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Abstract— In this paper we propose an enhanced local control
strategy for the control of discrete-time piecewise affine systems
on full-dimensional polytopes.

The control strategy is divided into a local control and a
supervisory control problem. The local control problem is to
reach and cross one selected facet of a polytope ensuring that
the next sample of the time-discrete trajectory is picked up in
the adjacent polytope.

The procedure is based on conditions, given as inequalities,
for the discrete-time gradient of the system, evaluated in the
vertices of the polytopes. Solving an optimization problem
with respect to the inequality conditions, a performance index
is minimized. The performance index represents a minimal
retention period of the trajectory in the polytope or the minimal
quadratic sum of the input signal. The control law is then
obtained by a simple matrix inversion.

The supervisory control problem is to find a suitable combi-
nation of polytopes and local control strategies that transfers
the trajectory to the polytope that contains the operating point.

I. INTRODUCTION

The piecewise linear approach for nonlinear systems was
proposed in [1]. This approach has been generalized and
finally led to hybrid systems theory. In [2] the hybrid
phenomena were formulated. After this milestone a lot of
research has been done, especially in modeling of hybrid
systems. The analysis of this class of systems and the syn-
thesis of controllers are still sophisticated, even nowadays.

There are two different trends in literature for the design
of controllers for piecewise affine systems that represent a
sub class of hybrid systems. In [3] and [4] continuous-time
controllers and in [5], [6] and [7] discrete-time controllers
are designed.

Discrete-time affine systems can be obtained from mea-
surements of technical processes by identification of the
hybrid system [8], [9] or by theoretical modeling [10],
[11]. In the theoretical modeling approach, given contin-
uous piecewise affine models are discretized, calculating
the discrete-time affine model in each domain from the
respective continuous model.

As already presented in [12], the control strategy consists
of a local part and a supervisory part. In this paper, a new
approach for the local control strategy for the control of
discrete-time piecewise affine systems will be presented.

In section II some basic notions as polytope, facet, affine
system, and affine control law are given. Using these terms,
the problem of dynamical systems restricted to a polytope is
presented. The simplex as a special polytope is introduced.
The aim of the local controller design is formulated.

Sufficient conditions for the discrete-time gradient in the
vertices of the polytope are given in section III.

In section IV, both, the local control part and the super-
visory control part of the strategy, are presented.

At the beginning, the considered state space is partitioned
into a simplex structure. Each simplex has a corresponding
vertex in a graph.

The local control strategy completes the graph by adding
selected edges. After the local control is explored, the
completed graph structure is used for supervisory control.
The task of the supervisory control is to find an optimal path
through this graph structure. The local and the supervisory
control strategy are calculated off-line.

The online effort is to determine the active simplex and
therefore, the active control law, solving a linear search
problem. This approach is able to track very fast dynamics
because of the reduced on-line effort.

Finally, the strategy is applied to a two-tank system
in section V. The two-tank system can be modeled as a
piecewise affine system with discrete and continuous input
signals. A performance index will determine which piecewise
affine dynamic assigned to a combination of discrete inputs
is the best. The plant in the example is taken from [12]. The
start-state vector and the end-state vector are equal, too. A
comparison with the results in [12] clarifies the advantages
of the new method in a short discussion.

The contribution is finished with a conclusion in sec-
tion VI.

II. PROBLEM STATEMENT

The considered state space x ∈ RN , N ∈ N is bounded
on the set Θ. Assuming there are M points v1, ..., vM , with
M ≥ N + 1, in state space RN , such that there exists no
hyperplane of RN , containing all these M points.

The full-dimensional polytope P is defined as the con-
vex hull of v1, ..., vM . If a point vi, i = 1, ...,M
cannot be written as convex combination of the points
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v1, ..., vi−1, vi+1, ..., vM , it is called a vertex of the polytope
P .

The polytope is completely characterized by its set of
vertices. A full-dimensional polytope with M = N + 1 is
called a full-dimensional simplex.

The intersection of a finite number of half spaces can also
describe a polytope. If an integer K ≥ N + 1, non-zero
vectors n1, ..., nK ∈ RN , and scalars α1, ..., αK ∈ R exists,
such that

P = {x ∈ RN | ∀i = 1, ..., K : nT
i x ≤ αi} (1)

is valid, then (1) is the implicit description of a polytope.
The intersection of a full-dimensional polytope P with one

of its supporting hyperplanes

Fi = {x ∈ RN |nT
i x = αi} ∩ P (2)

is called a facet Fi of P , if the dimension of the intersection
is equal to N − 1. By convention the vector ni, that is the
normal vector of the facet Fi, is of unit length and points
out of the polytope.

In [4] a method is presented to partition full-dimensional
polytopes into full-dimensional simplices by using e.g. the
Delaunay-triangulation. Therefore, in the sequel, the full-
dimensional simplex P in RN with N + 1 facets is used.
Using numbered vertices of a simplex, the facets can be
named with the number of that vertex which is not a vertex
of the facet.

On each full-dimensional simplex Pi a discrete-time affine
system

xk+1 = Φi xk + Hi uk + φ
i

(3)

is considered, with Φi ∈ RN×N , Hi ∈ RN×m and φ
i
∈ RN .

The state x ∈ RN is assumed to be contained in the simplex
Pi. The input signal u takes values from the bounded set
U ⊂ Rm of continuous inputs.

The inside P i of the polytope P is P i = P \ ∂P where
∂P denotes the hull of the polytope P . The union of the
simplices P i

i with P i
i ∩ P i

j = ∅ ∀i �= j forms the subset
Θ =

⋃
Pi =

⋃
(P i

i ∪ ∂Pi) of the state space within which
the piecewise affine system is definded.

The aim of the local controller design is to find discrete-
time affine control laws

uk = −Ri xk + u0,i (4)

defined on the simplex Pi, such that the trajectories of the
controlled system

xk+1 = (Φi − Hi Ri)xk + (φ
i
+ Hi u0,i), (5)

starting at any possible point in Pi

• will stay in the simplex Pi (details in [12]), or
• enter one of the N + 1 adjacent simplices through one

specific facet of the simplex (focused in this paper).

To obtain an unique solution, if the trajectory hits the
common facet Fi, while leaving simplex Pi and entering
simplex Pj , the dynamic of Pj is assumed to be dominant.
The controlled system in equation (5) is with (Φi+Hi Ri) =

ΦR,i and (φ
i
+ Hi u0,i) = φ

R,i
equal to an autonomous

discrete-time affine system

xk+1 = ΦR,i xk + φ
R,i

. (6)

If there are discrete inputs uD to the system, uD is
assumed to be an element of a bounded (integer) set, see
details in [3] or section V, a finite number of discrete-
time piecewise affine systems can be determined for each
possible combination of the elements of the finite discrete
input vector uD. Let each combination be numbered serially
in the variable xD.

For each combination xD the same continuous state space
Θ with the same partitioning into simplices is considered.
There are max(xD) dynamics defined for one simplex.

If the trajectory enters a simplex or is within the start
simplex, this is a necessary condition that the discrete input
uD is changed by the supervisory control strategy.

In the next section, sufficient conditions for feedback
control are formulated.

III. SUFFICIENT CONDITIONS FOR FEEDBACK CONTROL

TO A FACET

In [4] a method was introduced for continuous-time sys-
tems that uses conditions of the gradient ẋ of the system.

The gradient is evaluated at the vertices of a simplex by
projecting the gradient on the normal vectors of the bounding
hyperplanes. This results into a linear inequality system for
the input u(vi) in these vertices vi.

Fig. 1. Admissible range for the gradient vector

First, the continuous inequalities are presented. The in-
dex e represents the number of the facet Fe where the
trajectories should leave the simplex. The vertex ve is the
only vertex that is not part of the facet Fe.

For illustrating the following equations, a two dimensional
problem is given in figure 1, where e = 3.
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∀ vi ∈ V \ {ve} : nT
Fe

ẋ(vi, u(vi)) > 0 (7a)

∀ vi ∈ V \ {ve} : ∀Fj ∈ F \ {Fe, Fi} :
nT

Fj
ẋ(vi, u(vi)) ≤ 0 (7b)

∀Fj ∈ F \ {Fe} : nT
Fj

ẋ(ve, u(ve)) ≤ 0 (7c)
n+1∑
j=1
j �=e

nT
Fj

ẋ(ve, u(ve)) < 0 (7d)

The first system of inequalities (7a) requires that the
projection of the gradient on the normal vector of the facet
Fe in the vertices point out of the simplex P .

The second system of inequalities (7b) requires that the
projection of the gradient on the normal vector of all other
facets point into simplex P . E.g. in vertex v1 in figure 1,
the projection of the gradient on the normal vector of F2

has to point into the simplex P . The admissible range of
the directions of the gradients in the vertices are marked as
dotted lines.

The third condition (7c) forces the gradient in vertex ve

to point into the simplex P . The last condition (7d) forces
the gradient not to vanish in the vertex ve.

In the next step these four conditions (7a-7d) from [4] are
modified for discrete-time systems.

The gradient ẋ has to be expressed as a difference
xk+1 − xk. With xk+1 = Φ xk + H uk + φ the expressions
above modify to the following equations, In is the unity
matrix of the dimension n:

∀vi∈V \{ve} : nT
Fe

(
(Φ − In) vi + H u(vi)+φ

)
>0 (8a)

∀vi ∈ V \ {ve} : ∀Fj ∈ F \ {Fe, Fi} :
nT

Fj

(
(Φ − In)vi + Hu(vi) + φ

) ≤ 0 (8b)

∀Fj ∈ F \ {Fe} :
nT

Fj

(
(Φ − In)ve + Hu(ve) + φ

) ≤ 0 (8c)
n+1∑
j=1
j �=e

nT
Fj

(
(Φ − In)ve + Hu(ve) + φ

)
< 0 (8d)

As illustrated in figure 1 the next sample is not necessarily
picked up in the neighbor simplex P̃ , if the conditions (8a-
8d) are met. I.e. a trajectory starts in xk in simplex P and in
the next sample xk+1 the neighbor simplex P̃ is overleaped,
although the conditions from [4] are met. Therefore, the
discrete-time versions (8a-8d) of the continuous conditions
(7a-7d) are only necessary to solve the problem. By adding
the conditions (9- 11) the conditions turn out to be sufficient.

The additional conditions

∀vi ∈ V \ {ve} : ∀F̃j ∈ F̃ \ {F̃e} :
ñT

F̃j

(
(Φ − In) vi + H u(vi) + ϕ

) ≤ 0 (9)

keep the direction of the difference with respect to the
dynamic in simplex P in the neighbor simplex P̃ . The
vertices of the neighbor simplex are ṽi ∈ Ṽ .

The ranges of the direction of the differences in the
vertices of the facet Fe are narrowed to the neighbor simplex.

In figure 2 the narrowed ranges are sketched.

Fig. 2. Range narrowed to the neighbor simplex by additional conditions

If the trajectory crosses the facet Fe, the dynamic of the
neighbor simplex P̃ is valid for the rest of the sampling time.
If the dynamic in simplex P and the dynamic in simplex P̃
are equal, the next sample is guaranteed to be picked up
in the neighbor simplex P̃ by satisfying the conditions (8a-
8d,9). In general equal dynamics will not be the case. This
means that the trajectory could evolve that way, without the
further additional conditions (10,11), that the next sample
is picked up outside the neighbor simplex P̃ . If these two
conditions are added, the next sample is picked up in the
neighbor simplex, even if the dynamics in simplex P and
simplex P̃ are different:

∀vi ∈ V \ {ve} : ∀F̃j ∈ F̃ \ {F̃e} :

ñT
F̃j

((
Φ̃ − In

)
vi + H̃ u(vi) + ϕ̃

)
≤ 0 (10)

∀vi ∈ V \ {ve} : F̃e :

ñT
F̃e

((
Φ̃ − In

)
vi + H̃ u(vi) + ϕ̃

)
≤ 0 (11)

The condition (10) is the correspondency to condition (9)
with the dynamic Φ̃, H̃ and φ̃, valid in the neighbor simplex
P̃ . Condition (11) forces the trajectory to enter the neighbor
simplex P̃ .

There will be no, one or an infinite number of solutions
that satisfy these conditions. In the last case the degree of
freedom can be used to perform an optimization. This will
be discussed in the next section in detail.

IV. CONTROL STRATEGY

Given a discrete-time piecewise affine system in state
space Θ, partitioned into simplices, the relation between the
numbered simplices can be stored in a graph structure. Each
simplex Pi is represented by a vertex in this graph. The
control strategy consists of two parts.
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First, the local control strategy will be investigated. Using
the conditions presented in section III, the local strategy tries
to find a discrete-time piecewise affine control law, ensuring
that every trajectory, starting in simplex Pi will leave the
simplex through a specific facet Fj , j ∈ 1, ..., N + 1 of the
simplex Pi and the sample picked up next is within the
adjacent simplex P̃ . The simplex Pi and P̃ share the same
facet Fj .

If a valid control law is found, an oriented edge is added
to the graph, connecting simplex Pi with P̃ . This edge is
used to store the two determined parameters R and u0 of
the control law (4).

If discrete inputs uD exist, there is a third parameter xD.
To determine these parameters the best possibility will be
chosen minimizing a performance index in such a way that

• the retention time in the simplex P is minimized or
• the control energy is minimized.

It is assumed that a change in xD is only allowed, if the
first sample is picked up after the trajectory crossed a facet.

A. Local control

The local control problem, as mentioned in section II, is to
enter the adjacent simplex P̃ through a defined facet Fe if the
state x ∈ Θ ⊂ RN is not contained in the final simplex PF .
The sequence of simplices is determined by the supervisory
control.

The control law that solves the problem, consists of two
parameters R and u0. The aim of this procedure is to find
a matrix R and the vector u0, such that constraints in the
input signal u are satisfied.

For each facet of each simplex, the local control algorithm
tries to find a control law (4). If there are discrete inputs
uD, the calculations are done for each xD. The effort for
exploring all simplices is then multiplied with max(xD).

A point x in the simplex can be written as a convex
combination of the vertices

x = �1 v1 + . . . + �n+1 vn+1 , �i ∈ [0, 1] ,

i.e. for the inputs

u(x) = �1 u(v1) + . . . + �n+1 u(vn+1)

is valid [4].
If inputs u(vi)(i = 1, . . . , n+1) are found that satisfy the

inequalities and the input limitations an affine feedback law
can be determined.

Choosing the inputs in the vertices that way that they fulfill
the inequality conditions (8a-8d,9-11), then the feedback law
is

u(vi) = −R vi + u0 , i = 1, . . . , n + 1.

Rewriting this law, by transposing the equations, results
in

u(vi)
T =

[
vT

i 1
] [ −RT

uT
0

]
, i = 1, . . . , n + 1.

After merging these n + 1 equations, the matrix equation⎡
⎢⎣

u(v1)
T

...
u(vT

n+1)

⎤
⎥⎦ =

⎡
⎢⎣

vT
1 1
...

...
vT

n+1 1

⎤
⎥⎦

︸ ︷︷ ︸
=(T−1

B )T

[ −RT

uT
0

]

is obtained.
In [4] it is shown, that the matrix T B is always invertible

for a simplex. Therefore the unique solution

[ −RT

uT
0

]
= TT

B

⎡
⎢⎣

u(v1)
T

...
u(vn+1)

T

⎤
⎥⎦

is found.
As already mentioned in section III, the sufficient con-

ditions (8a-8d,9-11) can result in an infinite number of
solutions. To obtain an appropriate control law, the inputs
ui(vi) have to be fixed to a defined value. This degree of
freedom can be used to find the best solution u∗(vi)

T with
respect to the chosen performance index

J(vi) := J(vi, u(vi)) = nT
e ((Φ − In)vi + Hu(vi) + φ)

in each vertex vi. The optimization problem results in the
max-min-Problem

max
(

min
vi∈V

J(vi)
)

that can easily transformed into a min-max-Problem

−min
(

max
vi∈V

( − J(vi)
))

.

Min-max-problems are standard optimization problems, here
a so called constrained min-max-problem has to be solved
due to the inequality constraints. A solver for this problem
is e.g. fminimax, which is a part of the MATLAB OPTIMIZA-
TION TOOLBOX.

The stabilizing control in the final simplex PF can be
determined with the methods presented in [12].

B. Supervisory control

The local control provides a graph with several weighted
edges. The weight represent the performance index J(u∗).
The supervisory control reduces to a problem to find an
allowed path in this graph. From a start vertex to the end
vertex the shortest path with the smallest sum of the weights
of the used edges has to be found by the supervisory control
strategy. This is also a standard problem and can be solved
with Dijkstra’s algorithm [13].

V. EXAMPLE

The system under investigation is the two-tank system
shown in figure 3. For each tank there is an influx.

The left tank is labeled with 1 and the right tank with 3,
and the influxes are labeled with q1 and q3, respectively.

In table I, the discrete states xD as combinations of the
discrete input vector uD = (V 1, V 3, V 13u) are given. A
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Fig. 3. Two-tank system

TABLE I

COMBINATIONS OF THE VALVES AND DISCRETE STATE xD

xD 1 2 3 4 5 6 7 8
V1 0 0 0 0 1 1 1 1
V3 0 0 1 1 0 0 1 1

V13u 0 1 0 1 0 1 0 1

valve is open if the value of the binary variable is one, e.g.
V 1 = 1.

The dynamic for the two-tank system for xD = 8 is

�̇1(t) =

− sign(�1(t) − �3(t))
a13

A1

√
2g

√
|�1(t) − �3(t)|

− a1

A1

√
2g

√
�1(t) +

q1,max

A1
uq,1(t)

�̇3(t) =

sign(�1(t) − �3(t))
a13

A3

√
2g

√
|�1(t) − �3(t)|

− a3

A3

√
2g

√
�3(t) +

q3,max

A3
uq,3(t).

The input u(t) = (uq,1(t), uq,3(t))T is added linearly
to the nonlinear state equation. The state vector is x(t) =
(�1(t), �3(t))T .

The root function in the state equation is approximated
with discrete-time affine systems valid on corresponding
simplices for the controller design, simulation later on is
done on the nonlinear system.

In figure 4, the partitioned state space Θ, x ∈ Θ =
{R2|0 ≤ x1 = �1 ≤ 60[cm], 0 ≤ x2 = �3 ≤ 60[cm]},
into simplices is given.

The simplices are numbered. The trajectory moves from
the initial state x0 = (3, 20)[cm] to final state xF =
(53, 40)[cm] crossing the simplices composed in table II.

The information which valves are closed or opened, is
given by xD marked with big digits in these twelve used
simplices in figure 4.

Fig. 4. The trajectory of the two-tank system, starting in x0 = (3, 20)[cm]
moving to xF = (53, 40)[cm].

TABLE II

TRAJECTORY FROM x0 TO xF SEQUENTIALLY MOVES OVER THE

SIMPLICES Pi

Step x0 2 3 4 5 6
i 43 44 51 52 42 15

xD 7 8 2 1 2 1
Step 7 8 9 10 11 xF

i 37 34 33 27 32 30
xD 4 2 1 3 2 7

For simplex ’44’, details are given:

Φ8
44 =

[
0.9743 0.0044
0.0079 0.9831

]
, φ8

44
=

[
0.1686
−0.2591

]

and H8
44 =

[
0.6412 0.0014
0.0026 0.6441

]

The upper index denotes the xD to indicate the necessary
combination of the valves. The two parameters of a control
law are given:

R8
44→51 =

[
0.0624 −0.0126
0.0711 −0.0042

]
, u8

0,44→51 =
[

0.3752
0.6272

]

The lower index denotes, where the trajectories start and
where they will lead to, e.g. 44 → 51 means the control law
is valid in simplex ’44’ and will force the trajectory to enter
simplex ’51’.

There was also a control law found for R8
44→50, but no

law was found for R8
44→43 that considers the limitation of

the input vector u.
Other possible control laws were found for R1

44→50,
R3

44→50, R3
44→51, R5

44→50, R5
44→43, R6

44→50, R6
44→51,

R7
44→50, R7

44→51 and R7
44→43.

The performance index in this example was defined to de-
scribe the retention time of the trajectory in the investigated
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simplex. This is the time the trajectory needs to leave the
simplex through the facet Fe, if it starts in the vertex ve.

The control law R8
44→51 has the performance index

J8
44→51 = 19.32. This performance index is smaller than

the performance index J3
44→51 = J7

44→51 = 32.84 of the
control law R3

44→51 and R7
44→51, and it is smaller than

the performance index J6
44→51 = 46.46 of the control law

R6
44→51.
Therefore, the supervisory control chose a path through

the graph the way, that simplex ’44’ has to be left through
the facet that is adjacent to simplex ’51’, using valve position
’8’.

The influxes q1 and q3 represent the continuous inputs u of
the system. The needed continuous inputs u are guaranteed
to stay within their upper bounds cu and lower bounds cl

cl ≤ u = R x+u0 ≤ cu with cl =
[

0
0

]
and cu =

[
1
1

]
.

In figure 5, the two states, i.e. the levels in tank 1 and 3, the
influxes to tank 1 and 3 and the binary state of the discrete
inputs for the valves are plotted over time.

Fig. 5. The level of the two-tank system and the binary state of the valves.

For non-zero values the valves V 1, V 2 and V 13u are
open. If there is a function value for V 1, the valve V 1 is
open. There is no steady state error. The calculation on a
1.5 GHz Athlon for the local control was done in about 10
minutes, using MATLAB R12.1

To compare the results in this paper with the results in
[12], figure 4 is investigated. The difference is that the
method in [12] forces the trajectory to move on a straight
line. In simplex ’44’ it is obvious that this is not the case in
this paper. Also remember that the simulation is done with
the nonlinear system, not with the affine one.

If the sampling period is too large, than it might happen
that the neighbor simplex P̃ is overleaped by the trajectory. A
found controller has to be checked about that. If this problem
occurs, it indicates that the sampling time or the locations
of the vertices is unbalanced.

VI. CONCLUSION

A new approach for the design of controllers for piecewise
affine hybrid systems was presented. Based on a discrete-
time model, the design of the controller is divided into a
local control and a supervisory control.

The supervisory control is performed in a graph, done
by path planning, the local control is done by solving an
optimization problem, fulfilling inequality conditions.

The resulting control law is an affine feedback law, valid
on the corresponding simplex. Linear search algorithms
reduce the on-line computational effort for the control action,
determining which control law is active. For that reason,
the presented method is suitable even for more complex
industrial applications.

Future work will focus on finding affine control laws for a
general polytope structure and will investigate systems with
less inputs than states.
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