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Abstract— This paper addresses the problem of cooperative
control of a team of distributed agents with nonlinear discrete-
time dynamics. Each agent is assumed to evolve in discrete-time
based on locally computed control laws and by exchanging
delayed state information with a subset of neighboring coop-
erating agents. The cooperative control problem is formulated
in a receding–horizon (RH) framework, where the control laws
depend on the local state variables (feedback action) and on
delayed information gathered from cooperating neighboring
agents (feedforward action). A rigorous stability analysis is
carried out exploiting the stabilizing properties of the RH local
control laws on one hand and input–to–state stability (ISS)
arguments on the other hand. In particular, it is shown that,
under suitable assumptions, each controlled agent is ISS under
the action of the local control law. The stability of the team of
agents is then proved by utilizing small-gain theorem results.

I. INTRODUCTION

The design and analysis of decentralized control systems
have been under research investigation for more than thirty
years. Many problems falling into this category have been
addressed with various mathematical tools, while new related
issues continuously arise due to current trends such as
the increasing size and complexity of control systems, the
availability of spatially distributed sensors and actuators, and
the need to come up with more autonomous systems.

When dealing with large scale systems, a key objective is
to guarantee closed-loop stability, reducing the computational
load stemming from a centralized approach. Starting with
the notion of “fixed modes” introduced in the seventies for
linear large scale systems [1], other investigations focused on
the structure and size of interconnections [2]. Following the
reasoning of this latter aspect, adaptive control [3], and more
recently model predictive control [4] approaches have been
proposed. Specific emphasis on the structural properties of
decentralized controlled large-scale systems is given in the
research work of D’Andrea and co-workers (see, for instance,
[5]), finding applications in fields as flight formation and
distributed sensors. Studies on topology independent control
have also been recently reported [6].

Another related research direction in decentralized control
considers the problem of controlling a team of dynamically
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decoupled cooperating systems. For instance, there have
been some important theoretical results on the stability of
swarms [7], but a considerable number of publications in
this area focus on specific issues related to Uninhabited Au-
tonomous/Air Vehicles (UAVs) applications. One of the pos-
sible approaches is the selection of a suitable cost function to
be optimized in a model-predictive control fashion. Such cost
can take into account several issues, such as collision avoid-
ance and formation constraints, and may reward the tracking
of a certain path. In [8], [9] and [10], the authors consider
a two-degrees of freedom team of UAVs assigned to visit a
certain number of points. The team of UAVs is controlled in a
centralized receding–horizon (RH) framework; by exploiting
global potential functions, certain stationarity properties of
the generated trajectories are proved in the case of two agents
searching for multiple targets. A RH control scheme has also
been proposed in [11], [12], where a centralized problem
is decomposed to allow local computations and feasibility
issues are thoroughly examined; stability is obtained in
[11] exploiting a hierarchical decomposition of the team in
suitable subgraphs with assigned priorities. Coordination of
a large group of cooperating nonlinear vehicles is considered
in [13] and related works, where a centralized RH problem
is decomposed and solved locally.

To help study the properties of cooperative systems, an
ISS analysis has recently been proposed by several authors.
In [14], [15] the concept of Leader to Formation Stability
is developed. Issues arising in the study of non-holonomic
vehicles using ISS are discussed in [16]. ISS tools have been
succesfully applied to the case of networked systems with
serial communication, where Nesic and Teel propose a new
modeling and analysis framework [17], [18].

In this paper we consider a cooperative control problem
for a team of distributed agents with nonlinear discrete-time
dynamics. The problem formulation is based on a completely
decentralized RH control algorithm, analyzed using an ISS
approach; we generalize the approach presented in [19] to the
nonlinear framework. Each agent evolves in discrete-time by
means of locally computed control laws, exchanging delayed
state information with a subset of neighboring cooperating
agents. The cooperative control problem is first formulated
in a RH framework, where the control laws depend on
the local state variables (feedback action) and on delayed
information gathered from neighboring agents (feedforward
action). A rigorous stability analysis is carried out, exploiting
the stabilizing properties of the RH local control laws on one
hand, and ISS arguments on the other hand. In particular, it
is shown that, under suitable assumptions, each locally con-
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trolled agent is ISS under the action of the RH control law.
Asymptotic stability of the team of agents is then proved by
small–gain theorem reasonings: considering the information
flow among the agents as a set of interconnections whose
size is weighted through the control action computation, our
result confirms that a suitable “interconnection” boundedness
is necessary to guarantee stability. The proposed control
scheme has a very general form; further investigation would
be needed to explicitly consider formation issues typical of
any UAV control problem. However, some preliminary sim-
ulation results regarding UAV team behavior will illustrate
the concepts developed in this paper.

The paper is organized as follows. Section II formulates
the multi-agent cooperative control problem in a discrete-
time RH framework. The general stability proofs are pre-
sented and discussed in Section III and some simulation
results are presented in Section IV.

II. PROBLEM FORMULATION

We consider a distributed dynamic system made of a set

of M agents A �
=

{Ai : i = 1, ...,M
}

, each described by
the nonlinear time-invariant state equation:

xi
t+1 = f i(xi

t, u
i
t), t = 0, 1, 2, . . . (1)

where xi
t ∈ R

ni

and ui
t ∈ R

mi

are the state and control
vector at time t, for each i = 1, ...,M . We assume that all
the M agents are synchronized and dynamically decoupled.
The coupling arises due to the fact that they operate in
the same environment and to the “cooperative” objective
imposed on each agent by a cost function defined later
on. To achieve some degree of cooperation, each agent
Ai exchanges an information vector Ii with a given set

of neighboring agents Gi �
=

{Aj : j ∈ Gi
}

, where Gi

denotes the set of indexes identifying the agents belonging
to the set Gi. Specifically, at each generic time–instant t,
agent Ai, i = 1, ...,M , receives from each cooperating
neighbor Aj ∈ Gi the value of its local state vector with a
delay of ∆ji time steps, that is, agent Ai receives the vector
xj

t−∆ji
from agent Aj ∈ Gi. We group all inputs to agent

Ai into a vector v̄i
t , at each time–instant t, defined as v̄i

t �
col [δi(1)x1

t−∆i1
, ..., δi(j)xj

t−∆ij
, . . . , δi(M)xM

t−∆iM
] ,

where δi(j) = 1 only if j ∈ Gi. The size of vector v̄i is
equal to ntot =

∑M
i=1 ni. For each i = 1, ...,M and for a

given value of the state vector xi
t at time–instant t, we now

introduce the following finite–horizon (FH) cost function
(in general, nonquadratic):

J i
FH [xi

t, v̄
i
t, u

i
t,t+Ni−1, N

i, hi
F (·)] =

t+Ni−1∑
k=t

[
hi(xi

k, ui
k) + ki(xi

k, v̄i
t)

]
+ hi

F (xi
t+Ni) ,

(2)

where N i, i = 1, . . . , M are positive integers denoting
the lengths of the control horizons. Moreover, for each
i = 1, ...,M , hi

F ∈ C1 (continuously differentiable) is a
suitable terminal cost function, with hi

F (0) = 0 . In (2) and

in the following, we define ui
tτ

�
= col (ui

t, . . . , u
i
τ ) for both

finite and infinite values of τ . At time–instant t, the vector
v̄i

t can be considered as a constant external input in the cost
function. Finally, let us assume that f i, hi, ki ∈ C1 , with
f i(0, 0) = 0, hi(0, 0) = 0 , and ki(0, 0) = 0 .

The local control strategy is based on a RH framework,
and is obtained by solving the following problem objective:

Problem 2.1: . At every time instant t ≥ 0 and for
every agent Ai, i = 1, . . . , M described by (1), find the
RH optimal control law uiRH◦

t = γi
RH◦(xi

t, v̄
i
t) ∈ R

mi

,

where uiRH◦

t is the first vector of the control sequence

uiF H◦

t , . . . , uiF H◦

t+Ni−1 (i.e., uiRH◦

t
�
= uiF H◦

t ), that minimizes
cost (2) for the state xi

t ∈ R
ni

and the cooperation vector
v̄i

t ∈ R
ntot

.
The control objective is twofold, being “local”in the

minimization of the partial cost given by the terms∑t+Ni−1
k=t hi(xi

k, ui
k) + hi

F (xi
t+Ni) ; indeed a “coopera-

tion” objective is the minimization of the remaining terms∑t+Ni−1
k=t ki(xi

k, v̄i
t) . Clearly, the dynamic behaviors of the

agents are coupled, depending on the specific choice of the
partial cost terms hi, hi

F and ki .

III. STABILITY OF THE TEAM OF COOPERATING AGENTS

The stability analysis will be carried out in two main
steps. In Subsection III-A we shall consider a single agent
Ai analyzing conditions that guarantee asymptotic stability,
when a local RH control law is applied without considering
the coupling effects. In Subsection III-B, we will prove that
each agent is ISS with respect to the input given by the
delayed incoming information from its neighbors. Finally, the
team will be considered as a single dynamic system resulting
from a feedback interconnection of ISS systems.

A. Stability properties of the single agents

Consider a generic agent Ai whose dynamics are de-
scribed by (1). We will show that for each Ai , i =
1, 2, ...,M , the origin as an equilibrium state of the con-
trolled agent, is globally asymptotically stable (GAS). More-
over, we will also show that each Ai is ISS with respect to
the inputs represented by the information vectors v̄i

t received
from its neighbors at each time–step t. Clearly we are now
considering each agent as a “separate” dynamic system in the
team: the input vectors v̄i

t are “external” variables that are
assumed not to depend on the behavior of its neighbors (i.e.,
the coupling between the agents is not taken into account).
Let us now introduce some useful notations and assumptions.
In general, denote by Z the class of compact sets, S ⊂ R

q ,
containing the origin as an internal point. This means that
S ∈ Z ⇔ ∃λ ∈ R, λ > 0 such that N(λ) ⊂ S , where

N(λ)
�
= {x ∈ R

q : ‖x‖ ≤ λ} and ‖ · ‖ is the Euclidean
norm. The following assumptions are introduced for each
agent Ai, i = 1, 2, ...,M :

(i) The linear system xi
t+1 = Aixi

t + Biui
t , obtained via

the linearization of system (1) in a neighborhood of the
origin, is stabilizable.

(ii) The transition cost functions hi and ki are such
that there exists a strictly increasing function ri ∈
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C[R+, R+] , with ri(0) = 0 , such that1, let-

ting h̃i(xi, ui)
�
= hi(xi, ui) + ki(xi, 0) , we have

h̃i(xi, ui) ≥ ri(‖(xi, ui)‖), ∀xi ∈ R
ni

, ∀ui ∈
R

mi

, where (xi, ui)
�
= col (xi, ui) . Moreover,

there exist a strictly increasing function r̄i ∈
C[R+, R+] , with r̄i(0) = 0 , such that h̃i(xi, ui) ≤
r̄i(‖(xi, ui)‖), ∀xi ∈ R

ni

, ∀ui ∈ R
mi

.

(iii) hi
F (·) ∈ H(ai, P i) , where H(ai, P i)

�
=

{hi
F (·) : hi

F (xi) = ai xi�P ixi} , for some a ∈ R ,
a > 0 , and for some positive-definite symmetric matrix
P i ∈ R

ni×ni

.
(iv) For every neighborhood N i(λi) ⊂ R

ni

of the origin
of the state space, there exists a control horizon M i ≥
1 such that there exists a sequence of control vectors{

ui
k ∈ R

mi

, k = t, . . . , t + M i − 1
}

that yield a state

trajectory xi
k ∈ R

ni

, k = t + 1, . . . , t + M i ending
in N i(λi) (i.e., xt+Mi ∈ N i(λi) ) for any initial state
xi

t ∈ R
ni

.
(v) The optimal FH feedback control functions

γi
FH◦(xi

k, v̄i
t, k), k = t, . . . , t + N i − 1 , which

minimize cost (2), are continuous functions with
respect to xi

k, v̄i
t , for any xi

k ∈ R
ni

, v̄i
t ∈ R

ntot

and
for any finite integer N i ≥ 1 .

Denote by J i
FH◦ [xi

t, v̄
i
t, N

i, hi
F (·)] �

=
J i

FH [xi
t, v̄

i
t, u

i ◦
t,t+Ni−1, N

i, hi
F (·)] the cost corresponding

to the optimal N i-stage trajectory starting from xi
t . The

following theorem holds.
Theorem 3.1: Consider agent Ai , i : 1 ≤ i ≤ M .

If assumptions (i) to (v) are verified, there exist a finite
control horizon Ñ i ≥ M i , a positive scalar ãi and a
positive-definite symmetric matrix P i ∈ R

ni×ni

such that,
for every terminal cost function hi

F (·) ∈ H(ai, P i) , with
ai ∈ R, ai ≥ ãi , the following properties hold:

(a) the origin as an equilibriun point of system (1) under
the action of the RH optimal control law γi

RH◦ is GAS
for v̄i ≡ 0 ;

(b) if we furtherly assume that the function f i in (1)
and the optimal RH control law γi

RH◦ are globally
Lipschitz functions with respect to their arguments, then
system (1) under the action of the RH optimal control
law γi

RH◦ is ISS with respect to input v̄i
t.

Part (a) of Theorem 3.1 is a generalization to the global
stability case of the early results published in [20] (see also
the related works [21], [22] and the references cited therein)
showing that closed–loop stability properties are guaranteed
by a suitable choice of the local FH cost. In Part (b) it
is shown that, under some further assumptions, each agent
shows some ISS property.
Proof. Let us consider a generic agent Ai .
Part (a). The proof that 0 is an equilibrium state of the
closed-loop system when the RH regulator is applied and
when v̄i

t = 0 is straightforward and it is therefore omitted.

1When there will be no risk of confusion, notations will be simplified by
dropping some subscript and/or superscript from the variables.

Now, we show that the function

V i(xi)
�
= J i

FH◦ [xi, 0, N i, hi
F (·)], xi ∈ R

ni

(3)

is a Lyapunov function in R
ni

for system (1) driven by
the RH regulator (for now, N i and hi

F (·) are not specified).
Assumption (v) and the regularity hypotheses on the dynamic
system (1) and on cost (2) ensure that V i(·) is continuous
with respect to all its arguments. Moreover, the control
sequence {uiF H◦

k = 0, k = t, t + 1, . . . , t + N i − 1}
minimizes cost (2) for xi

t = 0, v̄i
t = 0 , thus yielding

J i
FH◦ [0, 0, N i, hi

F (·)] = V i(0) = 0 . By letting xiF H◦

t =
xi

t, ∀xi
t ∈ R

ni \ {0} , we obtain

V i(xi
t) ≥ hi(xi

t, u
i
t) + ki(xi

t, 0) =

= h̃i(xi
t, u

i
t) ≥ ri

(∥∥(xi
t, u

i
t)

∥∥) ≥ ri
(∥∥xi

t

∥∥)
> 0

(4)

Then V i(·) is positive-definite. Moreover, according to (4)
and the properties of function ri(·) , it turns out that V i(·) is
radially unbounded, that is lim

‖xi‖→∞
V i(xi) = ∞ . We have

now to evaluate ∆V i(xi
t)

�
= V i(xiRH◦

t+1 ) − V i(xi
t) , for xi

t

and xiRH◦

t+1 belonging to the trajectory generated by the RH
regulator and starting from a generic initial state xi

t ∈ R
ni

.
The following identity clearly holds:

J i
FH◦ [xi

t, 0, N i + 1, hi
F (·)] =

h̃i(xi
t, u

iRH◦

t ) + J i
FH◦ [xiRH◦

t+1 , 0, N i, hi
F (·)] ,

(5)

∀xi
t ∈ R

ni

, ∀N i ≥ 1, where uiRH◦

t = γi
RH◦(xi

t, 0) =
uiF H◦

t = γi
FH◦(xi

t, 0) . We need now the following lemma
(the proof is not reported here due to space limitations).

Lemma 3.1: There exist a positive-definite symmetric
matrix P i ∈ R

ni×ni

, a control horizon Ñ i ≥ M i , and
a positive scalar ãi such that

J i
FH◦ [xi

t, 0, N i, hi
F (·)] ≥ J i

FH◦ [xi
t, 0, N i + 1, hi

F (·)] , (6)

∀xi
t ∈ R

ni

, ∀N i ≥ Ñ i , ∀hi
F (·) ∈ H(ai, P i) , with ai ∈

R, ai ≥ ãi .
It is worth noting that Lemma 3.1 specifies N i and
hi

F (·) introduced in (3). From (5) and (6), it fol-
lows that J i

FH◦ [xi
t, 0, N i, hi

F (·)] ≥ h̃i(xi
t, u

iRH◦

t ) +
J i

FH◦ [xiRH◦

t+1 , 0, N i, hi
F (·)] , ∀xi

t ∈ R
ni

, and then

∆V i(xi
t) = J i

FH◦ [xiRH◦

t+1 , 0, N i, hi
F (·)]−

− J i
FH◦ [xi

t, 0, N i, hi
F (·)] ≤ −h̃i(xi

t, u
iRH◦

t ) ≤
≤ −ri

(∥∥∥(xi
t, u

iRH◦

t )
∥∥∥)

≤ −ri
(∥∥xi

t

∥∥)
,

(7)

∀xi
t ∈ R

ni

, xi
t �= 0, with ∆V i(0) = 0 , thus ending the

proof of Part (a).
Part (b). We have to prove that the Lyapunov function
V i(xi) , i = 1, 2, ...,M , is an ISS Lyapunov function, i.e.
we have to show that:
(�) there exist two functions αi(·), ᾱi(·) of class K∞ such

that:

αi(‖xi‖) ≤ V i(xi) ≤ ᾱi(‖xi‖) , ∀xi ∈ R
ni

(8)
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(��) there exist a function αi(·) of class K∞, and a function
σi(·) of class K such that:

∆V i
v̄

�
= V i(f i(xi

t, γ
i(xi

t, v̄
i
t))) − V i(xi

t)
= J i

FH◦ [f i(xi
t, γ

i(xi
t, v̄

i
t)), 0, N i, hi

F (·)] −
−J i

FH◦ [xi
t, 0, N i, hi

F (·)]
≤ −αi(‖xi

t‖) + σi(‖v̄i
t‖)

As to (�), we can set αi �
= ri (see (4)) and by letting

ᾱi(‖xi
t‖) �

=
t+Ni−1∑

k=t

r̄i(‖(xi
k, ui

k)‖) + hi
F (xi

t+Ni)

we obtain immediately that V i(xi) ≤ ᾱi(‖xi‖), ∀xi ∈ R
ni

,
thus showing that (�) is satisfied.

Coming to (��), f i and γi being globally
Lipschitz by assumption, from the previous definition
∆V i

v̄ = J i
FH◦ [f i(xi

t, γ
i(xi

t, v̄
i
t)), 0, N i, hi

F (·)] −
J i

FH◦ [xi
t, 0, N i, hi

F (·)] , it follows that

∆V i
v̄ ≤ ᾱi(‖f i(xi

t, γ
i(xi

t, v̄
i
t))‖) −

−αi(‖xi
t‖) ≤ ᾱi(Li

f Li
γ‖v̄i

t‖) − αi(‖xi
t‖),

≤ σi(‖v̄i
t‖) − αi(‖xi

t‖)
where Li

f and Li
γ denote the Lipschitz constants associated

with f i and γi , respectively. Then, also (��) is satisfied and
therefore the closed–loop system is ISS with respect to the
input v̄i

t .

B. Stability properties of the team of agents

Let us now consider the agents as a team A ={Ai, i = 1, ...,M
}

where each Ai is controlled by
the locally–stabilizing RH control law solving Prob-

lem 2.1. Therefore, we can write xi
t+1 = f̃ i(x1

t , v̄
i
t)

�
=

f i(xi
t, γ

i(xi
t, v̄

i
t)), i = 1, ...,M . Then, let us rewrite the

team of dynamical systems as a suitable interconnec-

tion of two composite systems. To this end, let Xt
�
=

col (x1
t , · · · , xM

t ) and V̄t
�
= col ( v̄1

t , · · · , v̄M
t ) . Hence the

following state equation can be written, where F̃ (Xt, V̄t)
�
=

col [f̃1(x1
t , v̄

1
t ), f̃2(x2

t , v̄
2
t ), ... , f̃M (xM

t , v̄M
t ) ],

Xt+1 = F̃ (Xt, V̄t) (9)

Vector V̄t can be easily characterized as the output of
a dynamic system taking into account the delayed state
information exchanged between the agents. First, we set

∆
�
= max{∆ij , i, j = 1, ...,M, i �= j} . Then we let

Zt
�
= col (Xt, ρ1

t , · · · , ρτ
t , · · · , ρ∆

t ) , where the variables
ρ are introduced to store the delayed states; specifically
ρ1

t+1 = Xt and ρτ
t+1 = ρτ−1

t , τ = 2, . . . ,∆ . Hence, it
follows that {

Zt+1 = AZt + B Xt,

V̄t = C Zt.
(10)

The definition of the involved matrices is trivial, and thus
omitted. Summing up, the state equation describing the
dynamics of the team of agents can be written as a feedback

interconnection between the dynamic systems (9) and (10).
Let us now prove the following lemma.

Lemma 3.2: Let us suppose that Assumptions in Theo-
rem 3.1 are verified. Then dynamic systems (9) and (10) are
provided with suitable ISS Lyapunov functions V (Xt) and
V D(Zt) , respectively.

Proof. Consider the Lyapunov function candidate V (Xt)
�
=∑M

i=1 V i(xi
t) for the lumped system (9). From (8), it follows

that
∑M

i=1 αi(‖xi
t‖) ≤ V (Xt) ≤ ∑M

i=1 ᾱi(‖xi
t‖). Clearly

‖xi
t‖ ≤ ‖Xt‖, and thus V (Xt) ≤ ∑M

i=1 ᾱi(‖xi
t‖) ≤∑M

i=1 ᾱi(‖Xt‖) ≤ ᾱ(‖Xt‖), where we set ᾱ(‖Xt‖) �
=∑M

i=1 ᾱi(‖Xt‖) . Moreover
∑M

i=1 ‖xi
t‖ ≤ ∑M

i=1 ‖Xt‖ =
M‖Xt‖ . Then ‖Xt‖ ≥ 1

M

∑M
i=1 ‖xi

t‖ and ‖Xt‖ ≤∑M
i=1 ‖xi

t‖ . Hence, it follows immediately that (recall
that for any K function γ it is always true that
γ(a + b) ≤ γ(2a) + γ(2b) where a, b > 0 )
αi(‖Xt‖) ≤ αi(

∑M
i=1 ‖xi

t‖) ≤ ∑M
i=1 αi(M‖Xt‖) and

then αi(‖Xt‖/M) ≤ αi( 1
M

∑M
i=1 ‖xi

t‖) ≤ ∑M
i=1 αi(‖Xt‖)

Therefore, letting α(‖Xt‖) �
= αi(‖Xt‖/M) for an arbitrar-

ily chosen index i, we showed that α(‖Xt‖) ≤ V (Xt) ≤
ᾱ(‖Xt‖). Let us now write

∆V
�
=

M∑
i=1

V i(f̃ i(xi
t, v̄

i
t)) −

M∑
i=1

V i(xi
t) ≤

≤ −
M∑
i=1

αi(‖xi
t‖) +

M∑
i=1

σi(‖v̄i
t‖)

First, we have −∑M
i=1 αi(‖xi

t‖) ≤ −αi (‖Xt‖/M)
and

∑M
i=1 σi(‖v̄i

t‖) ≤ ∑M
i=1 σi(‖V̄t‖) . Then, letting

α (‖Xt‖) �
= αi (‖Xt‖/M) and σ(‖V̄t‖) �

=
∑M

i=1 σi(‖V̄t‖) ,
it follows that ∆V ≤ −α (‖Xt‖) + σ(‖V̄t‖) thus showing
that V is an ISS Lyapunov function for the lumped system
(9).

System (10), describing the effects of the time–delays in
the information exchange variables, is ISS being an asymp-
totically stable linear system and a candidate ISS Lyapunov

function is V D(Zt)
�
= ‖Zt‖2 . It is easy to find two positive

constants aD and āD such that aD‖Zt‖2 ≤ V D(Zt) ≤
āD‖Zt‖2 and thus the first part of the definition of ISS Lya-

punov function holds by defining αD(‖Zt‖) �
= aD‖Zt‖2

and ᾱD(‖Zt‖) �
= āD‖Zt‖2 , which are two K−functions.

Moreover

V D(Zt+1) − V D(Zt) = ‖AZt + BXt‖2 − ‖Zt‖2 ≤
≤ ‖Zt‖2

Q + ‖Xt‖2
B�B .

Then ∆V D ≤ −αD(‖Zt‖) + σD(‖Xt‖) (the definitions of
αD(·) and σD(·) are straightforward).

Recalling from (10) that V̄t = C Zt , from the proof of
Lemma 3.2, it follows immediately that the ISS Lyapunov
functions V (Xt) and V D(Zt) satisfy

V (Xt+1) − V (Xt) ≤ −α̃(V (Xt)) + σ̃(V D(Zt)), (11)

V D(Zt+1) − V D(Zt) ≤ −α̃D(V D(Zt)) + σ̃D(V (Xt)),
(12)
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where α̃(·) and α̃D(·) are K∞ functions, and σ̃(·) and
σ̃D(·) are K functions, respectively. It is easy to show that

α̃
�
= α ◦ (ᾱ)−1 , σ̃

�
= σ ◦ (αD)−1 , α̃D �

= αD ◦ (ᾱD)−1 ,

and σ̃D �
= σD ◦ (α)−1 . Now, the following result about the

stability properties of the team of cooperating agents can be
immediately proved.

Theorem 3.2: Suppose that Assumptions in Theorem 3.1
are verified. Let us also suppose that the following small gain
condition holds ( Id denotes the identity operator):

α̃−1 ◦ σ̃ ◦ (α̃D)
−1 ◦ σ̃D < Id . (13)

Then the team of cooperating agents described by the inter-
connected dynamic equations (9) and (10) is GAS.
Proof. The proof is very simple. Owing to the Assumptions
made in Theorem 3.1, by Lemma 3.2 it follows that systems
(9) and (10) are provided with ISS Lyapunov functions
V and V D satisfying inequalities (11) and (12). Then,
Corollary 4.2 in [23] can be directly used showing that, if
the small gain condition (13) is verified, then the feedback
system resulting from the interconnection between systems
(9) and (10) is GAS thus ending the proof.
Remark. It is worth noting that the small–gain condition (11)
may turn out to be conservative in practice as it is typical of
these kind of results. On the other hand, the generality of the
problem makes it rather difficult to obtain tighter conditions
without making restrictive assumptions on the structure of
the agents’ dynamics and on the cost function.

IV. SIMULATION RESULTS

This section shows some results on the applicability of the
proposed methodology to the cooperative control problem
of a set of UAVs. In Subsection IV-A an LQ framework
is considered (see [19]),where the local control laws can
be determined analytically. In Subsection IV-B, the case
of UAVs with nonlinear dynamics is taken into account.
No conceptual changes have to be considered owing to the
generality of the approach; difficulties were though obviously
encountered, due to the local minima arising in the on–line
minimization of the cost functions.

A. Team of linear agents

In this subsection, a team composed by LTI systems will
be considered, given by a set of simplified UAV’s moving
in R

3. The objective of the distributed cooperative controller
is to reach a certain formation around the origin, on the
plane z = 0, maintaining the formation through the whole
trajectory. The discretized state equations for each UAV take
on the linear structure xi

t+1 = Aixi
t + Biui

t , obtained
from the discretization of linear damped double integrator
equations, with sampling time T = 0.1s . The physical
parameters, identical for all the agents, are the mass m =
0.75Kg and the viscosity µ = 0.01Kg/ms. Recalling that
∆ij is the delay occurring in the information received by
agent i from agent j, we set ∆ij = 2T for all the agents
except ∆21 = 6T, ∆32 = ∆54 = 4T, ∆24 = 3T . Agent
1 does not cooperate nor communicate, being the leader of

the formation; moreover δii = 0. For the local cost function,
we set the prediction horizons as N i = N = 5 and equal
weighting matrices for all the agents, limiting the cooperation
terms. The RH control law can be derived analytically [19].
In Figure 1 the team trajectories are reported: the objective
is to attain a formation along a line of 45◦ as followers
of the leader (red agent), on the plane z = 0. The dashed
lines represent the desired trajectories, while the solid lines
render the actual behavior of the agents. The colored circles
represent the positions of the vehicles taken each second,
while the black circles are the desired position at the same
time instants.
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Fig. 1. Linear case: behavior of a team of 5 agents.

B. Team of nonlinear agents

In this section we will show some simulation results
concerning a team of UAVs with nonlinear dynamics. As it
is evident from the theoretical formulation of our problem,
we are not explicitly considering a formation equilibrium
point, nor constraints in the MPC algorithm; moreover,
the information flow is limited and does not include the
predicted trajectory exchange. A team of M vehicles will be
considered, whose models and data are taken according to
[24]; we will briefly recall the nonlinear equations describing
the system:

mẍi = −µ1ẋ
i + (ui

R + ui
L) cos(θi),

mÿi = −µ1ẏ
i + (ui

R + ui
L) sin(θi),

Jθ̈i = −µ2θ̇
i + (ui

R − ui
L)rv.

(14)

All the members of the team have the same physical
parameters: the mass is m = 0.75Kg, the inertia is
J = 0.00316Kgm2, the linear friction coefficient is µ1 =
0.15Kg/s and the rotational friction coefficient is µ2 =
0.005Kgm2/s and finally the radius of the vehicle is rv =
8.9cm. The above equations have been discretized with a
sampling time T = 0.1s. The state vector (defined in the
usual way) of each agent will be from now on denoted as
zi
t. The communication topology is stationary, and the locally

minimized cost function is quadratic; we set equal costs for
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all the agents, N i = N = 9 ; the delays have been all set to
∆ij = ∆ = 2. The leader moves with a thrust of 0.1N on
both sides, which is limited to the range [0, 0.7]. In Figure
2, the leader (blue agent) tracks a given moving strategy,
and the followers are maintaining a triangular formation; the
coloured dashed lines denote their desired trajectories; the
triangles represent snapshots of the position and orientation
of the vehicles at t = 2s, t = 8s, t = 18s, and the black
triangles represent the desired configurations at the same
time instants. Due to local minima that the non convex local
cost function may have, a functional analysis of the costs
should be done to guarantee the formation, assuming certain
properties of the reference trajectories for each agent [25].
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Fig. 2. Nonlinear case: behavior of the team following a leader.

V. CONCLUSIONS

The problem of cooperative control of a team of dis-
tributed agents with nonlinear discrete-time dynamics has
been considered. The local control law takes on a feedback–
feedforward structure and has been determined in a nonlinear
RH framework where the cooperation objective has been
embedded in the local cost functions to be minimized locally
by each agent belonging to the team. Under some assump-
tions, the stability of the team of agents under the action
of the local RH controllers has been shown using ISS and
small–gain theorem arguments. Future research efforts will
be devoted towards devising more constructive procedures
for the determination of stabilizing RH controllers (see [22]
in a standard centralized RH framework) and to consider
the case where disturbances and uncertainties affect the
communication between the agents of the team.
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