x̃0+

[
x̄0

1

]�
G3

[
x̄0

1

]

for every x̃0 ∈ Rn. Then if x̃∗
0(I0, x0, J0) ∈ X J0

0 (t1,X0),
x0 �= x̃∗

0(I0, x0, J0), and ∆y(I0, x0, J0, x̃
∗
0(I0, x0, J0)) = 0,

the relation X̃ I0J0
uob (t1,X0, x0) = {x̃∗

0(I0, x0, J0)} holds;
otherwise X̃ I0J0

uob (t1,X0, x0) = ∅ holds.
Proof: (i) The behavior of Σ on the time interval [0, t1)

is the same as the behavior of the so-called affine systems.
Thus if there exists an x̃0 ∈ X J0

0 (t1,X0) satisfying x0 �= x̃0

and y(t, x0) = y(t, x̃0) for every t ∈ [0, t1], then it is unique
under (A3). This implies that X̃ I0J0

uob (t1,X0, x0) is a finite set
satisfying card(X̃ I0J0

uob (t1,X0, x0)) ≤ 1.
(ii) This is proven from (i), (6), and the fact that
x̃∗

0(I0, x0, J0) is an optimal solution to the problem
minx̃0∈Rn ∆y(I0, x0, J0, x̃0) (for given I0, x0, and J0).

Lemma 4 provides useful properties for checking the
condition x0 �∈ Xob under (A3) as follows.
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For fixed x0 ∈ X0, the discrete state I0 ∈ I satisfying
x0 ∈ X I0

0 (t1,X0) and the mode sequence I ∈ If satisfying
x0 ∈ X I

0(T,X0) are uniquely determined. Then for these x0,
I0, and I, the condition x0 �∈ Xob holds if and only if

(C2) There exists an x̃0 ∈ X̃ I0
uob(t1,X0, x0) satisfying

x̃0 ∈ X̃ I
uob(T,X0, x0). (13)

This is obtained from the facts that x0 �∈ Xob holds
if and only if X̃ I

uob(T,X0, x0) �= ∅ (see (8)), and that
X̃ I

uob(T,X0, x0) ⊆ X̃ I0
uob(t1,X0, x0) (see Definition 1). Thus

by checking (C2), the condition x0 �∈ Xob is verified. Then
Lemma 4 (i) implies that under (A3), X̃ I0

uob(t1,X0, x0) is a
finite set satisfying card(X̃ I0

uob(t1,X0, x0)) ≤ M − 1 (note
(7) and X̃ I0I0

uob (t1,X0, x0) = ∅); thus the condition (C2) is
verified by checking whether (13) holds or not for at most
M − 1 initial states x̃0 ∈ X̃ I0

uob(t1,X0, x0). Note that if (A3)
does not hold, X̃ I0

uob(t1,X0, x0) is not in general a finite set;
so in such a case, it is hard to check (C2) in a polynomial
time with respect to T and n. On the other hand, Lemma 4
(ii) implies that, under (A3), the set X̃ I0J0

uob (t1,X0, x0) is
easily calculated, and thus X̃ I0

uob(t1,X0, x0) can be obtained.
Therefore, by noting from (6) and (7) that for x0 ∈

X0, I0 ∈ I satisfying x0 ∈ X I0
0 (t1,X0), and x̃0 ∈

X̃ I0
uob(t1,X0, x0) (note that x0 �= x̃0 holds), (13) holds if

and only if

(C3) ∆y(I, x0, J, x̃0) = 0 holds for J ∈ If satisfying
x̃0 ∈ X J

0 (T,X0),
the following algorithm, called Algorithm L, for checking
x0 �∈ Xob is obtained under (A3).

0: Given T ∈ {t1, t2, . . . }, X0 ⊆ Rn, and x0 ∈ X0;
1: Let I0 and I be the elements of I and If

satisfying x0 ∈ X I0
0 (t1,X0) and x0 ∈ X I

0(T,X0);
2: Calculate X̃ I0J0

uob (t1,X0, x0) for every J0 ∈ I;
3: X̃ I0

uob(t1,X0, x0) :=
⋃

J0∈I X̃ I0J0
uob (t1,X0, x0);

4: If there exists an x̃0 ∈ X̃ I0
uob(t1,X0, x0)

satisfying (C3) (i.e., (C2) holds)
then Halt: return “x0 /∈ Xob”;
else Halt: return “x0 ∈ Xob”;

In Algorithm L, the condition x0 �∈ Xob is verified
based on (C2), where X̃ I0J0

uob (t1,X0, x0) is obtained by
Lemma 4 (ii) (line 2), and (C2) is verified by checking if
there exists an x̃0 ∈ X̃ I0

uob(t1,X0, x0) satisfying (C3) or not
(line 4). Note that I ∈ If satisfying x0 ∈ X I

0(T,X0) can be
uniquely obtained by calculating the solution of Σ for the
initial state x(0) = x0 (lines 1 and 4).

Finally, it is shown that under (A2) and (A3), the proposed
probabilistic observability analysis is efficiently executed by
Algorithm POA with Algorithm L.

Theorem 2: For Σ, suppose that T ∈ {t1, t2, . . . } and
X0 ⊆ Rn are given, and assume (A2) and (A3). Then
Algorithm POA with Algorithm L is a polynomial-time
algorithm with respect to T , n, ε, and δ.

Proof: From Lemma 4, it follows that M − 1 sets
(X̃ I0J0

uob (t1,X0, x0)) are derived in line 2 and (C3) is checked
at most M − 1 times in line 4. In addition, the computation
amounts for obtaining X̃ I0J0

uob (t1,X0, x0) and for checking

1
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x(1)
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S2
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S5

  5

1

0
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{
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∣∣∣∣
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]
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]
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}
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}
,
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⎡
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0 −1
−1 1

⎤
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⎡
⎣ 1
−5
0

⎤
⎦≤ 0

⎫⎬
⎭ ,

S4 :=
{

x ∈ R2

∣∣∣∣
[ −1 0

1 −1

]
x +

[
1
0

]
< 0

}
,

S5 :=
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⎩x ∈ R2

∣∣∣∣∣∣
[

1 0
0 −1

]
x +

[−1
1

]
≤ 0

[−1 0 ] x − 5 < 0

⎫⎬
⎭ .

Fig. 2. Subregions SI in the example.

TABLE I

RESULTS OF DETERMINISTIC OBSERVABILITY ANALYSIS.

T 0.2 0.4 0.6 0.8 1.0

(T,X0)-observability N N N N ?
Computation time

[sec] 0.3 5.9 245.1 11823.2 —

TABLE II

RESULTS OF PROBABILISTIC OBSERVABILITY ANALYSIS.

T 0.2 0.4 0.6 0.8

(T,X0)-observability N N N N

Computation time
[sec]

max.
mean
min.

0.08
0.05
0.03

0.08
0.06
0.05

0.13
0.09
0.06

0.24
0.11
0.06

T 1.0 1.5 2.0 2.5

(T,X0)-observability N N N Y∗

Computation time
[sec]

max.
mean
min.

0.23
0.16
0.09

0.22
0.18
0.09

0.83
0.36
0.14

441.2
435.7
432.8

(C3) are bounded by a polynomial function of T and n.
Hence, by Algorithm L, the condition x0 �∈ Xob is checked
in a polynomial time with respect to T and n. On the other
hand, as shown in Section IV-A, the number N of samples
in Algorithm POA is bounded by a polynomial function of ε
and δ. These implies that Algorithm POA with Algorithm L
under (A2) and (A3) is a polynomial-time algorithm with
respect to T , n, ε, and δ.

Remark 1: It can be also proven that if X0 is a polyhe-
dron, Algorithm POA with Algorithm L (under (A2) and
(A3)) is a polynomial-time algorithm with respect to the
other parameters of the observability problem: the number
of the inequalities characterizing X0, and M , p, qI , q̂I .

C. Example

Consider Σ with n = 2, M = 6, and h = 0.1, given by

(A0, a0) :=
([−4 0

0 −1

]
,

[
0
0

])
, (A1, a1) :=

([−2 1
0 −2

]
,

[−1
−1

])
,

(A2, a2) :=
([−1 0

0 −4

]
,

[
0
0

])
, (A3, a3) :=

([−1 0
0 3

]
,

[
0
0

])
,

(A4, a4) :=
([−2 0

−1 −0.5

]
,

[
0
1

])
, (A5, a5) :=

([
3 0
0 −1

]
,

[
0
0

])
,

CI := [1 1] for every I ∈ I. The subregions of the
continuous state assigned to each value of the discrete state
are shown in Fig. 2. Then for several T ∈ {0.2, 0.4, . . . } and
X0 = [−10, 10]2, let us check the (T,X0)-observability by
the deterministic method based on Theorem 1 and Lemma 2,
and the proposed probabilistic method. Note that for this X0
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TABLE III

COMPARISON BETWEEN PROBABILISTIC OBSERVABILITY AND CONTROLLABILITY ANALYSES.

Probabilistic Observability Analysis Probabilistic Controllability Analysis
without (A3) with (A3) in [14]

Checked condition for each sample xi
0 xi

0 /∈ Xob xi
0 /∈ Xc

Computation amount
for N i.i.d. samples

(worst case)

N(Mf −1+22n) times
solving QP problem
(with n + 1 variables)

N(M − 1) times computation
of the set X̃ I0J0

uob (t1,X0, xi
0)

and checking (C3)
(simple algebraic manipulation)

NMf−1 times
solving LP problem

(with n(f−1)+1 variables)

Increase of
computation amount

w.r.t. T (f ) Exponential Polynomial Exponential
w.r.t. n Exponential Polynomial Polynomial

and the system, assumptions (A1)–(A3) hold; so Lemma 2
and Algorithm POA with Algorithm L can be applied.

The numerical results based on the deterministic method
are given in Table I, where we used MATLAB on the com-
puter with the Pentium M 1.2GHz processor and the 1GB
memory, and the deterministic method based on Theorem 1
and Lemma 2 is used for roughly estimating the worst case
computation amount of the (T,X0)-observability analysis
(although there may be some techniques for decreasing the
computation amount). The symbol “N” expresses that Σ is
not (T,X0)-observable, and the symbol “?” implies that no
answer can be obtained within 24 hours. Table I shows that
only for sufficiently small T (T ≤ 0.8), the above (T,X0)-
observability problem can be solved in a practically short
time. Similar results were obtained for other examples.

Next, let us apply the proposed probabilistic method. We
set ε := 10−3 and δ := 10−3, so N := 6905 by (11).
Under such a situation, Algorithm POA with Algorithm L
can determine if Σ is (T,X0)-observable in the sense that
Prob{x0∈X0−Xob}≤0.1[%] holds with a probability more
than or equal to 99.9 [%], or Σ is not (T,X0)-observable.

The numerical results are shown in Table II, where the
symbols “Y∗” and “N” express the output of Algorithm POA.
Each result is based on ten trials, where the algorithm
answered the same result in every trial, and the computation
time expresses the maximum value, the mean, and the
minimum value of the trials. It turns from Table II that Σ
is (2.5,X0)-observable in the sense of (12), and Σ is not
(T,X0)-observable for T ≤ 2.0. Then, in order to know
the minimum observation time period for estimating the
initial state, we further checked the (T,X0)-observability for
T = 2.4, and then it is verified that Σ is not (2.4,X0)-
observable. So it follows that the observation time interval
T has to be at least 2.5 for estimating the initial state. In
this way, the (T,X0)-observability problem for which it is
hopeless to check in a deterministic way can be solved within
a practically short time by the proposed methods.

V. DISCUSSIONS

This section gives some discussions on the gaps between
the probabilistic observability analysis (POA) and the prob-
abilistic controllability analysis (PCA) proposed in [14].

The controllability problem, which has been addressed
in [14], is to determine if for each x0 ∈ X0 (the initial
continuous state set), there exists a u ∈ PCm

[0,T ] satisfying
x(T ) = 0 under the initial state x(0) = x0. Then for
a probabilistic approach to this problem, it is essential to

determine if xi
0 /∈ Xc for randomly sampled xi

0 ∈ X0, where
Xc denotes the set of the initial state in X0 such that there
exists a u ∈ PCm

[0,T ] satisfying x(T ) = 0. We can show that
the condition xi

0 /∈ Xc is checked by solving at most Mf−1

linear programming (LP) problems for each xi
0, where the

dimension of variables is n(f − 1) + 1 (see [14]) and the
number of constraints is bounded by a polynomial function
of T and n. This fact leads to a polynomial-time algorithm
with n, but exponential-time algorithm with T (i.e., f ).

In the POA, in a similar way, it is essential to determine
if xi

0 �∈ Xob for randomly sampled xi
0 ∈ X0. However, as

shown in Section IV-A, the condition xi
0 �∈ Xob may not

be checked by a polynomial-time algorithm with T and n.
This is mainly because we have to solve the MIQP problem
with 2n 0-1 variables for proving if a sampled xi

0 ∈ X0 is
a unique initial state satisfying some conditions in the POA,
while we only have to check if for a sampled xi

0 ∈ X0, there
exists a control input satisfying some conditions in the PCA.

In this way, these computational complexities are essen-
tially different, in other words, the computational complexity
of the POA is in general higher than that of the PCA.
However, we have shown in Section IV-B that Algorithm
POA is a polynomial-time algorithm with respect to T and
n if Algorithm L is used (with (A3)). Table III condenses
the above discussions.
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