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Abstract— In this paper we prove a discrete version of the
classical Ingham inequality for nonharmonic Fourier series
whose exponents satisfy a gap condition. Time integrals are
replaced by discrete sums on a discrete mesh. We prove that,
as the mesh becomes finer and finer, the limit of the discrete
Ingham inequality is the classical continuous one. This analysis
is partially motivated by control-theoretical applications. As an
application we analyze the observation properties of numerical
approximation schemes of the 1-d wave equation. The discrete
Ingham inequality provides observability (and controllability)
results which are uniform with respect to the mesh size
in suitable classes of numerical solutions in which the high
frequency components have been filtered. We also discuss the
optimality of these results in connection with the dispersion
diagrams of the considered numerical schemes.

I. INTRODUCTION

Families of ‘nonharmonic’ exponentials
{
eiλkt

}
appear in

various fields of mathematics and signal processing. One of
the central problems arising in all of these applications is the
question of the Riesz basis property.

The following inequality for nonharmonic Fourier series
due to Ingham is well known (see [5] and [11], p. 162):
Assume that the strictly increasing sequence {λk}k∈Z of real
numbers satisfies the ‘gap’ condition

λk+1 − λk ≥ γ, for all k ∈ Z, (1)

for some γ > 0. Then, for all T > 2π/γ there exist two
positive constants C1, C2 depending only on γ and T such
that

C1(T, γ)
∞∑

k=−∞
|ak|2 ≤

∫ T

0

∣∣∣∣∣
∞∑

k=−∞
akeitλk

∣∣∣∣∣
2

dt

≤ C2(T, γ)
∞∑

k=−∞
|ak|2

(2)

for every complex sequences (ak)k∈Z ∈ �2, where

C1(T, γ) =
2T

π

(
1 − 4π2

T 2γ2

)
> 0, (3)

C2(T, γ) =
8T

π

(
1 +

4π2

T 2γ2

)
> 0 (4)
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and �2 is the Hilbert space of square summable sequences,

�2 = {{ak} : ‖ak‖2
�2 =

∑
k∈N

|ak|2 < ∞}. (5)

This result shows that the sequence of exponentials{
eiλkt

}
forms a Riesz basis of its span for T > 2π/γ

(see [11], Chapter 3, p. 112). The problem of observability
consists in guarantee that the whole energy of the waves
which propagate according to a given equation with suitable
boundary conditions can be estimated in terms of the energy
concentrated on a given subregion of the domain (or its
boundary), where propagation occurs in a given time interval.

In the context of partial differential equations, this Ingham
theorem has been used to prove observability inequalities
for the solutions of 1-d evolution equations for which the
sequence of eigenfrequencies has an uniform gap ([7]).
Attempts to extend this technique to the case when there is
not uniform gap have led to far reaching generalizations of
the Ingham theorem for some sequences satisfying weakened
gap conditions (see [2], [3], [4], [6]). On the other hand, in
the numerical analysis of those observability inequalities the
need of a discrete version of this inequality arises naturally.

In this paper we prove a discrete version of (2). More
precisely, given ∆t = T/(M + 1), with M ∈ N we replace
in (2) the integral by a discrete sum, ∆t

∑M
n=0, and we

analyze the existence of two positive constants C1, C2 such
that the resulting discrete inequality holds. Obviously, we are
interested on results that remain uniform as the mesh-size ∆t
tends to zero.

II. THE DISCRETE INGHAM INEQUALITY

The main result of this paper is as follows:
Theorem 2.1: (Discrete Ingham inequality) Let {λk}k∈Z

be an increasing sequence of real numbers satisfying for
some γ > 0 the ‘gap’ condition

λk+1 − λk ≥ γ > 0, for all k ∈ Z. (6)

Let T > 0 and 0 < ∆t ≤ 1. Assume that the sequence
{λk}k∈Z satisfies for some 0 ≤ p < 1/2 the additional
condition

|λk − λl| ≤ 2π − (∆t)p

∆t
, for all |k| ≤ N, |l| ≤ N, (7)

where 2N ≤ M and M = [T/∆t − 1]. Then, there
exists a positive number ε(∆t) such that, for all T >
T0(∆t) := 2π/γ + ε(∆t), there exist two positive constants
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Cj(∆t, T, γ) > 0, j = 1, 2, such that

C1(∆t, T, γ)
N∑

k=−N

|ak|2 ≤ ∆t
M∑

n=0

∣∣∣∣∣
N∑

k=−N

akein∆tλk

∣∣∣∣∣
2

≤ C2(∆t, T, γ)
N∑

k=−N

|ak|2

(8)
for every complex sequence (ak)k∈Z ∈ �2.

Moreover, if γ and p in (6) and (7) are kept fixed, then
ε(∆t) = o(∆t)1−2p and the constants in (8) satisfy

Cj(∆t, T, γ) = Cj(T, γ) ∓ δj(∆t), δj(∆t) ≥ 0, j = 1, 2,
(9)

where Cj(T, γ), j = 1, 2, are the Ingham constants (3), (4)
and lim∆t→0 δj(∆t) = 0, j = 1, 2.
The proof of the discrete inequality (8) follows the scheme
used in [11] (p. 162-163) to prove the classical Ingham
inequality (2). It is easy to see that for every N ∈ N fixed,
if we pass to limit with ∆t → 0 in (8) we get the classical
Ingham inequality (2).

Remark 2.2: In the original paper by Ingham (see [5], p.
368) it is pointed out that, the following L1 analogue of
inequality (2) holds, for every increasing sequence {λk}k∈Z

of real numbers satisfying the ‘gap’ condition (1):

C1(T, γ) |ak| ≤
∫ T

0

∣∣∣∣∣
∞∑

k=−∞
akeitλk

∣∣∣∣∣ dt ≤ C2(T, γ) |ak| ,
(10)

for all T > 2π/γ and ∀ k ∈ Z. Under the hypotheses of
our discrete Ingham’s Theorem 2.1 we also have a discrete
version of (10).

Remark 2.3: In both the continuous and discrete cases,
the sequence {λk}k is required to satisfy (6), the so-called
gap condition. The restriction (7) imposed on {λk}k in
Theorem 2.1 is not needed in the classical continuous Ingham
inequality (2).

The restriction 2N ≤ M with M = [T/∆t − 1] is sharp.
Indeed, when 2N > M one can find non-trivial values of
the coefficients {ak}k such that

N∑
k=−N

akein∆tλk = 0, 0 ≤ n ≤ M (11)

and
∑N

k=−N |ak|2 	= 0. Condition (11) consists on a sys-
tem of homogeneous linear equations in ak with 2N + 1
unknown quantities and M + 1 equations. If 2N > M
this system has non trivial solutions. This is in agreement
with common sense. Indeed, in view of the fact that we
only make M + 1 measurements for n = 0, ..., M one
can not expect to recover more than M + 1 coefficients of
the solution. If 2N ≤ M , in general, the above situation
(11) does not happen. Notice that, ein∆t(λk−λl) = 1 if
λk−λl = 2πm/∆t, with m ∈ Z. Consequently, the function
v(λk−λl) := ∆t

∑M
n=0 akāle

in∆t(λk−λl) is 2π/∆t periodic
on R and therefore it is enough to analyze it only for the

increasing sequence of real numbers (λk)k with λk+1−λk ∈
[2πm/∆t, 2π(m + 1)/∆t], m ∈ Z.

However, if λk − λl ∈ 2πZ/∆t, for certain values of k
and l with k 	= l, the sequence such that ak = −al = 1,
an = 0, n 	= k, l satisfies (11). Then, an inequality of type
(8) is impossible. So, it is natural to impose the condition
λk − λl 	∈ 2πZ/∆t for a discrete Ingham inequality (8) to
hold. In our theorem this latter condition is implied by the
stronger one (7).

The technical choice of the parameter 0 ≤ p < 1/2 in (7)
is sufficient to obtain the asymptotically optimal condition
T > 2π/γ + ε(∆t), with ε(∆t) → 0 as ∆t → 0 since
ε(∆t) = o(∆t)1−2p.

Condition T > 2π/γ is optimal for the classical Ingham
inequality (see [11], p. 163). In this sense, the condition T >
2π/γ+ε(∆t) in Theorem 2.1 is asymptotically optimal since
ε(∆t) → 0 as ∆t → 0.

It is easy to see that, for every N ∈ N fixed, if we
pass to the limit ∆t → 0 in (8) we get the classical Ingham
inequality (2). Indeed, for (2) to be true for all sequences
(ak)k∈Z ∈ �2 it is sufficient, by density, to prove it for
sequences with only a finite number of non-zero components.

In that case (2) is the limit of (8) because of the conver-
gence of the minimal time T and the constants Cj , j = 1, 2,
in (8) to those of (2).

III. APPLICATION TO THE UNIFORM OBSERVABILITY OF

THE FULL DISCRETIZATIONS OF THE WAVE EQUATION

The content of this section is motivated by the classical
problem of control of waves. More precisely, it is related with
the controllability of the 1-d wave equation: given T > 0
and (u0, u1) ∈ L2(0, 1) × H−1(0, 1), the problem is to find
a control function v ∈ L2(0, T ) such that the solution of the
system⎧⎨

⎩
utt − uxx = 0, 0 < x < 1, 0 < t < T,
u(0, t) = 0, u(1, t) = v(t), 0 < t < T,
u(x, 0) = u0(x), ut(x, 0) = u1(x), 0 < x < 1,

(12)

satisfies

u(T ) = ut(T ) = 0, 0 < x < 1. (13)

This property is well known to be true for T ≥ 2.
This problem has been studied and solved in a much more
general setting and, in particular, for multi-dimensional wave
equations ([7]). Several approaches to the problem have
been developed. In particular, the Hilbert Uniqueness Method
(HUM) introduced by Lions in [7] offers a general way of
reducing the problem to the so-called observability problem
for the adjoint (up to an inversion in time) wave equation in
the absence of control:⎧⎨

⎩
φtt − φxx = 0, 0 < x < 1, 0 < t < T,
φ(0, t) = φ(1, t) = 0, 0 < t < T,
φ(x, 0) = φ0(x), φt(x, 0) = φ1(x), 0 < x < 1.

(14)

It is well known that the energy

E(t) =
1
2

∫ 1

0

(| φx(x, t) |2 + | φt(x, t) |2) dx (15)
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of the solutions of (14) satisfies dE(t)/dt = E′(t) = 0,
t ∈ [0, T ] and therefore it is conserved in time.

The observability problem is as follows: To find T > 0
such that there exists a constant C(T ) > 0 for which

E(0) ≤ C(T )
∫ T

0

| φx(1, t) |2 dt (16)

holds for every solution of (14). HUM allows showing that,
once the observability (16) is satisfied for the adjoint system
(14), the system (12) is controllable in time T . Moreover,
HUM provides a systematic method to build the control v =
φx(1, t) of minimal L2(0, T )- norm.

In the context of the 1− d wave equation (14), inequality
(16) can be easily proved by several methods including
Fourier series, D’Alembert Formula, multiplier techniques
and Ingham’s theorem (2), provided T ≥ 2.

In order to prove (16) applying the classical Ingham
inequality, one uses Fourier series techniques. Indeed, the
solution of (14) admits the Fourier development

φ(x, t) =
∑

k∈Z\{0}
akeiλktϕk(x), (17)

with (λk)k, λk = kπ = −λ−k, k > 0, being the sequence
of eigenvalues of the system, ϕk(x) = sin(kπx), the corre-
sponding eigenfunctions and ak ∈ C the Fourier coefficients,
which can be computed explicitly in terms of the initial data
in (14).

By definition (15) of the conserved energy of the solution
φ of (14) given by (17), we have

Eφ =
1
2

∑
k∈Z\{0}

k2π2 |ak|2 . (18)

Then, inequality (16) may be written as:

∑
k∈Z\{0}

k2π2 |ak|2 ≤ C(T )
∫ T

0

∣∣∣∣∣∣
∑

k∈Z\{0}
(−1)kkπakeiλkt

∣∣∣∣∣∣
2

dt.

(19)
According to Ingham’s inequality (2), inequality (19) holds
for T > 2, since the gap of the sequence (λk)k is constant,
γ = π, and consequently 2π/γ = 2. In this particular case
the inequality holds also for the minimal time T = 2. This
is due to the orthogonality properties of the trigonometric
polynomials. But, in general, i.e., for a general sequence
(λk)k∈Z under the gap condition (1), it is well known that
the Ingham inequality (2) may fail for the minimal time
T = 2π/γ (see [11], p. 163).

As a further step towards a complete theory of numerical
approximation of controls it is natural to address the same
issue for full space-time discretizations.

The main ingredients for the discrete analogue of (16) for
a finite-difference full discretization of a homogeneous 1-d
wave equation (14) are the Fourier representation of solutions
and our discrete Ingham inequality in Theorem 2.1.

In this section we study an application of the discrete
Ingham inequality (8) to a finite-difference full discretization
of a homogeneous 1-d wave equation.

Given M, N ∈ N we set ∆x = 1/(N + 1) and ∆t =
T/(M+1) and introduce the nets 0 = x0 < ... < xN+1 = 1,
0 = t0 < ... < tM+1 = T with xj = j∆x and tn = n∆t,
j = 0, ..., N + 1, n = 0, ..., M + 1.

We consider the following finite-difference discretization
of (12):⎧⎨

⎩
un+1

j − 2un
j + un−1

j = µ2
(
un

j+1 − 2un
j + un

j−1

)
,

un
0 = 0, un

N+1 = vn
∆t,

u0
j = u0j , u1

j = ∆tu1j + u0j ,
(20)

with j = 1, ..., N , n = 1, ..., M and µ = ∆t/∆x. We shall
denote by ūn = (un

1 , ..., un
N ) the solution at the time step

n. As in the context of the continuous wave equation above,
we consider the uncontrolled system⎧⎨

⎩
φn+1

j − 2φn
j + φn−1

j = µ2
(
φn

j+1 − 2φn
j + φn

j−1

)
,

φn
0 = φn

N+1 = 0,
φ0

j = φ0j , φ1
j = φ0j + ∆tφ1j ,

(21)
j = 1, 2, ..., N , n = 1, 2, ..., M , a central finite difference
discretization of (14).

Under the stability condition µ = ∆t/∆x ≤ 1 (µ is
the Courant number), the solutions φn

j (∆t, ∆x) of the finite
dimensional system (21) converge towards the solutions φ
of (14), when ∆x and ∆t, the space and the time mesh
sizes, respectively, go to zero. The error of convergence is
of order O((∆t)2 + (∆x)2) (order 2) (see [8]). Obviously,
φn

j is an approximation of φ(x, t), φ being the solution of
(14), provided the initial data (φ0

j , φ
1
j ), j = 0, ..., N + 1 are

an approximation of the initial data in (14).
The energy of (21) is

En = ∆x/2
N∑

j=0

[(
(φ1

j − φ0
j )/∆t

)2

+(φ1
j+1 − φ1

j )(φ
0
j+1 − φ0

j )/(∆x)2
] ≥ 0,

(22)

which is a discretization of the continuous energy E in (15),
and it is conserved in all the time steps En = E0, n =
1, ..., M , for the solution of (21) (see [8]).

Solutions of (21) admit the Fourier development

φ̄n =
N∑

k=−N,k �=0

akeiλkn∆tϕ̄|k|, (23)

with ak ∈ C, ϕ̄k = (sin(kπ∆x), ..., sin(Nkπ∆x)) and

λk = sgn(k)
2

∆t
arcsin

(
∆t

∆x
sin

kπ∆x

2

)
, (24)

λk = −λ−k for k > 0, being the eigenvalues of the system
(21) (see [8]).

Our goal is to analyze the discrete version of the observ-
ability inequality (16):

E0 ≤ C

[
∆t

M∑
n=0

∣∣∣∣φn
N

∆x

∣∣∣∣
2
]

, (25)

where E0 is the conserved energy of the solutions of the
discrete system (21). This inequality implies by HUM a
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controllability property of the discrete analogue (20) of the
control system (12). We seek for a positive constant C > 0,
independent on ∆t and ∆x such that (25) holds. This will
yield a family of controls that will be bounded as ∆t → 0,
which constitutes a natural candidate to converge to the
control of (12).

According to Theorem 2.1, the spectral gap between two
consecutive eigenvalues plays a very important role in the
analysis of the uniform observability inequality (25).

It is important to distinguish two cases:
• In the particular case where ∆t = ∆x := h (µ = 1)

we have λk = 2sgn(k)/h arcsin (sin(kπh/2)) = sgn(k)kπ.
Thus, λk+1 − λk = γ = π. But the condition (7),

|λk − λl| ≤ 2π − (∆t)p

∆t
, p < 1/2

does not hold, because maxk,l |λk − λl| =
(2π − 2π∆t)/∆t. Note however, that in this particular case,
due to the orthogonality properties of the family of complex
discrete exponentials involved in the Fourier representation
of solutions,

∑M
n=0 ein∆tπ(k−l) = (M + 1)δk,l, where

δk,l is Kronecker’s delta, an inequality of type (8) holds
immediately and the discrete Ingham inequality is not
needed.

Indeed, denoting by mk = (−1)kak sin(kπ∆x)/∆x, the
energy of the solutions (21) concentrated on the extreme
x = 1 can be written as

∆t
M∑

n=0

∣∣∣∣φN

∆x

∣∣∣∣
2

= ∆t
M∑

n=0

∣∣∣∣∣
N∑

k=−N

mkein∆tπk

∣∣∣∣∣
2

(26)

and the total energy of the solutions is

E0 =
1
2

N∑
k=−N

|mk|2 (27)

(see [8] for more details). Then, for T = 2 we have

h
M∑

n=0

∣∣∣∣φN

h

∣∣∣∣
2

= 2
N∑

k=−N

|mk|2 ,

and therefore

E0 =
1
4

[
h

M∑
n=0

∣∣∣∣φn
N

h

∣∣∣∣
2
]

.

A similar identity holds for the continuous wave equation
(14) in the minimal observability time T = 2. Namely

E =
1
4

∫ T

0

|φx(1, t)|2

for every solution φ of (14), where E is the energy of the
solutions φ = φ(x, t).
• In the case when ∆t < ∆x (µ < 1), and, in particular,

in the semi-discrete case (∆t = 0), the gap between two
consecutive eigenfrequencies decreases at high frequencies
and it is of the order of ∆x when ∆x → 0. Indeed, the gap
for the highest frequencies satisfies

|λN − λN−1| ≤ π2

2

(
π∆x

4
+

π∆x

2

)
=

3π3∆x

8
→ 0,

when ∆x → 0. Therefore, the lack of spectral gap may
produce the degeneracy of the observability constant.

So the uniform gap condition (6) is not satisfied and we
cannot apply directly Theorem 2.1 to prove inequality (25).
We need to introduce a subclass of solutions of system (21)
where the high frequency components have been filtered. To
do that, given α ∈ (0, 1), the so-called filtering parameter,
we consider the class of solutions involving the eigenvalues
{λk}k∈[−αN,αN ], k 	= 0:

φ̄n =
αN∑

k=−αN,k �=0

akeiλkn∆tϕ̄|k|. (28)

Let us first check the gap condition. We have

λk+1 − λk =
π cos ξ∆x

2√
1 −

(
∆t
∆x sin ξ∆x

2

)2
:= γk, (29)

for every k ∈ [−αN, αN ] and for some ξ ∈ [kπ, (k + 1)π].
Therefore

λk+1 − λk ≥ π cos
Nαπ∆x

2
≥ π(1 − α).

Consequently, for any filtering parameter α ∈ (0, 1), the
gap condition (6) holds with

γα := min
k

(γk) ≥ π cos
(

Nαπ∆x

2

)
≥ π(1 − α). (30)

On the other hand

|λk − λl| <
2πα(1 − ∆t)

∆t
. (31)

In view of (31), by choosing conveniently the filtering
parameter α such that

α ≤ α∗(∆t) :=
2π − (∆t)p

2π(1 − ∆t)
, (32)

with 0 ≤ p < 1/2, hypothesis (7) of Theorem 2.1 is verified.
In this way, for every 0 < α ≤ α∗(∆t), the truncated

sequence {λk}|k|≤Nα verifies the hypotheses (6) and (7) of
Theorem 2.1 with the spectral gap given by (30).

Note that α∗(∆t) ↗ 1 as ∆t → 0. Thus, the filtering
parameter α may be chosen arbitrarily in the interval α ∈
(0, 1).

The energy of the solutions (23) of the discrete system
(21), concentred on x = 1 is given by (26) and the total
energy (22) of the solutions is

E0 =
1
2

∑
k

| mk |2 1
cos2 kπ∆x

2

.

where mk = sin(Nkπ∆x)/∆x. For all |k| ≤ αN we have
cos(απ/2) ≤ cos(αNπ∆x/2) ≤ cos(kπ∆x/2) ≤ 1 and ,
in this case,

1
2

∑
k

| mk |2≤ E0 ≤ 1
2 cos2 απ

2

∑
k

| mk |2 . (33)
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Applying Theorem 2.1 and the Fourier representation (28) of
the solutions we obtain that, for all T > 2π/γα + ε(∆t), for
every α as in (32), by (33), the following inequalities hold

2 cos2
απ

2
C1(∆t, T, γα)E0 ≤ ∆t

M∑
n=0

∣∣∣∣φN

∆x

∣∣∣∣
2

, (34)

∆t
M∑

n=0

∣∣∣∣φN

∆x

∣∣∣∣
2

≤ 2C2(∆t, T, γα)E0, (35)

with Cj(∆t, T, γα), j = 1, 2, defined by relations (9), for
every truncated solutions (28) of system (21) belonging to
the class

Cα(∆x) = {φ̄n =
αN∑

k=−αN,k �=0

akeiλkn∆tϕ̄|k|}, (36)

where φ̄n = (φn
1 , ..., φn

N ).
Remark 3.1: When the filtering parameter α is equal to 1,

that is, when the sequence {λk}k is not truncated, inequality
(34) degenerates.

As consequence of (34), it follows that the observability
inequality:

E0 ≤ 1
2 cos2 απ

2 C1(T, γα)

[
∆t

M∑
n=0

∣∣∣∣φN

∆x

∣∣∣∣
2
]

(37)

holds uniformly for every solution of (21) in the class
Cα(h) as (∆t, ∆x) → (0, 0) for any T > T (α) =
2π/γα + ε(∆t), with C1(T, γα) given by (3). Observe that
the gap γα (respectively the minimal time 2π/γα) tends to
π (respectively to 2) when α ↘ 0+ while it converges to
zero (respectively to infinity) when α ↗ 1−. This coincides
with the predictions one may deduce from the analysis of
the dispersion diagram of the numerical scheme ([12]) as
we shall see in the next section.

This allows to recover the uniform observability of the
original system (14) as the limit when (∆t, ∆x) → (0, 0)
of the observability of the solutions of discrete system (21)
belonginging to class (36) by means of Fourier filtering.

In practice, it is also possible to fix the filtering parameter
α ∈ (0, 1). Then, the truncated sequence {λk}|k|≤Nα verifies
the condition (6) with the spectral gap given by (30). In this
way, {λk}|k|≤Nα also verifies the hypothesis (7) of Theorem
2.1. Therefore, we have an uniform inequality in the filtered
class (36) for every T > 2π/γα. Indeed, if α < 1, (32) is
satisfied and ε(∆t) → 0. Consequently, every T > 2π/γα

satisfies T > 2π/γα + ε(∆t), for ∆t small enough.
The uniform observability inequality (34) implies uniform

controllability results for the projection (over the subspace
of unfiltered Fourier components) of solutions of the dual
controlled system (20). In the limit as ∆t → 0 one may
recover the sharp controllability results of the wave equation.
This problem was studied in the particular case ∆t = ∆x in
[8]. We refer to [8] for the details of the proof of convergence
of controls. But, as mentioned above, for this particular one,
the discrete Ingham’s inequality is not needed.

The usual centered finite-difference approximation of the
wave equation we have considered here is only a simple
example in which the discrete Ingham’s theorem can be
applied, together with some filtering mechanism, to get
uniform observability inequalities.

IV. DISCRETE INGHAM INEQUALITIES AND DISPERSION

DIAGRAMS

In this section we discuss the results obtained applying
discrete Ingham inequalities in connection with the dis-
persion diagrams of the equations under consideration. We
also discuss the optimality of these results. First of all, we
introduce and recall some classical concepts and notations.

Any time-dependent scalar, linear partial differential equa-
tion with constant coefficients admits plane wave solutions

φ(x, t) = ei(ωt−ξx), ξ ∈ R, ω ∈ C, (38)

where ξ is the wave number and ω is the frequency. The
relationship

ω = ω(ξ) (39)

is known as the dispersion relation for the equation. By
dispersion one understands the property of a dynamical
continuous or discrete (in time) system to propagate, with
different velocities, the components of the solution.

Any individual ‘monochromatic wave’ (involving only one
Fourier component) of (38) moves at the phase velocity

c(ξ, ω) =
ω(ξ)

ξ
. (40)

When one superimposes two waves with nearby prop-
agation velocities, there appear wave packets which can
propagate with different velocities. The energy of wave
packets propagates at the so-called group velocity

C(ξ, ω) =
dω(ξ)

dξ
. (41)

In general, the dispersion relation for a partial differential
equation is a polynomial relation between ξ and ω, while a
discrete model amounts to a trigonometric approximation.

• Continuous problem. For the continuous wave equation
(14) we have ω(ξ) = ξ and therefore c(ξ) = C(ξ) = 1.
• Discrete problem. The same analysis can be developed

for the fully discrete scheme. Considering numerical plane
wave

φn
j = ei(ωn∆t−ξj∆x),

one obtains the dispersion relation

ω(ξ) =
2

∆t
arcsin

(
∆t

∆x
sin

ξ∆x

2

)
. (42)

This dispersion relation is 2π/∆x-periodic in ξ and 2π/∆t-
periodic in ω.

◦ When ∆t = ∆x we obtain

ω(ξ) = ξ. (43)

This case is particularly interesting because the dispersion
relation reduces to (43), the same for the continuous wave
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equation. In this case, the discrete waves propagate at a con-
stant velocity identically equal to one, like in the continuous
case. Therefore c(ξ, ω) = C(ξ, ω) = 1.
◦ In the general case, when ∆t < ∆x, i.e. µ < 1, the

phase velocity is given by

c(ξ, ω) =
2

ξ∆t
arcsin

(
∆t

∆x
sin

ξ∆x

2

)
(44)

and the group velocity is

C(ξ, ω) =
dω(ξ)

dξ
=

cos ξ∆x
2√

1 −
(

∆t
∆x sin ξ∆x

2

)2
. (45)

For ∆t = 0 the phase velocity and group velocity obtained
in (44) and (45), which depend on ξ, coincide with that of
the semi-discrete case, respectively, as expected.

Note that, as ∆x → 0, for all ξ we have

C(ξ, ω) ≤ cos ξ∆x
2√

1 − (
∆t
∆x

)2
→ 0

when ξ = π/∆x.
One can deduce some interesting conclusions about the

property of observability in view of the expressions above
of the group velocity.

In fact, the group velocity is the derivative of the eigen-
frequencies λk and the spectral gap is, as we have seen,
λk+1 − λk. Both magnitudes are similar, and they become
closer as ∆x → 0.

According to Theorem 2.1, the uniform gap between two
consecutive eigenvalues is a sufficient (and actually also
necessary) property for uniform (with respect to ∆x and ∆t)
observability inequalities.

Thus, to efficiently observe at the point x = 1 a wave
packet (or an initial disturbance concentrated near the ex-
treme x = 1) that moves to the left (in the space variable)
as t increases, starting at a point sufficiently close to x = 1,
the time needed is

T ≥ 2
min

ξ
{C(ξ, ω)} . (46)

This is the time that the wave packet needs to, after bouncing
at the left extreme x = 0, reach the point x = 1.

In the continuous case, (46) reduces to the well-known
condition for observability T ≥ 2 and it is uniform for all
the frequencies. According to the Ingham’s theorem (2), the
uniform gap (γ = π) between two consecutive eigenvalues is
a sufficient (and actually also necessary) property that leads
to uniform observability inequalities.

For the fully discrete problem (21) the time needed for
observation is

T ≥ max
ξ

2

√
1 −

(
∆t
∆x sin ξ∆x

2

)2

cos ξ∆x
2

. (47)

Passing to the limit in (47) with ∆t → 0 for fixed ∆x,
one obtains the same time as in the semi-discrete case.

Also, in this case, the observation time grows with the high
frequencies, except for the case when ∆t = ∆x, where the
time obtained in the previous section, using the orthogonality
of the time exponentials, is

T = 2 =
2π

γ

and it coincides with the observation time given by the group
velocity (47).

For µ = ∆t/∆x < 1, observe that, the condition (47)
is reduced to T ≥ 2/min(γk), with (γk) given by (29).
When the sequence of eigenvalues has not an uniform gap the
observability time (47) tends to infinity. Therefore, as in the
semi-discrete case, these facts confirm that a suitable filtering
of the spurious numerical high frequencies is necessary. The
filtering parameter α may be chosen arbitrarily in the interval
α ∈ (0, 1).

Therefore, the consequences of this fact are:

• In accordance with the analysis of the group velocity
we check that the observation time of a waves packet
is of order of (46).

• Both in the semi-discrete and in the discrete cases with
µ < 1, the group velocity is of order of ∆x for the high
frequencies and this indicates the necessity of filtering
to obtain a uniform observability property.

• Ingham’s inequality (2) and its discrete version that we
have presented in this paper are the analytical tool to
do this analysis rigorously. As the spectral gap and the
group velocity are of the same order, imposing the gap
condition in Ingham’s inequality corresponds to filtering
as suggested by the analysis of the group velocity.
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