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Abstract— Biological systems which have been experimen-
tally verified to be robust to significant changes in their envi-
ronments require mathematical models which are themselves
robust. In this context, a necessary condition for model robust-
ness is that the model dynamics should not be extremely sensi-
tive to small variations in the model’s parameters. Robustness
analysis problems of this type have been extensively studied
in the field of robust control theory, and have been found to
be very difficult to solve in general. This paper describes how
tools from robust control theory and nonlinear optimisation
can be used to analyse the robustness of a recently proposed
model of the molecular network underlying adenosine 3’,5’-
cyclic monophosphate (cAMP) oscillations observed in fields
of chemotactic Dictyostelium discoideum cells. The network
model, which consists of a system of seven coupled nonlinear
differential equations, accurately reproduces the spontaneous
oscillations in cAMP observed during the early development of
D. discoideum. The analysis in this paper reveals, however, that
very small variations in the model parameters can effectively
destroy the required oscillatory dynamics.

I. INTRODUCTION

In [1], a network model of interacting proteins was
proposed that can account for the spontaneous oscillations
in adenlylate cyclase (ACA) activity that are observed
in homogenous populations of Dictyostelium cells four
hours after the initiation of development. Analyses of the
numerical solutions of the nonlinear differential equations
making up the model suggest that it faithfully reproduces
the observed periodic changes in adenosine 3’,5’-cyclic
monophosphate (cAMP). In particular, periods, amplitudes
and phase relations between oscillations in enzyme activities
and internal and external cAMP concentrations were seen
to agree well with experimental observations, [1].

In the recent literature, the issue of “robustness” in
biological systems has received considerable attention, see
for example [2] and references therein. In particular, it has
been widely acknowledged that, since biological systems
themselves are often extremely robust (loosely speaking,
easily able to cope with wide variations in environmental
conditions) the mathematical models developed to represent
them must also reflect this reality. In this context, model ro-
bustness thus relates to how insensitive the dynamics of the
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model are to variations in the values of its parameters that
correspond to realistic changes in environmental conditions.

Previous analyses of the robustness of the Laub-Loomis
Model have been carried out. In [1], the authors claim that
the required stable oscillatory behaviour of the model is
preserved even for 25-fold changes in the values of the
model parameters, and that such changes only have a minor
effect on the frequency of the resulting oscillations. Note,
however, that the above results are based on simulations
employing “trial and error” changes in one model para-
meter at a time. In [3], similar results are reported for
one-parameter-at-a-time variations, using a more system-
atic bifurcation analysis. In the same paper, simultaneous
variations in all model parameters are also considered, and
the results indicate that the model dynamics are insensitive
to simultaneous parameter variations of up to ±8%. In this
paper, we extend the analysis employed in [3] to reveal
that, in fact, very small simultaneous variations in model
parameters can result in dramatic changes in the model’s
dynamics.

II. THE OSCILLATING BIOCHEMICAL NETWORK
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Fig. 1. Laub-Loomis biochemical network model for spontaneous
oscillations in excitable cells of Dictyostelium [1].

The Laub-Loomis model for the oscillating biochemical
network studied in this paper is shown in Figure 1. In
this model, pulses of cAMP are produced when ACA is
activated after the binding of extracellular cAMP to the sur-
face receptor CAR1. When cAMP accumulates internally, it
activates the protein kinase PKA. Ligand-bound CAR1 also
activates the MAP kinase ERK2. ERK2 is then activated by
PKA and no longer inhibits the cAMP phosphodiesterase
REG A. A protein phosphatase activates REG A such
that REG A can hydrolyse internal cAMP. When REG A
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TABLE I

The kinetic constants : nominal values

Parameter Nominal Parameter Nominal
Value Value

k1 [1/min] 2.0 k8 [1/(Mol min)] 1.3
k2 [1/(Mol min)] 0.9 k9 [1/min] 0.3
k3 [1/min] 2.5 k10 [1/(Mol min)] 0.8
k4 [1/min] 1.5 k11 [1/min] 0.7
k5 [1/min] 0.6 k12 [1/min] 4.9
k6 [1/(Mol min)] 0.8 k13 [1/min] 23.0
k7 [Mol/min] 1.0 k14 [1/min] 4.5

hydrolyses the internal cAMP, PKA activity is inhibited by
its regulatory subunit, and the activities of both ACA and
ERK2 go up. Secreted cAMP diffuses between cells before
being degraded by the secreted phosphodiesterase PDE. The
set of nonlinear differential equations proposed to describe
the above dynamics is given by ([1], [3])

ẋ1 = k1x7 − k2x1x2

ẋ2 = k3x5 − k4x2

ẋ3 = k5x7 − k6x2x3

ẋ4 = k7 − k8x3x4

ẋ5 = k9x1 − k10x4x5

ẋ6 = k11x1 − k12x6

ẋ7 = k13x6 − k14x7

(1)

where ẋi is the differentiation of xi with respect to time,
i.e., ẋi = dxi/dt, x1 is ACA, x2 is PKA, x3 is ERK2, x4

is REG A, x5 is internal cAMP, x6 is external cAMP, and
x7 is CAR1. The nominal values for the kinetic constants,
ki, are given in Table I. Note that the above parameter
values are slightly different to those given in [1]. This is
because, as discussed in [3], the original paper contained
some typographical errors. The values given above are those
used in the previous analyses of [3], and are also those given
on the website for the Laub-Loomis Model, http://www-
biology.ucsd.edu/labs/loomis/network/laubloomis.html.

III. ROBUSTNESS ANALYSIS

Two methods for the analysis of uncertain system are
used to evaluate the robustness of the biochemical network
model to simultaneous variations in its parameters. The first
employs the structured singular value µ, a tool developed in
the field of robust control theory to measure the robustness
of feedback control systems to various forms of uncertainty.
The second uses a recently developed hybrid global/local
optimisation algorithm to search for the smallest variation in
the model parameters which drives the states of the system
to a stable equilibrium point.

A. µ-Analysis

The structured singular value µ is defined as:

1
µ
� min

∆
{σ̄(∆)|det(I − M(s)∆) = 0 for ∆ ∈ B∆} (2)

where σ̄(·) denotes the maximum singular value, and B∆ is a
set of possibly real and/or complex uncertainties ∆, which in
general has some structure. In words, the structured singular
value is defined as the inverse of the smallest possible
uncertainty ∆ which will destabilise the closed loop system
shown in Figure 2.

M(s)

∆

w = ∆y y

Fig. 2. M-∆ structure for µ-analysis.

For our particular problem, B∆ will be seen to be a diag-
onal matrix of real scalars, since the “uncertain” parameters
in our system are the kinetic constants represented by the
real coefficients ki in the model’s differential equations.
More details about µ-analysis can be found in [4] and [5] -
here, we mention briefly only two important issues. Firstly,
since µ-analysis is usually used to assess the robustness of
stable linear time-invariant (LTI) systems, our oscillatory
nonlinear model must be suitably transformed via a number
of steps, which are described below. Secondly, the exact
computation of µ is in general a non-polynomial (NP)
time problem, which means that for large numbers of
uncertainties we must settle for computing upper and lower
bounds on µ. As discussed below, difficulties can arise in
computing tight bounds on µ, depending on the number and
type of uncertainties present in the system.

We now describe the process of transforming the non-
linear oscillatory model into a form which can be used for
µ-analysis. Let the original nonlinear differential equations,
(1), be written in compact form as

ẋ = f (x, k) (3)

where x = [ x1, x2, . . . , x7 ]T , k = [ k1, k2, . . . , k14 ]T , f (·, ·)
is given by (1), and the superscript T is the transpose of
a vector or matrix. With the nominal values of k, which
are given in Table I, the model exhibits stable limit cycle
trajectories with a period of approximately 7.31 minutes in
all states. To obtain the limit cycle model, the following
harmonic balance method is used: first, the solution follow-
ing the limit cycle, i.e., the nominal trajectory x∗i (t), can be
written as

x∗i (t) = a0,i +

∞∑
n=1

an,i cos

(
2πnt

T
+ φn,i

)
(4)

for i = 1, 2, . . . , 7. Since the oscillations of the states of
the system are closely approximated by simple harmonic
oscillations with a constant offset, only the first two terms of
the Fourier series are used. The substitution of this Fourier
series into the original equations leads to a series of real
algebraic equations for the coefficients, which can easily be
solved using standard numerical software packages. Now,
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the nonlinear differential equation can be linearised about
the nominal solution, x∗(t) = [ x∗1(t), x∗2(t), . . . , x∗7(t) ]T . To
do this, the solution is perturbed as follows:

x(t) = x∗(t) + δx(t) (5)

where δx(t) is an arbitrary small perturbation away from
x∗(t). Differentiating both sides with respect to time yields

ẋ(t) = ẋ∗(t) + δẋ(t) = f (x∗(t), k) + δẋ(t) (6)

Note that δẋ(t) is not the small perturbation of ẋ(t) but the
differentiation of δx(t) with respect to time, which can be
approximated as follows:

δẋ(t) ≈
∂ f (x∗(t), k)
∂x∗(t)

δx(t) (7)

where the Jacobian, ∂ f (x∗(t), k)/∂x∗(t), is equal to
∂ f (x(t), k)/∂x(t) and we have substituted x(t) for x∗(t). We
now write k as:

ki = k̄i(1 + δi) (8)

where the nominal values, k̄i, i.e., when the δi are equal to
zero, are given in Table I for i = 1, 2, . . . , 14. Now, since the
Jacobian is a function of k, it can be decoupled as follows:

∂ f (x∗(t), k)
∂x∗(t)

= A0(x∗(t), k̄) + B0∆̃C0(x∗(t), k̄) (9)

where A0(x∗(t), k̄) is the Jacobian matrix with all parameters
at their nominal value, and ∆̃ is a diagonal matrix containing
all the uncertainties δi given by

∆̃ = diag[ δ1, δ2I2, δ3, δ4, δ5, δ6I2, δ8I2, δ9

δ10I2, δ11, δ12, δ13, δ14 ]
(10)

where I2 is 2×2 identity matrix. Note that δ2, δ6, δ8, and δ10

are repeated two times, respectively and the dimension of ∆̃
is therefore 17 even though the actual number of uncertain
parameters is 13. Note also that because k7 in (1) is not
multiplied by any xi, the Jacobian is not a function of k7

and thus this parameter does not appear in the uncertain
matrix. Expressions for A0(x∗(t), k̄), B0, and C0(x∗(t), k̄)
above can be found in [3]. In this study, we have used
matrix manipulations to reduce the dimension of ∆̃ to its
minimal size of 13, to give:

∆̃ = diag[ δ1, δ2, δ3, δ4, δ5, δ6, δ8, δ9

δ10, δ11, δ12, δ13, δ14 ]
(11)

For this ∆̃, the corresponding A0(x∗(t), k̄) remains the same
as before, i.e., the Jacobian of (1) evaluated at x(t) = x∗(t).
However, the B0 and C0(x∗(t), k̄) matrices are changed to:

B0(i, j) = 1 (12)

for (i, j) equal to (1, 1), (2, 3), (3, 5), (5, 8), (6, 10), (7, 12),

B0(i, j) = −1 (13)

for (i, j) equal to (1, 2), (2, 4), (3, 6), (4, 7), (5, 9), (6, 11),
(7, 13), and otherwise B0(i, j) is equal to zero, where B0(i, j) is

the i-th row j-th column element of B0 and the size of B0

is 7×13. C0(x∗(t), k̄) is a 13×7 matrix, which is given by

C0(1,7) = k̄1, C0(2,1) = k̄2x∗2(t), C0(2,2) = k̄2x∗1(t),

C0(3,5) = k̄3, C0(4,2) = k̄4, C0(5,7) = k̄5,

C0(6,2) = k̄6x∗3(t), C0(6,3) = k̄6x∗2(t),

C0(7,3) = k̄8x∗4(t), C0(7,4) = k̄8x∗3(t),

C0(8,1) = k̄9, C0(9,4) = k̄10x∗5(t),

C0(9,5) = k̄10x∗4(t), C0(10,1) = k̄11,C0(11,1) = k̄12,

C0(12,6) = k̄13, C0(13,7) = k̄14,

(14)

and otherwise C0(i, j) (x∗(t), k̄) is equal to zero. As a result, the
linear time varying differential equation for the perturbation
is given by

δẋ(t) = A0(x∗(t), k̄)δx(t) + B0w̃(t) (15a)

ỹ(t) = C0(x∗(t), k̄)δx(t) (15b)

where w̃(t) = ∆̃ỹ(t). Note that A0 and C0 are state dependent,
i.e., time varying matrices. Because 1/µ is defined as the
smallest norm of ∆̃ such that (15) is destabilised, the
smallest destabilising perturbation in k is sought in µ-
analysis. Then, whenever the perturbation in k is inside this
norm bound, the perturbation δx(t) goes to zero as time
increases. As a result, the original limit cycle will be stable
and robust with respect to perturbations in k. However, to
apply standard µ-analysis tools, all the matrices in (15) must
be constant. To this end, the following further steps are
required. Using a zero-order hold with a sampling time, h
equal to T/n, where n is initially chosen equal to eight, (15)
can be discretised as follows:

δx(κ + 1) = Ad(κ, k̄)δx(κ) + Bd(κ, k̄)w̃(κ) (16a)

y(κ) = Cd(κ, k̄)δx(κ) (16b)

where

Ad(κ, k̄) = Φ((κ + 1)h, κh) (17a)

Bd(κ, k̄) =
∫ (κ+1)h

κh
Φ((κ + 1)h, t)B0 dt (17b)

Cd(κ, k̄) = C0(x∗(κh), k) (17c)

and the state transition matrix, Φ(·, ·) is given by

Φ((κ + 1)h, κh) = e
∫ (κ+1)h

κh
A0(x∗(κh),k̄) dt (18)

Since Ad, Bd and Cd are function of x∗(κh) and k̄, and x∗(κh)
is periodic, the matrices Ad, Bd and Cd are also periodic.
Now, using a techniques called “lifting”, [6], these periodic
matrices can be written as constant matrices, as follows.
Without loss of generality, assume that κ = 1, then

δx(2) = Ad(1, k̄)δx(1) + Bd(1, k̄)w̃(1) (19a)

ỹ(1) = Cd(1, k̄)δx(1) (19b)

and at κ = 2

δx(3) = Ad(2, k̄)δx(2) + Bd(2, k̄)w̃(2) (20)

6236



Now, substituting (19a) into (20) we get

δx(3) =

⎛⎜⎜⎜⎜⎜⎜⎝
2∏
κ=1

Ad(κ, k̄)

⎞⎟⎟⎟⎟⎟⎟⎠δx(1)

+
[
Ad(2, k̄)Bd(1, k̄), Bd(2, k̄)

]
w̃2

1

(21)

where
2∏
κ=1

Ad(κ) = Ad(2)Ad(1) (22a)

w̃2
1 =
[
w̃T (1), w̃T (2)

]T
(22b)

Note that the sequence of multiplication cannot be changed
in general. Now, w̃2

1 is equal to ∆̃2ỹ2
1, ∆̃2 = diag

[
∆̃, ∆̃

]
, and

we define the accumulated output as follows:

ỹ2
1 =

[
Cd(1)

Cd(2)Ad(1)

]
δx(1) +

[
0 0

Cd(2)Bd(1) 0

]
w̃2

1 (23)

Repeating this procedure until κ equals n, which is the
number of sample points in one period of the limit cycle,
the following equations are obtained:

δx(κ + n) = Ãd δx(κ) + B̃d w̃κ+n
κ (24a)

ỹκ+n
κ = C̃d δx(κ) + D̃d w̃κ+n

κ (24b)

where

w̃κ+n
κ =

[
w̃T (k), w̃T (k + 1), . . . ,

. . . , w̃T (k + n − 1), w̃T (k + n)
]T
,

(25)

w̃κ+n
κ is equal to ∆̃nỹκ+n

κ , and ∆̃n is the block diagonal matrix
with ∆̃ repeated n-times. Note that all the matrices, Ãd, B̃d,
C̃d, and D̃d, are time-invariant. Since the same ∆̃ is repeated
n-times, we can rearrange the ∆̃ as follows:

∆ = diag[ δ1In, δ2In, δ3In, δ4In, δ5In, δ6In,

δ8In, δ9In, δ10In, δ11In, δ12In, δ13In, δ14In ]
(26)

by defining the row re-ordering matrix F such that

F∆̃n = ∆F (27)

where FT F = I17n. Thus, Equation (24) is transformed into:

δx(κ + n) = Ãd δx(κ) + B̃dFT wκ+n
κ (28a)

yκ+n
κ = FC̃d δx(κ) + FD̃d FT wκ+n

κ (28b)

where yκ+n
κ = Fỹκ+n

κ , and wκ+n
κ is equal to ∆ yκ+n

κ . Finally,
using a zero-order hold or some other sampling methods,
Equation (28) is transformed back to the continuous time
domain with the sampling time T , to give

δẋ(t) = A δx(t) + B w(t) (29a)

ỹ(t) = C δx(t) + D w(t) (29b)

where w(t) is equal to ∆ y(t). Thus, a linear time-invariant
system is obtained in the standard form so that µ-analysis
techniques can be applied. M(s) in Figure 2 is given by

M(s) = C (sI − A)−1 B + D (30)
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Now, the final issue to be resolved concerns the effect
of varying the number of samples in one period, i.e., n,
on the final LTI system. Figure 3 shows the variation in
the distance of the two closest eigenvalues of the nominal
system from the imaginary axis with respect to the number
of samples in one period. For example, for n equal to eight
the eigenvalues of the nominal system, i.e., the eigenvalues
of A, are given by

λ1 = −0.0019, λ2 = −0.0078, λ3,4,5,6,7 = −0.2703 (31)

However, for n equal to 39, the eigenvalues are given by

λ1 = −0.0030, λ2 = −0.0074, λ3,4,5,6,7 = −0.2703 (32)

Since, as can be seen from Figure 3, the position of the
eigenvalues is almost completely unchanged for n ≥ 39,
this value was used for the subsequent µ bound computa-
tions. Application of the standard algorithms for computing
bounds on µ, [4], to the above system produced the results
shown in Figure 4. The inverse of the peak of the upper
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bound on µ provides a maximum allowable level of uncer-
tainty for which stable oscillations in the original nonlinear
system are guaranteed to persist. From the figure, however,
this corresponds to a maximum allowable percentage varia-
tion in the parameters ki of only 1/842 = 0.12%, indicating
(possibly) very poor robustness indeed. Unfortunately, due
to the large number of repeated real parameters in the ∆
matrix, the µ lower bound algorithms fail to converge and
for the frequency range in the figure are all zero everywhere.
It is thus not possible to definitively establish from this
analysis whether the indicated lack of robustness is in fact
true (µ is close to its upper bound), or not (µ is much
smaller than the computed upper bound, i.e. the upper
bound is conservative). It is of particular interest to resolve
this issue since these results differ significantly from the
analysis of [3], which proposed maximum allowable per-
centage variations in the parameters ki of 8.3%. In the next
section we resolve this issue by using a recently developed
hybrid global/local optimisation algorithm to search for the
smallest variation in the model parameters which drives the
states of the nonlinear model to a stable equilibrium point.
As will be seen, the possible lack of robustness indicated by
the above analysis is in fact very close to the true situation.

B. Hybrid Optimisation

In robustness analysis, optimisation algorithms can be
used to search for particular combinations of parameters
in the “uncertain parameter space” which maximise or
minimise a particular cost function. Local optimisation
methods, e.g. sequential quadratic programming (SQP), [7],
that use gradient information are computationally efficient
but can, of course, easily get locked into local optima in
the case of multimodal search spaces. Global optimisation
methods such as Genetic Algorithms (GAs) [8], on the
other hand, use stochastic search and evolutionary principles
to try to approach the true global optimum, albeit at the
cost of vastly increased computation times. In the recent
literature, several researchers have proposed combining the
two approaches, ([9], [10]), and in [11], some guidelines are
provided on designing hybrid GAs, along with experimental
results and supporting mathematical analysis. In the present
application, a probabilistic switching scheme based on that
proposed in [11] is used. The scheme is based on the
idea of associating a reward (or gain) with each method
which reflects the effectiveness of that method at each
iteration. The reward associated with each method then
determines the probability of that method being chosen at
the next iteration. A simple way to assign a reward is with
a weighted geometric average [11]:

Wk+1
GA or Local = Wk

GA or Local(1 − c) + cRk
GA or Local (33)

where Wk denotes the weighted reward, Rk is the reward at
the iteration k, and c is a constant in [0, 1], which is a design
parameter. The resulting switching algorithm is summarised
in Table II. To avoid getting trapped in local optima, at the
beginning of the optimisation the GA should have a higher

TABLE II

Hybrid Genetic Algorithm

1) Initialize W0
GA = 0.9, W0

Local = 0.1, c = 0.3, k = 1, set
the calculation mode “Search”, the number of confirmation
zero, and generate initial population for GA

2) While the confirmation number is less than a certain number
(e.g. 20)

a) Calculate Pk
GA, (34)

b) (Flip Coin) = a random number between zero and one
c) If (Flip Coin) < Pk

GA then run GA and update Wk
GA,

(33)
d) else choose the local algorithm with the following

initial guess
i) If the calculation mode is “Search”, choose one

randomly from two best in the population,
ii) else choose one randomly from the subset of pop-

ulation where the distance of each element from
the current best is out of 1σ (standard deviation of
the population from the current best)

iii) Update Wk
Local, (33)

e) If the cost does not improve,
i) Initialize the following every five confirmation:

population, W0
GA = 0.5, W0

Local = 0.5, c = 0.6 and
set calculation mode equal to “Confirm”

ii) Increase the number of confirmation
f) else set the number of confirmation equal to zero

3) end of While

probability to be chosen than the local algorithm. Hence,
initially the weights for the GA and the local algorithm
are given as 0.9 and 0.1, respectively. The HGA scheme
starts from a randomly generated population of candidates.
The initial guess for the local algorithm is taken from the
population depending on the calculation mode. There are
two modes in the algorithm, search and confirm. In search
mode, the initial guess is chosen from the two best in the
population. In confirm mode, the initial guess is chosen
from a subset of the population, chosen to be far away from
the current best. From here onwards the decision-making
is done based on probability matching depending on the
rewards associated with each of the optimisation schemes.
The probability of selecting the GA at any iteration can be
calculated from the following equation [11]:

Pk
GA = Wk

GA/
(
Wk

GA +Wk
Local

)
(34)

A random number generator simulates a coin toss and
depending on the result one of the optimisation schemes is
chosen and proceeded with. If the scheme chosen is global
optimisation, it proceeds with only one generation. If the
local scheme is chosen, then the optimisation runs until it
either converges or reaches the defined maximum number
of cost function evaluations. At the end of a run of either of
the optimisation schemes, the improvement achieved above
the value of the best solution prior to the optimisation run
is checked. The reward for a particular, local or global,
optimisation is assigned, the probabilities are updated and
the sequence is repeated until no improvement occurs from
either of the two methods. To apply the hybrid algorithm to
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test the robustness of the model’s limit cycle the following
cost function is defined to be minimized:

min
δ∈∆

J =
1
2

∫ t=t f

t=t0

ẋ2
1 dt (35)

where δ = [δ1, δ2, . . . , δ14]T , ∆ = (pδ/100)diag[δ], δi ∈

[−1, 1] for i = 1, 2, . . . , 14, pδ is in the range of [0, ∞), and
t0 and t f are chosen as 600 and 1200 minutes, respectively.
Note that δ now includes all δi from i = 1 to 14 unlike in
the µ-analysis where δ7 could not be included. The reason
for this choice of cost function is that the state derivative
has to be zero whenever the limit cycle does not exist. The
nonzero initial integration lower bound, t0 = 600 minutes, is
chosen to reduce the effect of initial transient responses on
the cost function optimisation. Hence, the hybrid algorithm
tries to find a δ combination for the given boundary of pδ,
which minimises the cost function. After the minimum is
found by the algorithm, it should be checked whether the
state converges to an equilibrium point or not by integrating
the nonlinear differential equations with the given values for
the ki for a number of different initial conditions. Depending
on the existence of a limit cycle, pδ is then increased or
decreased until the minimum pδ, denoted p∗δ, is found to
whatever desired accuracy. Results of the application of the
hybrid optimisation algorithm are shown in Figure 5, which
shows ACA trajectories with the optimal combination of
uncertainties inside the set ∆ for three different values of
pδ. For all three cases, the optimal δ minimising the cost J
occurs at the same boundary point, i.e.,

δ∗ = [−1,−1, 1, 1,−1, 1, 1,−1, 1, 1,−1, 1,−1, 1] (36)

From the figure, it can be clearly seen that even for pδ
equal to 0.6 (corresponding to ± 0.6% variations in the
parameters) the optimisation algorithm is able to find a
parameter combination that destroys the limit cycle in the
network model. As the allowable variation in the model
parameters is increased, the rate of decay of the oscillations
becomes even more rapid - for a ±2% variation the oscilla-
tions have completely ceased in less than 6 hours, whereas
in laboratory experiments Dictyostelium cells were observed
to oscillate with a constant amplitude for 12-18 hours before
they formed a spore. Thus our results confirm the poor
robustness properties indicated in the previous µ-analysis,
i.e. extremely small changes in the values of the model’s
parameters can destroy the required oscillatory behaviour.

IV. CONCLUSIONS

The observed ability of many biological systems to cope
with large changes in their environments requires that the
mathematical models proposed to represent their dynamics
should do so robustly, i.e. their dynamics should not be
extremely sensitive to small changes in the values of the
model’s parameters. In this paper, the robustness of a re-
cently proposed model of the molecular network underlying
adenosine 3’,5’-cyclic monophosphate (cAMP) oscillations
observed in fields of chemotactic Dictyostelium discoideum
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Fig. 5. Effect of different levels of parameter variation on oscillatory
behaviour

cells was evaluated. The analysis of the model revealed an
extreme lack of robustness to variations in the values of
its parameters. In the original paper proposing the model,
the authors provide biochemical explanations for the choice
of nominal values for only four of the fourteen parameters
in the model - the nominal values of all other parameters
were chosen by trial and error in order to match the model
dynamics with the experimental data. An interesting open
question is, therefore, whether a different set of nominal
values for the model parameters could be found which
would replicate the required oscillatory dynamics and also
provide the required level of robustness.
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