Feedback-Invariant Subspaces in Infinite-Dimensional Systems

Kirsten Morris and Richard Rebarber

Abstract—We consider single-input single-output systems on a Hilbert space X, with infinitesimal generator A, bounded control element b, and bounded observation element c. Let c^{\perp} be the subspace of X perpendicular to c. We consider the problem of finding the largest feedback-invariant subspace of c^{\perp} . If b is in c^{\perp} , and $c \notin D(A^*)$, a largest feedback-invariant subspace does not exist in general.

I. INTRODUCTION

A subspace V is invariant for a linear system if for all initial conditions in V there exists a control that keeps the state in V for all times. If this is the case, the control can be a constant state feedback. Let V^* be the largest feedback invariant subspace. The zeros of the original system are the eigenvalues of the controlled system restricted to V^* . Furthermore, a disturbance can be decoupled from the output if and only if it lies inside a feedback invariant subspace contained in the kernel of the observation operator [14].

In this paper we consider feedback invariance for single-input single-output infinite-dimensional systems with bounded control and observation. Let X be a Hilbert space with inner product $\langle \cdot, \cdot \rangle$ and norm $\|\cdot\|$. Let A be the infinitesimal generator of a C_0 -semigroup T(t) on X. Let b and c be elements of X. Let $U = Y = \mathbb{C}$ and $u(t) \in U$. We consider the following system in X:

$$\dot{x}(t) = Ax(t) + bu(t) \tag{1.1}$$

with the observation

$$y(t) = Cx(t) := \langle x(t), c \rangle.$$
(1.2)

We sometimes refer to this system as (A, b, c). The transfer function is G(s) where $G(s) = \langle R(s, A)b, c \rangle$.

We denote the kernel of C by

$$c^{\perp} := \{ x \in X \mid \langle x, c \rangle = 0 \}.$$

When $b \notin c^{\perp}$, we show that the largest feedback-invariant subspace in c^{\perp} exists, and is c^{\perp} itself. We give an explicit representation of a feedback operator K for which c^{\perp} is A + bK-invariant. When $c \notin D(A^*)$, the operator K is not bounded, so semigroup generation of A + bK is not guaranteed.

If $\langle b, c \rangle = 0$ then the theory is quite different. A number of situations may occur, depending on the nature of b and c. In particular, if $c \notin D(A^*)$, then in general no largest feedback-invariant subspace exists. This is in contrast to the finite-dimensional case, where a largest feedback invariant subspace always exists [14]. However, as in the finite-dimensional case, the spectrum of A + bK is identical to the invariant zeros of the system.

This work builds on the results of Curtain and Zwart in the 1980's, see [3], [16], [17], [18]. In [16], [17] there is a standing assumption that (A, b) is such that A + bK is a generator of a C_0 -semigroup for any A-bounded K, which is a strong restriction on b. This paper also extends the results in [1], where it is assumed that $b \in D(A)$, $c \in D(A^*)$ and $\langle b, c \rangle \neq 0$. We remove the restrictions $b \in D(A)$ and $c \in D(A^*)$, and, most significantly, also examine the case where $\langle b, c \rangle = 0$.

We should note that even though in most infinitedimensional systems analysis the assumption that b and care in X makes the analysis easier, the zeros for partial differential equations with boundary control and observation (which yields unbounded control and observation operators) is often more easily analyzed, see [11].

II. INVARIANCE CONCEPTS

For $\omega \in \mathbb{R}$, let

$$C_{\omega} = \{ z \in \mathbb{C} \mid \text{Re } z > \omega \}.$$

Let $R(s, A) = (sI - A)^{-1}$, and let $\omega \in \mathbb{R}$ be such that \mathbb{C}_{ω} is a subset of $\rho(A)$. For $\lambda_0 > \omega$, $R(\lambda_0, A)$ exists as a bounded operator from X into X.

Definition 2.1: A subspace Z of X is feedback invariant if it is closed and there exists an A-bounded feedback K such that $(A + bK)(Z \cap D(A)) \subset Z$.

The operator K is not specified as unique in the above theorem. However, if $b \notin Z$, and there are two operators K_1 and K_2 that are both (A, b)-invariant on Z, then $b(K_1x - K_2x) \in Z$ and so $K_1x = K_2x$ for all $x \in Z$.

The following result shows that feedback invariance is equivalent to (A, b)-invariance, which is sometimes easier to work with.

Theorem 2.2: [17, Thm.II.26] A closed subspace Z is feedback-invariant if and only if it is (A, b)-invariant, that is,

$$A(Z \cap D(A)) \subseteq Z + \operatorname{span}\{b\}.$$

Theorem 2.3: If $Z \subseteq c^{\perp}$ is a feedback-invariant subspace and $b \in Z$ then the system transfer function is identically zero.

Proof: Since Z is feedback-invariant,

 $A(Z \cap D(A)) \subset Z + \operatorname{span}\{b\} \subset Z.$

This implies that Z is A-invariant. This implies that every $z \in Z$ can be written $z = (sI - A)\xi(s)$ where $\xi(s) \in D(A) \cap$

Kirsten Morris is with Department of Applied Mathematics, University of Waterloo, Waterloo, CANADA. kmorris@uwaterloo.ca

Richard Rebarber is with the Department of Mathematics, University of Nebraska, Lincoln, USA. rrebarbe@math.unl.edu

Z [17, Lem. I.4], and $s \in [r, \infty)$ for some $r \in \mathbb{R}$. Since $b \in Z$, $(sI - A)^{-1}b \in Z$ for all $s \in [r, \infty)$. Since $Z \subset c^{\perp}$, the system transfer function G(s) is zero for $s \in [r, \infty]$. Since G is analytic on $\rho(A)$, it must be identically zero on $\rho(A)$. \Box

III. NICE CASES

If $b \notin c^{\perp}$, the largest feedback-invariant subspace contained in c^{\perp} is c^{\perp} .

Theorem 3.1: [9] Suppose $\langle b, c \rangle \neq 0$. Define

$$Kx = -\frac{\langle Ax, c \rangle}{\langle b, c \rangle}, \quad D(K) = D(A),$$
 (3.3)

and define (A + bK)x = Ax + bKx for $x \in D(A + bK) = D(A)$. Then $(A + bK)(c^{\perp} \cap D(A)) \subset c^{\perp}$ and so the largest feedback-invariant subspace in c^{\perp} is c^{\perp} itself.

Definition 3.2: A closed subspace Z of X is closed-loop invariant if the closure of $Z \cap D(A)$ in X is Z and there exists an A-bounded feedback K such that $(A+bK)(Z \cap D(A)) \subseteq$ Z and A+bK generates a C_0 semigroup T_K on Z.

The condition that $(A + bK)(Z \cap D(A)) \subset Z$ allows arbitrary elements of $X \setminus D(A)$ to be appended to Z. The additional condition that the closure of $Z \cap D(A)$ is Z eliminates this ambiguity.

In general, A + bK does not generate a C_0 -semigroup. In this case c^{\perp} is not closed-loop invariant.

There are many results in the literature that give sufficient conditions for a relatively bounded perturbation of a generator of a C_0 -semigroup to be the generator of a C_0 -semigroup. For instance, if K is an admissible output element [12, Chap. 5], or if A generates an analytic semigroup [7, Chap. 9, sect. 2.2], then A + bK generates a C_0 semigroup.

Theorem 3.3: [9] In addition to the assumptions of Theorem 3.1, assume that A + bK generates a C_0 -semigroup on X. Then it generates a C_0 -semigroup on c^{\perp} , hence c^{\perp} is closed-loop invariant under A + bK.

If $\langle b, c \rangle = 0$, we can still find the largest feedback-invariant subspace in many cases.

We first give a definition of the *relative degree* of (A, b, c), which is a generalization of the standard finite dimensional definition, see for example [5, pg. 99].

Definition 3.4: (A, b, c) is of relative degree $n \in \mathbb{Z}^+$ if

the function (sⁿG(s))⁻¹ is in H[∞]_γ(ℂ) for some γ ∈ ℝ;
 lim_{s→∞}, s∈ℝ
 g = 0 for j = 1, 2, ... (n − 1).

In finite dimensions condition (1) in Definition 3.4 is equivalent to

$$\lim_{s \to \infty, \ s \in \mathbb{R}} s^n G(s) \neq 0.$$

The above definition of relative degree seems to be the most general definition for infinite dimensional systems that guarantees some (limited) regularity of closed loop solutions, see [9].

Define

$$Z_n = c^{\perp} \cap (A^*c)^{\perp} \cap \cdots (A^{*n}c)^{\perp}.$$

The existence of a largest feedback invariant subspace depends on whether $c \in D(A^{*n})$, where n + 1 is the relative degree of the system.

Theorem 3.5: [9] Suppose $n \in Z^+$ is such that

$$c \in D(A^{*n}), \qquad b \in Z_{n-1} \tag{3.4}$$

and

$$\langle b, A^{*n}c \rangle \neq 0. \tag{3.5}$$

Then the largest feedback-invariant subspace Z in c^{\perp} is Z_n . We can use this to prove the following:

Theorem 3.6: Suppose $n \in \mathbb{Z}^+ \cup \{0\}$ is such that (A, b, c) is of relative degree n+1 and $c \in D(A^{*n})$. Then the largest feedback-invariant subspace Z in c^{\perp} is Z_n .

Closed-loop invariance of Z_n exists under conditions similar to those for the case $\langle b, c \rangle \neq 0$. That is, if Z_n is feedback-invariant under the operator $A+bK_n$, and $A+bK_n$ generates a C_o -semigroup on the original space X, then Z_n is also closed-loop invariant [9].

IV. NOT SO NICE CASE

The following example illustrates that if $\langle b, c \rangle = 0$ and $c \notin D(A^*)$ a largest feedback-invariant subspace as defined in Definition 2.1 might not exist.

Example IV.1. The following example of a controlled delay equation first appeared in Pandolfi [10]:

$$\dot{x}_1(t) = x_2(t) - x_2(t-1) \dot{x}_2(t) = u(t) y(t) = x_1(t).$$
(4.6)

The transfer function for this system is

$$G(s) = \frac{1 - e^{-s}}{s^2}.$$
(4.7)

The system of equations (4.6) can be written in a standard state-space form (1.1, 1.2), see [4]. Choose the state-space

$$X = R^2 \times L_2(-1,0) \times L_2(-1,0).$$

A state-space realization on X is

$$b = (\begin{array}{cccc} 0 & 1 & 0 & 0 \end{array}), \qquad c = (\begin{array}{cccc} 1 & 0 & 0 & 0 \end{array}).$$

Define D(A) to be $[r_1, r_2, \phi_1, \phi_2]^T \in X$ such that $\phi_1(0) = r_1, \phi_2(0) = r_2, \phi_1 \in H^1(-1, 0), \phi_2 \in H^1(-1, 0).$ For $[r_1, r_2, \phi_1, \phi_2]^T \in D(A)$,

$$A(r_1, r_2, \phi_1, \phi_2) = \begin{pmatrix} \phi_2(t) - \phi_2(t-1) \\ 0 \\ \dot{\phi_1} \\ \dot{\phi_2} \end{pmatrix}.$$

In this example $\langle b, c \rangle = 0$ and $c \notin D(A^*)$. From the transfer function (4.7) we can see that the system has relative degree 2.

Pandolfi [10] showed that the largest feedback-invariant subspace $Z \subset c^{\perp}$, if it exists, is not a delay system. We

now show that this system does not have a largest feedback-invariant subspace in c^{\perp} . Define

$$e_k = \begin{bmatrix} 0\\1\\0\\\exp(2\pi i k t) \end{bmatrix} \in D(A) \cap c^{\perp}.$$

For each k the subspace span $\{e_k\}$ is (A, b)-invariant and hence feedback-invariant (Thm. 2.2). Define

$$V_n = \operatorname{span}_{-n < k < n} e_k.$$

Each subspace V_n is feedback-invariant. Define also the union of all finite linear combinations of e_k ,

$$V = \bigcup V_n.$$

By well-known properties of the exponentials $\{e^{2\pi ikt}\}_{k=1}^{\infty}$ in $L^2(0,1)$, the closure of $\{\exp(2\pi ikt)\}$ is $L^2(0,1)$. Consider a sequence of elements in V, $[0,1,0,z_n]$ where $z_n(0) = 1$ and $\lim_{n\to\infty} z_n = 0$. This sequence converges to [0,1,0,0]and so we see that the closure of V in X is $\overline{V} = 0 \times R \times 0 \times L_2(-1,0)$. If there is a largest feedback-invariant subspace Z in c^{\perp} , then $Z \supset \overline{V}$. The important point now is that although $b \notin V$, $b \in \overline{V}$. Since b cannot be contained in any feedback invariant subspace (Theorem 2.3), \overline{V} is not feedback-invariant. Hence no largest feedback-invariant subspace exists for this system.

Assume $\langle b, c \rangle = 0$. Theorem 2.2 implies that any element $x \in D(A)$ of an (A, b)-invariant subspace of c^{\perp} is contained in the set

$$Z = \{ z \in c^{\perp} \cap D(A) \mid \langle Az, c \rangle = 0 \}.$$

$$(4.8)$$

The closure of Z is a natural candidate for the largest feedback-invariant subspace of c^{\perp} . When $c \in D(A^*)$, the closure of Z is $Z_1 = c^{\perp} \cap (A^*c)^{\perp}$. If $\langle b, A^*c \rangle \neq 0$, this is the largest feedback-invariant subspace in c^{\perp} (Thm. 3.6). The situation when $c \notin D(A^*)$ is quite different.

Theorem 4.1: If $c \notin D(A^*)$, the set Z is dense in c^{\perp} . Furthermore, $Z \neq c^{\perp} \cap D(A)$.

Proof: This will be proven by showing that if Z is not dense in c^{\perp} then $c \in D(A^*)$. Let $\lambda \in \rho(A)$ and $A_{\lambda} = A - \lambda I$, so $D(A_{\lambda}) = D(A)$. D(A) is a Hilbert space with the graph norm, and the graph norm is equivalent to

$$||x||_1 := ||A_\lambda x||. \tag{4.9}$$

The corresponding inner product on D(A) is

$$\langle x, y \rangle_1 := \langle A_\lambda x, A_\lambda y \rangle.$$
 (4.10)

Define $e = (A_{\lambda}^{*})^{-1}c \in X$. For $x \in D(A)$, the condition $\langle c, x \rangle = 0$ can be written

$$0 = \langle x, c \rangle = \langle A_{\lambda} x, e \rangle = \langle A_{\lambda} x, A_{\lambda} A_{\lambda}^{-1} e \rangle = \langle x, A_{\lambda}^{-1} e \rangle_{1}.$$
(4.11)

For $x \in c^{\perp} \cap D(A_{\lambda})$, the condition $\langle Ax, c \rangle = 0$ is equivalent to $\langle A_{\lambda}x, c \rangle = 0$. Hence for such x we have

$$0 = \langle A_{\lambda}x, c \rangle = \langle A_{\lambda}x, A_{\lambda}A_{\lambda}^{-1}c \rangle = \langle x, A_{\lambda}^{-1}c \rangle_{1}.$$
 (4.12)

We can write Z as

$$\left\{ x \in D(A) | \langle x, A_{\lambda}^{-1} e \rangle_{1} = 0 \text{ and } \langle x, A_{\lambda}^{-1} c \rangle_{1} = 0 \right\}.$$

We now introduce the notation

$$(y)_1^{\perp} := \{ x \in D(A) \mid \langle x, y \rangle_1 = 0 \}.$$

Using this notation,

$$Z = (A_{\lambda}^{-1}e)_{1}^{\perp} \cap (A_{\lambda}^{-1}c)_{1}^{\perp}.$$

Now suppose that Z is not dense in c^{\perp} (as a subspace of X). Then there exists $v \in c^{\perp}$ such that $\langle x, v \rangle = 0$ for all $x \in Z$. Define $w = (A_{\lambda}^*)^{-1}v$. As in (4.11), for $x \in D(A)$, the condition $\langle x, v \rangle = 0$ is equivalent to

$$\langle x, A_{\lambda}^{-1}w \rangle_1 = 0. \tag{4.13}$$

Hence we see that

$$Z \subseteq (A_{\lambda}^{-1}e)_{1}^{\perp} \cap (A_{\lambda}^{-1}w)_{1}^{\perp}.$$
 (4.14)

Let R be the orthogonal projection from D(A) onto $(A_{\lambda}^{-1}e)_{1}^{\perp}$ (using the inner product $\langle \cdot, \cdot \rangle_{1}$). Then

$$Z = (A_{\lambda}^{-1}e)_1^{\perp} \cap (RA_{\lambda}^{-1}c)_1^{\perp}$$

and

$$(A_{\lambda}^{-1}e)_{1}^{\perp} \cap (A_{\lambda}^{-1}w)_{1}^{\perp} = (A_{\lambda}^{-1}e)_{1}^{\perp} \cap (RA_{\lambda}^{-1}w)_{1}^{\perp}.$$

Hence (4.14) becomes

$$(A_{\lambda}^{-1}e)_{1}^{\perp} \cap (RA_{\lambda}^{-1}c)_{1}^{\perp} \subseteq (A_{\lambda}^{-1}e)_{1}^{\perp} \cap (RA_{\lambda}^{-1}w)_{1}^{\perp}.$$
(4.15)

This implies that there is a scalar γ such that

$$RA_{\lambda}^{-1}c = \gamma RA_{\lambda}^{-1}w.$$

We obtain that

$$A_{\lambda}^{-1}c = \alpha A_{\lambda}^{-1}w + \beta A_{\lambda}^{-1}e.$$

Applying A_{λ} to both sides of this equation,

$$c = \alpha w + \beta e.$$

Since $w = (A_{\lambda}^{*})^{-1}v$ and $e = (A_{\lambda}^{*})^{-1}c$, we see that $c \in D(A_{\lambda}^{*}) = D(A^{*})$. Thus, if Z is not dense in c^{\perp} in c^{\perp} then $c \in D(A^{*})$.

Now assume that $Z = c^{\perp} \cap D(A)$. Then $(A_{\lambda}^{-1}e)_{1}^{\perp} \cap (A_{\lambda}^{-1}c)_{1}^{\perp} = (A_{\lambda}^{-1}e)_{1}^{\perp}$, so, as above, $c = \beta e$, which would imply that $c \in D(A^{*})$. \Box

Corollary 4.2: Suppose that $q \in X$ and $c \notin D(A^*)$. Then $q^{\perp} \cap Z$ is dense in $q^{\perp} \cap c^{\perp}$. Furthermore, $q^{\perp} \cap Z \neq q^{\perp} \cap c^{\perp} \cap D(A)$.

Proof: If $q = \lambda c$ for some scalar λ , then $q^{\perp} \cap Z = Z$ and $q^{\perp} \cap c^{\perp} = c^{\perp}$, and the result follows immediately from Theorem 4.1.

Assume now that q is not parallel to c. Let P be the orthogonal projection of X onto c^{\perp} , and $\tilde{q} = Pq$, so $\tilde{q} \neq 0$. Let $\tilde{X} = \tilde{q}^{\perp}$, and let Q be the orthogonal projection of X onto \tilde{q}^{\perp} . By construction, $c = Qc \in \tilde{X}$. Let

$$\begin{split} \tilde{A} &= QA|_{\tilde{X}}, \ D(\tilde{A}) = D(A) \cap \tilde{X}, \\ \tilde{Z} &= \{x \in D(\tilde{A}) \mid \langle x, c \rangle = 0 \text{ and } \langle \tilde{A}x, c \rangle = 0\}. \end{split}$$

We wish to show that $c \notin D(\tilde{A}^*)$. Note that for $x \in \tilde{X}$,

$$\langle \tilde{A}x, c \rangle = \langle \tilde{Q}Ax, c \rangle = \langle Ax, Qc \rangle = \langle Ax, c \rangle.$$
 (4.16)

Therefore $c \notin D(A^*)$ if the functional $x \to \langle Ax, c \rangle$ is unbounded on \tilde{X} . To show this let $b_0 \in D(A) \cap \tilde{X}$ and let Q_0 be the (possibly not orthogonal) projection onto \tilde{X} given by

$$Q_0 x = x - \frac{\langle x, \tilde{q} \rangle}{\langle q_0, \tilde{q} \rangle} q_0$$

Then $\langle Ax, c \rangle$ is unbounded on \tilde{X} if $\langle AQ_0x, c \rangle$ is unbounded on X. Since

$$\langle AQ_0x,c\rangle = \langle Ax,c\rangle - \frac{\langle x,\tilde{q}\rangle}{\langle q_0,\tilde{q}\rangle} \langle Aq_0,c\rangle.$$

The second term on the right is clearly bounded on X, and the first term on the right is unbounded on X since $c \notin D(A^*)$, so $\langle AQ_0x, c \rangle$ is not a bounded operator on X, hence $c \notin D(\tilde{A}^*)$.

Now we can apply Theorem 4.1 to \tilde{X} , \tilde{A} , c and \tilde{Z} and conclude that $\tilde{X} \cap \tilde{Z}$ is dense in $\tilde{X} \cap c^{\perp}$ and $\tilde{X} \cap \tilde{Z} \neq \tilde{X} \cap c^{\perp} \cap D(A)$.

For
$$x \in c^{\perp}$$
, $\langle x, Pq \rangle = \langle x, q \rangle$ and so
 $\tilde{X} \cap c^{\perp} = \{x \in X \mid \langle x, c \rangle = 0, \langle x, Pq \rangle = 0\}$
 $= \{x \in X \mid \langle x, c \rangle = 0, \langle x, q \rangle = 0\}$
 $= q^{\perp} \cap c^{\perp}.$

Similarly,

$$\tilde{X} \cap \tilde{Z} = \{ x \in D(A) \mid \langle x, c \rangle = 0, \ \langle x, q \rangle = 0, \ \langle \tilde{A}x, c \rangle = 0 \}.$$
(4.17)

This can be written

$$\begin{split} \tilde{X} \cap \tilde{Z} &= \{ x \in D(A) \mid \langle x, c \rangle = 0, \langle x, q \rangle = 0, \langle Ax, c \rangle = 0 \} \\ &= q^{\perp} \cap Z. \end{split}$$

Thus we have shown that $q^{\perp} \cap Z$ is dense in $q^{\perp} \cap c^{\perp}$, and that the two spaces are not equal. \Box

If $\langle b, c \rangle = 0$, $c \in D(A^*)$, and $\langle b, A^*c \rangle \neq 0$, the largest invariant subspace in c^{\perp} is $Z_1 = c^{\perp} \cap (A^*c)^{\perp}$. Defining $\alpha = \frac{-1}{\langle b, A^*c \rangle}$,

$$\begin{array}{lll} A+bK&=&A+\alpha b\langle Ax,A^{*}c\rangle, \quad {\rm with}\\ D(A+bK)&=&\{z\in c^{\perp}\cap D(A)\mid \langle Az,c\rangle=0\}, \end{array}$$

is Z_1 -invariant. In many cases, this operator generates a C_0 semigroup on Z_1 . It is tempting to hope, that even if $c \notin D(A^*)$, the operator (with some value of α)

$$\begin{array}{rcl} A+bK &=& A+\alpha b \langle A^2 x,c\rangle,\\ D(A+bK) &=& \{z\in c^{\perp}\cap D(A^2)\mid \langle Az,c\rangle=0\} \end{array}$$

is a generator, or has an extension which is a generator. However, we see from the next result that this operator is not closable, so that no extension of it is a generator of a C_0 -semigroup.

Theorem 4.3: Suppose $b \in X$ and $c \notin D(A^*)$. Then the operator

$$A_F x = A x + b \langle A^2 x, c \rangle,$$

$$D(A_F) = \{ x \in c^{\perp} \cap D(A^2) \mid \langle A x, c \rangle = 0 \}$$

is not closable.

Proof: Let $\lambda \in \rho(A)$ and $A_{\lambda} = A - \lambda I$, as above. From Corollary 4.2 we see that $((A_{\lambda}^{-1})^*c)^{\perp} \cap Z$ is dense in $((A_{\lambda}^{-1})^*c)^{\perp} \cap c^{\perp}$. Let

$$Tx := \langle A_{\lambda}x, c \rangle, \qquad D(T) = ((A_{\lambda}^{-1})^* c)^{\perp} \cap c^{\perp} \cap D(A).$$

We will now show that T is not closable. From Corollary 4.2, $((A_{\lambda}^{-1})^*c)^{\perp} \cap Z \neq D(T)$. Thus we can choose $f \in D(T)$ such that $f \notin ((A_{\lambda}^{-1})^*c)^{\perp} \cap Z$, and there exists $(f_n) \subset ((A_{\lambda}^{-1})^*c)^{\perp} \cap Z$ such that $\lim f_n = f$. From the definition of Z, $Tf_n = 0$ for all n. Let $x_n = f - f_n$, so

$$\lim x_n = 0, \text{ and } \lim Tx_n = Tf \neq 0, \tag{4.18}$$

which shows that T is not closable [15, Section II.6, Proposition 2]. It then follows that I + bT with domain D(T) is not closable.

Now note that $y \in D(A_F)$ if and only if $A_{\lambda}y \in D(T)$, and that for $y \in D(A_F)$

$$A_F y = (I + bT)A_\lambda y + \lambda y,$$

so A_F is closable if and only if $(I + bT)A_{\lambda}$ is closable. Using the sequence $(x_n) \subset D(T)$ defined above, define $y_n = A_{\lambda}^{-1}x_n$. Note that $(y_n) \subset D(A_F)$ and

$$\lim y_n = 0$$
 and $\lim (I + bT)A_\lambda y_n = bTf \neq 0$.

Hence $(I + bT)A_{\lambda}$ is not closable, so A_F is not closable. Definition 4.4: The invariant zeros of (1.1), (1.2) are the set of all λ such that

$$\begin{bmatrix} \lambda I - A & b \\ C & 0 \end{bmatrix} \begin{bmatrix} x \\ u \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
(4.19)

has a solution for $u \in U$ and non-zero $x \in D(A)$.

One of the important properties of a largest invariant subspace, is the following well-known result. A proof for infinite-dimensional system can be found in, for instance, [9].

Theorem 4.5: Assume a largest feedback-invariant subspace Z of (A, b, c) exists and G(s) is not identically zero, and let K be an operator such that A + bK is Z-invariant. Then the eigenvalues of $(A + bK)|_Z$ are the invariant zeros of the system.

We now show that, for a large class of relative degree 2 systems we can find a feedback K and a subspace of c^{\perp} that is (A + bK)-invariant. In general, such a A + bK is not closable on the original Hilbert space, hence does not generate a C_0 -semigroup in the original norm. However, the spectrum of A + bK does yield the invariant zeros. In order to define this space we need to extend $\langle A \cdot, c \rangle$ to a larger set than D(A). Define

$$C_A x = \lim_{s \to \infty, s \in \mathbb{R}} \langle sAR(s, A)x, c \rangle$$
(4.20)

with domain

$$D(C_A) = \{ x \in X | \lim_{s \to \infty, s \in \mathbb{R}} \langle sAR(s, A)x, c \rangle \text{ exists} \}.$$

(This is the same as $(CA)_L$ where the *L*-extension is given by [13, Defn. 5.6].) It is straightforward to verify that $D(C_A) \supseteq D(A)$. If $x \in D(A)$, then $C_A(x) = \langle Ax, c \rangle$. Also, if $c \in D(A^*)$, then $D(C_A) = X$ and $C_A x = \langle x, A^* c \rangle$.

Proposition 4.6: Assume that (A, b, c) has relative degree at least 2. Then $\lim_{s\to\infty} s^2 G(s)$ exists for real s if and only if $b \in D(C_A)$. In this case,

$$\lim \ s^2 G(s) = C_A b. \tag{4.21}$$

Proof: First note that since the relative degree of the systems is at least 2, $\lim_{s\to\infty} sG(s) = 0$. But,

$$\lim_{s \to \infty} sG(s) = \lim_{s \to \infty} \langle s(sI - A)^{-1}b, c \rangle = \langle b, c \rangle$$

and so $\langle b, c \rangle = 0$. Since

$$s^{2}G(s) = \langle s(sI-A)(sI-A)^{-1}b, c \rangle + \langle sA(sI-A)^{-1}b, c \rangle,$$

we obtain

$$\lim_{s \to \infty} s^2 G(s) = \lim_{s \to \infty} s \langle b, c \rangle + \lim_{s \to \infty} \langle sA(sI - A)^{-1}b, c \rangle$$
$$= \lim_{s \to \infty} \langle sA(sI - A)^{-1}b, c \rangle.$$

The result follows. \Box

Using the operator C_A , the space Z defined above in (4.8) can be extended to

$$Z_A = \{ x \in c^{\perp} \cap D(C_A) | C_A x = 0 \}.$$

If $c \in D(A^*)$, then $Z_A = Z_1$.

The following theorem is now straightforward, so we omit the proof.

Theorem 4.7: Assume that a system (A, b, c) has relative degree 2 and $\lim_{s\to\infty} s^2 G(s)$ exists. Define on c^{\perp}

$$A_K x = A x + b K x, \tag{4.22}$$

where

$$Kx = -\frac{C_A(Ax)}{C_A b} \tag{4.23}$$

with domain

$$D(A_K) = \{ x \in D(A) \cap c^{\perp} | Ax \in D(C_A), C_A x = 0 \}.$$

The space Z_A is invariant under A_K .

The operator K in this theorem is in general not Abounded. If $c \in D(A^*)$, then K is the same A-bounded operator defined above. For the general case, we need the extension of $\langle A \cdot, c \rangle$ to C_A in order to define K.

Theorem 4.8: Assume that the system (A, b, c) has relative degree 2 and $\lim_{s\to\infty} s^2 G(s)$ exists. The invariant zeros of (A, b, c) are the eigenvalues of A_K , where A_K is as defined in (4.22, 4.23).

Proof: First assume that λ is an eigenvalue of A_K with eigenvector v. Note that $v \in D(A) \cap c^{\perp}$, so set x = v and u = -Kv in (4.19) to obtain that λ is an invariant zero of the original system.

Now assume that λ is an invariant zero. That is, there exists $u \in \mathbb{R}$ and $v \neq 0$ such that $v \in c^{\perp} \cap D(A)$ and

$$\lambda v - Av + bu = 0$$

We need to first show that $v \in D(A_K)$. First, note that

$$Av = \lambda v - bu.$$

Since $\lim_{s\to\infty} s^2 G(s)$ exists, $b \in D(C_A)$ and since $D(A) \subset D(C_A)$, $Av \in D(C_A)$. Also,

$$\begin{array}{rcl} C_A v & = & \langle A v, c \rangle \\ & = & \lambda \langle v, c \rangle + u \langle b, c \rangle \\ & = & 0 + 0. \end{array}$$

Thus, $v \in D(A_K)$. It follows that

$$\begin{array}{cc} \lambda I - A_K & b \\ c & 0 \end{array} \right] \left[\begin{array}{c} v \\ Kv + u \end{array} \right] = \left[\begin{array}{c} 0 \\ 0 \end{array} \right].$$

Since $b \notin Z_A$, Kv + u = 0 and λ is an eigenvalue of A_K on c^{\perp} with the given domain. \Box

The following result follows immediately from Theorem 4.3.

Corollary 4.9: Suppose (A, b, c) has relative degree 2 and $\lim_{s\to\infty} s^2 G(s)$ exists. If $c \notin D(A^*)$ then the operator A_K with domain $D(A_K)$ defined in (4.22) is not closable.

It is shown in the next example that, in general, it is not possible to restrict $D(A_K)$ to $D(A^2)$ and obtain the invariant zeros.

Example IV.1 continued. Recall that this controlled delay system has no largest feedback-invariant subspace. A straightforward calculation shows that the invariant zeros of this control system are $i2n\pi$, where n is any integer. We now verify that these are the eigenvalues of A_K on c^{\perp} .

We can calculate C_A from its definition to be

$$C_A x = r_2 - \lim_{s \to \infty} s e^{-s} \int_{-1}^0 e^{-s\tau} \phi_2(\tau) d\tau.$$

Denote the limiting value of

$$\lim_{s \to \infty} s e^{-s} \int_{-1}^0 e^{-s\tau} \psi(\tau) d\tau$$

by $E_{-1}\psi$, when this limit exists. (If the value of ψ at -1 exists, $E_{-1}\psi = \psi(-1)$.) Then

$$D(C_A) = \{ [r_1, r_2, \phi_1, \phi_2]^T \in X; E_{-1}\phi_2 \text{ defined} \} \\ \supset \{ [r_1, r_2, \phi_1, \phi_2]^T \in X; \phi_2 \in H_1(-1, 0) \}$$

We have $C_A b = 1$ and $A_K = A + bK$, where

$$Kx = -C_A(Ax) = E_{-1}\dot{\phi}_2,$$
 (4.24)

with $D(A_K)$

$$\{(0, r_2, \phi_1, \phi_2); \phi_1(0) = 0, \phi_2(0) = \phi_2(-1) = r_2, \\ \phi_1 \in H_1(-1, 0), \phi_2 \in H_1(-1, 0), E_{-1}\dot{\phi_2} \text{ defined} \}.$$

When $A_K x = \lambda x$, $x \in D(A_K)$, we obtain

$$0 = 0$$
$$E_{-1}\dot{\phi_2} = \lambda r_2$$
$$\dot{\phi_1} = \lambda \phi_1$$
$$\dot{\phi_2} = \lambda \phi_2.$$

This system of equations has a non-trivial solution in $D(A_K)$ for $\lambda = i2n\pi$ with

$$x = \left[\begin{array}{c} 0 \\ r_2 \\ 0 \\ r_2 e^{i2n\pi t} \end{array} \right].$$

Thus, the invariant zeros of this system are $i2n\pi$. These are exactly the invariant zeros. Suppose we restrict the domain $D(A_K)$ to the more obvious

$$D(A_K) = \{ x \in D(A) \cap c^{\perp} | Ax \in D(A), \langle Ax, c \rangle = 0 \}.$$

This yields that A_K is invariant on Z as defined in (4.8). For this example, $D(A_K)$ is

$$\{(0, r_2, \phi_1, \phi_2); \phi_1(0) = 0, \phi_2(0) = \phi_2(-1) = r_2, \\ \phi_1 \in H_2(-1, 0), \phi_2 \in H_2(-1, 0), \dot{\phi_1}(0) = 0, \dot{\phi_2}(0) = 0\}.$$

However, with this choice of domain, A_K does not have any eigenvalues. \Box

The feedback (4.24) matches that obtained in [18] by direct calculation on the delay differential equation. However, not only do we now have a general definition of the appropriate feedback, we have an rigorous definition of its domain.

Example IV.2 We give here a system (A, b, c) for which there is no largest feedback invariant subspace of c^{\perp} . Let X be the Hilbert space ℓ^2 , with index set \mathbb{N} . Let h = [1, 1, 1, ...], $\vec{0} = [0, 0, 0, 0, ...]^T$ and $D = \text{diag}\{\lambda_2, \lambda_3, \lambda_4 ...\}$, where $\lambda_j = -j$ for j = 2, 3, ... Define

$$A = \begin{bmatrix} -1 & h \\ \vec{0} & D \end{bmatrix}, \quad c = \begin{bmatrix} 1, 0, 0, 0, \dots \end{bmatrix}^T,$$

and, for any fixed integer N > 2,

$$b = [0, b_2, b_3 \dots b_N, 0, 0, \dots]^T$$
, where $\sum_{j=2}^N b_j \neq 0$.

It is easy to verify that $\langle b, c \rangle = 0$ and $c \notin D(A^*)$. Also, since $b \in D(A)$, $C_A b = \langle Ab, c \rangle = \sum_{j=2}^N b_j \neq 0$. For positive integers n > N, define the subspace of X

$$V_n = \{[0, x_2, \dots, x_n, 0, \dots]^T; x_j = 0 \text{ if } j > n, \sum_{k=2}^n x_k = 0\};$$

For $x \in V_n$, define

$$K_n x = \frac{1}{C_A b} \sum_{j=2}^n j x_j$$

It is easy to verify that V_n is $A + bK_n$ -invariant. Define

$$V = \bigcup_{n \in \mathbb{N}} V_n.$$

Any largest feedback-invariant subspace must contain V. It is clear that V is dense in

$$Z = \{ [x_j]_{j \in \mathbb{N}} \in D(A) \mid x_1 = 0, \ \sum_{j \in \mathbb{N}} x_j = 0 \}.$$

Since Z can also be written as (4.8), Theorem (4.1) implies that V is dense in c^{\perp} . However, $b \in c^{\perp}$ and so, from Theorem 2.3 the closure of V is not feedback invariant. Hence, no largest feedback-invariant subspace exists.

Acknowledgement: The research of K.A. Morris was supported by a grant from the Natural Sciences and Engineering Research Council of Canada. The research of R. Rebarber was partially supported by National Science Foundation Grant DMS-0206951.

REFERENCES

- C. Byrnes, I. Lauko, D. Gilliam and V. Shubov, "Zero Dynamics for Relative Degree One SISO Distributed Parameter Systems", *37th IEEE* Conference on Decision and Control, Vol. 3, pg. 2390 - 2391, 1998.
- [2] A. Cheng and K.A. Morris, "Accurate Zeros Approximation for Infinite-Dimensional Systems", 42nd IEEE Conference on Decision and Control, Honolulu, Hawaii, 2003.
- [3] R.F. Curtain, "Invariance Concepts in Infinite Dimensions", SIAM Jour. on Control and Optimiz., Vol. 24, No. 5, pg. 1009-1031, 1986.
- [4] R.F. Curtain and H. Zwart, An Introduction to Infinite-Dimensional Linear Systems Theory, Springer-Verlag, 1995.
- [5] J.C. Doyle, B.A. Francis and A.R. Tannenbaum, *Feedback Control Theory*, MacMillan Publishing Co., 1992.
- [6] J.R. Grad and K.A. Morris "Calculation of achievable broadband noise reduction using approximations", Engineering applications and computational algorithms (Guelph, ON, 2003), Dyn. Contin. Discrete Impuls. Syst. Ser. B Appl. Algorithms, suppl., pg. 438–443.
- [7] T. Kato, *Perturbation Theory for Linear Operators*, Springer-Verlag, 1980.
- [8] D.K. Lindner, K.M. Reichard, and L.M. Tarkenton, "Zeros of Modal Models of Flexible Structures", *IEEE Trans. on Automatic Control*, Vol. 38, No. 9, pg. 1384-1388, 1993.
- [9] K.A. Morris and R. Rebarber, "Feedback Invariance of SISO Infinite-Dimensional Systems", submitted.
- [10] L. Pandolfi, "Disturbance Decoupling and Invariant Subspaces for Delay Systems", *Applied Mathematics and Optimization*, Vol. 14, 1986, pg. 55-72.
- [11] R. Rebarber and S. Townley, "Robustness and Continuity of the Spectrum for Uncertain Distributed Parameter Systems", *Automatica*, Vol. 31, No. 11, pg. 1533-1546, 1995.
- [12] D. Salamon, Control and Observation of Neutral Systems, Pittman Advanced Publishing Program, Boston, 1984.
- [13] G. Weiss, "Transfer Functions of Regular Linear Systems. Part I", Trans. of the AMS, Vol. 342, No.2, pg. 827-854, 1994.
- [14] W.M. Wonham, Linear Multivariable Control: A Geometric Approach, Springer-Verlag, 1985.
- [15] K. Yosida, Functional Analysis, Springer-Verlag, New York, 1980.
- [16] H. Zwart, "Equivalence Between Open-Loop and Closed-Loop Invariance for Infinite-Dimensional Systems: A Frequency Domain Approach", *SIAM J. on Control and Optimization*, Vol. 26, No. 5, pg. 1175–1199, 1988.
- [17] H. Zwart, Geometric Theory for Infinite Dimensional Systems, Lecture Notes in Control and Information Sciences, Vol. 115, Springer Verlag, 1989.
- [18] H. Zwart, "On the Solution of the DDP in Infinite-Dimensional Systems", Signal processing, scattering and operator theory and numerical methods, Progr. Systems Control Theory, Vol. 5, Birkhauser Boston, pg. 363–372, 1990.