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Abstract— This paper formalizes a methodology based on
Kriging, a technique developped by geostatisticians, for esti-
mating derivatives and integrals of signals that are only known
via possibly irregularly spaced and noisy observations. This
finds direct applications, e.g., in system identification when
differential algebra is used to express parameters as nonlinear
functions of the inputs and outputs and their derivatives. The
procedure is quite simple to implement, and allows confidence
intervals on the predicted values to be derived.

I. INTRODUCTION

Let f∗(x) be a real function defined on some com-

pact set X ⊂ R
d. The problem to be considered here

is the estimation of the derivative (or the integral) of f ∗

at any given x ∈ X from a finite set of observations

S = {(xi, f
obs
xi

), i = 1, . . . , n}. These observations may

be corrupted by (not necessarily white) noise, so f obs
xi

is

not equal to f(xi) in general. Moreover, the observations

need not be regularly sampled. Such a problem is frequently

encountered in system identification and control, for instance

when algebraic differential methods are used to express

parameters as nonlinear functions of the input and outputs

and their derivatives, see, e.g., [1], [4].

The methodology to be presented is based upon techniques

developed by Geostatisticians and known as Kriging and

Intrinsic Kriging. The possibility of estimating derivatives

and integrals via Kriging has already been suggested in

the context of Geostatistics [2] and we would like to call

the attention of the control community on its simplicity,

pertinence and performances. This paper will consist of two

parts. The first one will briefly recall the theory of Kriging

and Intrinsic Kriging, before considering the estimation of

derivatives and integrals with these methods. To the best

of our knowledge, the mathematical formalization of the

prediction of derivatives and integrals with intrinsic Kriging

had never been published. The second part of the paper

provides illustrative examples.

II. FROM LINEAR PREDICTION TO THE ESTIMATION OF

DERIVATIVES AND INTEGRALS

A. Random Processes and Kriging

Kriging can be used to approximate or interpolate data,

just as splines do. See, for instance, [2], [3], [6], [9]. As

splines, it is a kernel regression method [10], [13]. Its

specificity is that the kernel is chosen after a statistical

analysis of the data. Let (Ω,A, P) be a probability space and

L2(Ω,A, P) be the set of second-order real-valued random

variables defined on (Ω,A, P).

Definition 1: The set of all random variables F (ω, x) ∈
L2(Ω,A, P) obtained when x runs through X is called a

second-order random process with parameter x ∈ X.

Let m(x) = E[F (x)] be the mean of F (x), and k(x, y) =
cov(F (x), F (y)) = E[(F (x) − m(x))(F (y) − m(y))] be

its covariance function. The covariance function is positive
since

var

[ n∑
i=1

λiF (xi)

]
=

n∑
i,j=1

λiλjk(xi, xj) ≥ 0 ,

for all λi ∈ R, xi ∈ X and n > 0.

Let F1(x), . . . , Fq(x) be random processes defined on

the same probability space and parameter space X. Let

mα(x) be the mean of Fα(x) and kα,β(x, y) be the co-

variance E[(Fα(x) − mα(x))(Fβ(y) − mβ(y))], α, β ∈
{1, . . . , q}. Note that kα,β(x, y) = kβ,α(y, x) but in general

kα,β(x, y) �= kα,β(y, x).

Assume, for the time being, that f ∗(x) is a trajectory
of F (x) (i.e., there exists ω ∈ Ω such that F (ω, x) =
f∗(x) for all x ∈ X) and that the observations are noise-

free. Each fobs
xi

= f∗(xi) is then a realization of the

random variable F (xi). The data S can then be inter-

polated by predicting F (x) given the random variables

F (x1), . . . , F (xn), which amounts to finding a function

F̂ (x) of F (x1), . . . , F (xn) that minimizes F (x) − F̂ (x)
in some sense. A predicted value is obtained by replacing

the random variables F (x1), . . . F (xn) by their realizations

fobs
1 , . . . , fobs

n in the expression of F̂ (x) (ω remaining

uncertain). Consider the class of linear predictors, which can

be written as

F̂ (x) =

n∑
i=1

λ̂i,xF (xi) .

Assume, moreover, that F (x) is a zero-mean process

(m(x) = 0, ∀x ∈ X), an hypothesis that will be relaxed in

Section II-B. The best predictor or Kriging predictor F̂ (x) of

F (x) is the orthogonal projection of F (x) onto the subspace

HS = span{F (xi), i = 1, . . . , n} .
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Since

(F (x) − F̂ (x), F (xi))L2(Ω,A,P) = 0 ⇒

k(x, xi) −
n∑

j=1

λ̂j,xk(xj , xi) = 0 , (1)

for i = 1, . . . , n, the scalars λ̂i,x, i = 1, . . . , n, are obtained

by solving a linear system of equations.

Proposition 1 (Kriging): Let F1(x), . . . , Fq(x) be

second-order random processes, with zero mean, and

covariance functions kα,β(x, y). The best predictor of Fα(x)
from Fαi

(xi), i = 1, . . . , n, is the orthogonal projection of

Fα(x) onto HS = span{Fαi
(xi), i = 1, . . . , n}, written as

F̂α(x) =

n∑
i=1

λ̂i,xFαi
(xi) , (2)

where the λ̂i,xs are the solution of the linear system1 of

equations

Kλ̂x = kx . (3)

In (3), K is the n×n covariance matrix of the random vector

FS = (Fα1
(x1), . . . , Fαn

(xn))T, λ̂x = (λ̂1,x, . . . , λ̂n,x)T

is the vector of the Kriging coefficients, and kx =
(kα,α1

(x, x1), . . . , kα,αn
(x, xn))T is the covariance vector

of FS and Fα(x). Confidence intervals are obtained by

evaluating the variance of Fα(x) − F̂α(x).

B. Intrinsic Kriging and Intrinsic Random Functions

Intrinsic Kriging (IK) [8] extends linear prediction to the

case where the mean of F (x) is unknown. In this framework,

the function f∗ generating the data is assumed to fluctuate

around m(x), which can be written as a linear parametric

function bTr(x), where b and r(x) are l-dimensional vec-

tors. Let N be the vector space {bTr(x), b ∈ R
l} and F (x)

be a random process with mean m(x) ∈ N . The main idea

of IK is to find some linear transformations of F (x) filtering
out the mean so as to consider a zero-mean process again.

We first recall the notion of generalized random processes.

Let Λ̃ be the vector space of finite-support measures, i.e. the

space of linear combinations
∑n

i=1 λiδxi
, where δx stands

for the Dirac measure, such that for any B ⊂ X, δx(B)
equals one if x ∈ B and zero otherwise. Let Λ̃N⊥ be the

subset of the elements of Λ̃ that vanish on N . Thus, λ ∈ Λ̃
implies

〈λ, f〉 :=

n∑
i=1

λif(xi) = 0 , ∀ f ∈ N .

Definition 2: A symmetric function k : X × X → R is

conditionally positive with respect to N if, for all λ ∈ Λ̃N⊥ ,

k(λ, λ) ≥ 0, where k(λ, µ), λ, µ ∈ Λ̃N⊥ , is defined by

k(λ, µ) :=

n,m∑
i,j=1

λiµjk(xi, yj) .

1K in (3) is generally a full rank matrix since covariances are most
often positive definite functions. However, adapted solving techniques such
as rank reduction must be used when the condition number of K is large,
which may happen for instance when two observations are close in the space
of factors.

If, moreover, k(λ, λ) = 0 implies λ = 0, for all λ ∈ Λ̃N⊥ ,

then k(x, y) is conditionally positive definite.

Let FG(λ) be a linear application defined on Λ̃N⊥ , with

values in L2(Ω,A, P). Assume that FG(λ) is zero-mean for

all λ and that cov[FG(λ), FG(µ)] = k(λ, µ), where k(x, y)
is a conditionally positive definite function. Then, FG(λ) is

called a generalized random process. Such a random process

is no longer defined on X but on a space of measures, and

k(x, y) is called a generalized covariance (see Section II-

E). Let H̃N⊥ be the subspace of L2(Ω,A, P) generated by

FG(λ), λ ∈ Λ̃N⊥ . Since random variables in H̃N⊥ are zero-

mean, the inner product of L2(Ω,A, P) can be expressed in

H̃N⊥ as

(FG(λ), FG(µ))L2(Ω,A,P) = k(λ, µ) =
∑
i,j

λiµjk(xi, yj) ,

where λ =
∑

i λiδxi
and µ =

∑
j µjδyj

are in Λ̃N⊥ . Thus,

the bilinear form k(λ, µ) endows Λ̃N⊥ and H̃N⊥ with a

structure of pre-Hilbert space. The completions HN⊥ and

ΛN⊥ of H̃N⊥ and Λ̃N⊥ under this inner product define

isomorphic Hilbert spaces. FG(λ) can be extended on ΛN⊥

by continuity. The generalized random process FG(λ) is used

as a random model. Simplifying hypotheses are introduced

in the next paragraph.

Intrinsic Random Functions (IRF) are obtained when gen-

eralized random processes are endowed with a stationarity

property. IRF are flexible models to use since unknown

means can be conveniently dealt with and stationarity makes

the inference of the parameters of their (generalized) covari-

ance function feasible. Let τh : Λ̃N⊥ → Λ̃ be the translation

operator such that for λ =
∑

i λiδxi
∈ Λ̃N⊥ , τhλ =∑

i λiδxi+h. Assume that Λ̃N⊥ is stable under translation. N
must therefore be itself a stable space of functions under τh.

Assume further that the generalized covariance k(x, y) is

invariant by translation. In the following, we shall write k(h)
with h = x − y instead of k(x, y), when the covariance is

assumed to be stationary. Then τh is continuous and can be

uniquely extended on ΛN⊥ .

Definition 3: Let FG(λ) be a zero-mean generalized ran-

dom process defined on ΛN⊥ , with stationary generalized

covariance k(h). The random process h 
→ F (τhλ), λ ∈
ΛN⊥ , is therefore weakly stationary. FG(λ), λ ∈ ΛN⊥ , is

then an Intrinsic Random Function.

The stability of N under the group of translations im-

plies that N is necessarily a vector space of exponential–
polynomial functions [7]. Such a space is generated by

functions that can be written as xleaTx, where a is a real

or complex vector, l is the vector-valued index (l1, . . . , ld)
and xl = xl1

[1] · · ·x
ld
[d]. (For a vector-valued index l, we shall

write |l| = l1 + · · · + lq.) For N to be stable by linear

combinations and translations, the monomials xl must form

a complete basis. We restrict ourselves to the case where N
is a vector space of polynomials of degree at most equal to l.

Let Nl = span{xl, ∀ l such that |l| ≤ l} and Λ̃l = Λ̃N⊥
l

.

Let Λl be a completion of Λ̃l under the inner product k(λ, µ).
If the IRF FG(λ) is defined on Λl, FG(λ) is an IRF of order l,
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or IRF(l) in short.

Proposition 2: Any IRF(l) is an IRF(l + 1).
Proof: This follows from the fact that the spaces Λl

are nested:

Λl+1 ⊂ Λl ,

and that any IRF FG(λ) defined on Λl will be stationary on

Λl+1.

Remark: Λl can be viewed as a set of finite-difference (in-

crement) type operators. The condition for λ =
∑n

i=1 λiδxi

to be in Λ0 can be expressed as
∑n

i=1 λi = 0. Thus, λ =∑n
i=1 λi(δxi

−δx1
), so λ is a linear combination of increment

measures δxi
− δx1

. For l > 0, generalized increments

are obtained. Note that if X is a space of dimension d, a

minimum of
(
d+l

l

)
points have to be taken to fully specify

an element of Λl.

A generalized random process can be viewed as a class of

equivalence of random processes defined on X with mean in

N . If F (x), x ∈ X, is a second-order random process, with

mean in N and covariance k(x, y), the linear application

F : Λ̃N⊥ → H
λ =

∑n
i=1 λiδxi


→ F (λ) =
∑n

i=1 λiF (xi) ,

extends F (x) on Λ̃N⊥ , where H stands for the Hilbert space

generated by F (x), x ∈ X. Since the mean of F (x) is in

N , F (λ), λ ∈ ΛN⊥ , is a zero-mean random variable, as λ

filters out any function of N . Assume that k(x, y) is positive

definite. Then (λ, µ)Λ̃
N⊥

:= (F (λ), F (µ))H defines an inner

product on Λ̃N⊥ . Let ΛN⊥ be the completion of Λ̃N⊥ under

this inner product and extend F (λ) on ΛN⊥ by continuity.

A generalized random process is thus obtained. The next

paragraph indicates how the procedure may be reversed.

Definition 4: Let FG(λ) be a generalized random process

defined on ΛN⊥ . A second-order random process F (x), x ∈
X, is a representation of FG(λ) if

FG(λ) = F (λ), ∀λ ∈ ΛN⊥ .

If FG(λ) is an IRF(l), its representations can be written

explicitly by taking appropriate measures λ ∈ Λl [8]. If

F0(x) is any representation of FG(λ), other representations

of FG(λ) can be written as

F (x) = F0(x) +

q∑
i=1

Bipi(x) , (4)

where the pis form a basis of Nl and the Bis are any second-

order random variables [8]. Thus, the representations of an

IRF(l) constitutes a class of random processes with mean in

Nl.

C. Derivation

In this section the notion of derivative of an IRF is

developed. The aim is to estimate the derivative of a function

f∗ modeled by an IRF(l), which means that f ∗ comprises

an unknown polynomial drift of degree at most equal to l.

To simplify presentation, assume that x ∈ R . Extension to

the multi-dimensional case is straightforward.

Recall that a zero-mean stationary second-order random

process F (x) with covariance function k(h) is mean-square

differentiable at x if

Fh(x) =
1

h
(F (x + h) − F (x)) (5)

converges in mean square when h → 0. The limit exists

if and only if k(2)(0) exists, and F (x) is then mean-

square differentiable at all x. The limit process is called

the derivative process and denoted by F (1)(x). Higher-order

derivatives are obtained by iteration, and it is straightforward

to check that

cov[F (q)(x), F (r)(y)] = (−1)(r)k(q+r)(x − y) . (6)

Let FG(λ) be an IRF(l), with generalized covariance k(h).
The difficulty for defining the derivative of FG(λ) lies in the

fact that neither FG(λ) nor its derivatives can be defined

point-wise. Thus, the notion of differentiability cannot be

defined using the variance of an expression such as (5).

To define a derivative, we must use elements of Λl. Since

for λ =
∑

i λiδxi
∈ Λl, τhλ ∈ Λl, ∀h ∈ R, define

λh =
1

h
(τhλ − λ) ∈ Λl.

Definition 5: An IRF(l) FG(λ) is mean-square differen-
tiable at λ ∈ Λl if FG(λh) converges in mean square as

h → 0. When the limit exists, it is denoted by F
(1)
G (λ).

Proposition 3: Let FG(λ) be an IRF(l), with generalized

covariance k(h). If k(2)(h) exists for all h, then FG(λ) is

mean-square differentiable for all λ in Λl, in which case

F
(1)
G (λ) is an IRF(l) with generalized covariance −k(2)(h).

Proof: Let λ =
∑n

i=1 λiδxi
be in Λl. Then

‖FG(λh)‖2 =
1

h2

∥∥∥∥FG

( n∑
i=1

λi(δxi+h − δxi
)

)∥∥∥∥2

=
1

h2

n∑
i,j=1

λiλj(2k(xi − xj)

−k(xi − xj + h) − k(xi − xj − h)) .

Assume further that k(h) is twice differentiable for all h ∈ R.

Then ‖FG(λh)‖ converges when h → 0 and

lim
h→0

‖FG(λh)‖2 = −
n∑

i,j=1

λiλjk
(2)(xi − xj) .

It follows that F
(1)
G (λ) is a generalized random process on

Λl with zero-mean and generalized covariance −k(2)(h).
Remark that the convergence of FG(λh) in L2(Ω,A, P)

when h → 0 is equivalent to the convergence of λh in Λl.

Let λ(1) = limh→0 λh, if allowable. We shall then identify

F
(1)
G (λ) and FG(λ(1)).
Proposition 4: Let FG(λ) be an IRF(l) and F (x) be a

representation. Then, F (1)(x) is a representation of F
(1)
G (λ).

Proof: For all λ ∈ Λl,

F
(1)
G (λ) = lim

h→0
FG(λh) = lim

h→0
F (λh) = F (λ(1)) = F (1)(λ) .
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Order r derivatives are denoted by F
(r)
G (λ) and λ(r). Given

λ =
∑

i λiδ
(qi)
xi and µ =

∑
j µjδ

(rj)
yj in Λl, it is easy to check

that

cov[FG(λ), FG(µ)] =
∑
i,j

(−1)rjλiµjk
(qi+rj)(xi − yj) .

It becomes now possible to predict the derivatives of a

representation of an IRF(l). The case where observations

are corrupted by additive noise is directly studied. Ob-

served values then correspond to realizations of the random

variables F obs(xi) = F (xi) + Ni, i = 1, . . . , n, where

F (x) is an unknown representation of FG(λ), and the Nis

are zero-mean random variables independent of F (x), with

covariance matrix KN . When the noise is white, KN =

σ2
NIn. A linear predictor F̂ (r)(x) of F (r)(x) can be written

as

F̂ (r)(x) =
∑

i

λ̂i,xF obs(xi) .

In IK the prediction error F (x) − F̂ (x) is minimized

under the constraint δx −
∑

λ̂i,xδxi
∈ Λl. To deal with

derivatives, we similarly minimize var[F (r)(x) − F̂ (r)(x)]
under the constraint

δ(r)
x −

∑
i

λ̂i,xδxi
∈ Λl . (7)

The solution can be obtained using var[F (δ
(r)
x −∑

i λ̂i,xδxi
)] = var[FG(δ

(r)
x −

∑
i λ̂i,xδxi

)]. One can then

check that the coefficients λ̂i,x, i = 1, . . . , n, are solutions

of a system of linear equations, which can be written in

matrix form as(
K + KN P T

P 0

)(
λ̂x

µ

)
=

(
k

(r)
x

p
(r)
x

)
, (8)

where K is the n × n matrix of generalized covariances

k(xi − xj), P = (xj
i)l,n

i=0, j=1 is a (l + 1) × n matrix, µ is

a vector of Lagrange coefficients, k
(r)
x is a vector of size n

with entries k(r)(x − xi) and p
(r)
x is a vector of size l + 1

with entries (xi)(r), i = 0, . . . , l. Note that

(xi)(r) =

{
0 if i < r

i!
(i−r)!x

i−r if i ≥ r

The variance of the prediction error is given by

var[F (r)(x)− F̂ (r)(x)] = −k(2r)(0)−

(
λ̂

µ

)T
(

k
(r)
x

p
(r)
x

)
.

It can be used to assess confidence intervals, as illustrated

in Section III.

D. Integration

This problem can be viewed as the prediction of a function

f(x) from observations of its derivative. Formally, this is

equivalent to the previous problem, with straightforward

adaptation.

E. Choice and estimation of the covariance

Once the covariance function is chosen, the procedure of

estimating a derivative is quite simple to implement, since

it boils down to solving a linear system. The question of

the choice of the covariance is now considered. Asymptotic

results [11], [14] suggest that satisfactory performance may

be obtained even if the covariance is chosen incorrectly.

It could therefore be argued that covariance choice is not

an important issue. However, for satisfactory performance

with a finite and often relatively small number of samples,

a proper choice of the covariance turns out to be very

important.

Any classical parametrized covariance can be used as

a generalized covariance. For instance, [11] advocates the

Matérn covariance, which can be written as

k(h) =
σ2

2ν−1Γ(ν)

(
2ν1/2‖h‖

ρ

)ν

Kν

(
2ν1/2‖h‖

ρ

)
,

where Kν is the modified Bessel function of the second kind,

ν > 0 controls the regularity (the differentiability) of the

covariance at the origin, σ2 > 0 is the variance (k(0) = σ2),

and ρ > 0 is a scale parameter.

Polynomial covariances are also a useful class of gener-

alized covariances [8]. Given an order l, they can be written

as

k(h) =

l∑
p=0

(−1)p+1ap‖h‖
2p+1 with ap > 0, ∀p .

Note that this expression is linear in its parameters ap. For

example, intrinsic Kriging based on a covariance written as

−a0‖h‖ gives a piecewise-linear interpolation.

We use Maximum Likelihood to estimate the vector θ of

the parameters of a covariance kθ(x, y) when the mean

of the covariance is known [5]. Let F (x) be a zero-mean

Gaussian random process with covariance kθ(x, y). Assume

also that the observation noise is Gaussian. Let K(θ) be

the covariance matrix of FS = [F (x1), . . . , F (xn)]T and

KN (θ′) be the covariance matrix of the random vector N of

the measurement noise, assumed Gaussian, with zero mean

and a covariance depending on some parameter vector θ ′.

To simplify presentation, take θ̄ = [θT, θ′T]T and K(θ̄) =
K(θ)+KN(θ′). The log-likelihood of the data can then be

written as

L(fobs | θ̄) = −
n

2
log 2π −

1

2
log detK(θ̄)

−
1

2
fobsTK(θ̄)−1fobs . (9)

In the following paragraph we recall the Restricted Max-

imum Likelihood (REML) approach to estimating the co-

variance parameters of a random process with unknown

mean. Instead of the likelihood function of the data, REML

maximizes that of the increments (or generalized increments)

of these data [11].

Let FG(λ) be a Gaussian IRF(l). Let F obs be the random

observation vector, the sum of FS = [F (x1), . . . , F (xn)]T,

with F (x) a representation of FG(λ), and some zero-mean
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measurement noise vector. Let P = (xli

j )q,n
i,j=1 be the q × n

matrix of basis functions of Nl evaluated on {x1, . . . , xn}.

Since the dimension of Nl is q, the dimension of the space

of the measures with support {x1, . . . , xn} that cancel out

the functions of Nl is n− q. Assume an n× (n− q) matrix

W with rank n − q has been found, such that

PW = 0 .

(The columns of W are in the kernel of P .) The columns

of W are therefore the coefficients of measures with support

{x1, . . . , xn},
∑n

j=1 wi,jδxj
∈ Λl. Then Z = W TF obs is a

Gaussian random vector taking its values in R
n−q, with zero

mean and covariance matrix W T(K(θ) + KN(θ′))W =
W TK(θ̄)W , where K(θ) is the generalized covariance

matrix with entries kθ(xi − xj) and where KN (θ′) is the

covariance matrix of the observation noise. The random

vector Z is a contrast vector. The log-likelihood of the

contrasts is given by

L(z | θ̄) = −
n − q

2
log 2π −

1

2
log det(W TK(θ̄)W )

−
1

2
zT(W TK(θ̄)W )−1z . (10)

Various methods may be employed to compute the matrix

W . We favor the QR decomposition of P T

P T = (Q1 | Q2)

(
R

0

)
,

where (Q1 | Q2) is an n × n orthogonal matrix and R is a

q × q upper triangular matrix. It is trivial to check that the

columns of Q2 form a basis of the kernel of P , so we may

chose W = Q2. Note that W TW = In−q .

III. EXAMPLES

A. Estimation of derivatives

Figure 1 represents a system output and its derivative. We

see that the prediction of the derivative from a number of

irregularly spaced noise-free observations of this output is

satisfactory. Confidence intervals for this prediction can be

provided, which is one of the advantages of the methodology

advocated here. As could be expected, the uncertainty inter-

vals are narrower close to the locations of the observations

but, may be more surprisingly, when two observations are

close enough, prediction is best between these observations.

The experiment is repeated in Figure 2, now with the

addition of noise on the observations. Again the prediction

is quite satisfactory, and the potential applications of such

predictors are numerous.

B. Black-box model with prior information on derivatives

The previous examples illustrate only partially the possi-

bilities offered by Kriging for the prediction of the derivatives

of a signal. In Figure 3, observations of both the function

and its derivative are used. This makes it possible to improve

prediction, for instance by taking into account the knowledge

that the value of the derivative at time zero is zero. This is

an opportunity for introducing some prior information in a

black-box model [12].

-1.2

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

f
(x

)

x

-20

-15

-10

-5

 0

 5

 10

 15

 20

 0  0.2  0.4  0.6  0.8  1

f
′ (
x
)

x

Fig. 1. Top: f(x), x ∈ [0, 1], and 10 noise-free irregularly sampled
observations (squares). Bottom: predicted value of the derivative of f(x)
(bold solid line) from previous observations. True derivative (plain solid
line) and 95% confidence intervals (dashed lines) are shown. Vertical bars
indicate the positions of the observations.
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the sinc function at positions indicated by the vertical bars.

C. Approximation of a function from observations of its
derivative — integration.

To conclude this section, let us apply Kriging to integration

(Figure 4). Note that at least one observation of f is required

in order to specify an initial condition. This approach may be

extended to the numerical integration of partial differential

equations. It may also be used to model nonlinear dynamical

systems described by the state equation ẋ = f(x, u), which

constitutes a promising perspective.

IV. CONCLUSIONS AND PERSPECTIVES

The methodology presented and formalized in this paper

provides tools for solving two basic problems in control and

signal processing, namely the differentiation and the integra-

tion of possibly multivariable signals that are only known

via possibly noisy and irregularly sampled observations. It

is based on intrinsic Kriging, a general-purpose technique

for black-box modeling developed by geostatisticians during

more than 50 years but still relatively ignored by the control

community. As demonstrated by the examples treated, the

resulting methodology is quite versatile and allows prior

information, e.g., on boundary values of the derivative to

be taken into account. Another distinctive feature of this

statistically-based approach is that it allows confidence in-

tervals on the predicted values of the derivative or integral

to be provided. If the covariance function is chosen a priori,

the technique requires only the solution of linear systems of

equations. Better results, however, are to be expected if this

covariance function is estimated from the data, for instance

by maximum likelihood or Bayesian estimation. Numerical

differentiation finds direct applications, e.g., in the frame-

work of algebraic differential methods for parameter and

state estimation, while the possibilities offered by numerical

integration in the context of dynamical system modeling look

very promising.
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