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Abstract— This paper presents a multicriteria image-based
controller to position a 3-DOF camera with respect to a
target. The proposed controller allows to stabilize the camera
and determine the associated region of stability in spite of
unknown value of the target points depth, bounds on admissible
visual feature errors which guarantee visibility, and limits on
the camera velocity and acceleration. The description of the
closed-loop system is based on a mixed polytopic and norm-
bounded representation of uncertainties combined with an
original sector condition. This formulation allows to consider
LMI-based optimization schemes for computing the feedback
gain that leads to the maximization of the size of the region of
stability associated to the closed-loop system. Simulations of the
control method are presented in the case of a camera mounted
on a pan-platform supported by a cart-like robot.

Index Terms— Visual servoing, image-base control, saturation
control, visibility, constraint satisfaction.

I. INTRODUCTION

Visual servoing techniques aim at using the information
provided by one or several cameras to control the motion of
robotics systems. Since the early methods [6], very much has
been done to increase the robustness of controllers and tackle
the potential problem of stability and convergence underlined
in [2]. The robustness issues mainly concern the design of
stable controllers despite parametric uncertainties and the
guarantee of target visibility. Several approaches have been
proposed in the frame of image-based [3], pose-based [18],
[15], [19], or hybrid [8] methods.

In this paper, we consider that the error is directly ex-
pressed in terms of 2D visual features, and the depth of
the target points is bounded but unknown. In [7], a 2D
vision-based controller, robust to image distortion and camera
orientation, was proposed to servo a planar manipulator.
To enlarge the region of stability of the controller, which
is usually limited by local minima, a potential switching
strategy was proposed in [5]. In the case that the initial and
desired robot’s position are distant, the combination of image-
based control with path planning in the image was proposed
in [11] to increase the control robustness. In [10], the robust-
ness of 2D visual servoing with respect to image processing
errors was addressed by using statistical techniques. Robust
stability and the guarantee of no attractive local minima have
also been obtained by considering extended-2D coordinates
which include information on the depth distribution of points
and the estimated camera model [13]. As shown in [9],
the uncertainty in the depth distribution of target points
strongly reduces the domain of stability of the system. In
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most part of methods, the robustness improvement comes
from the introduction of geometric arguments which allow
to complete the local information in the image. Though the
geometric reasoning turns out to be essential in this problem,
the judicious choice of the controller is also fundamental to
guarantee the satisfaction of constraints. However, in a large
part of works, the control design is not considered as the
major issue. Following the formalism introduced in [3], the
closed-loop controller is deduced from the regulation of a
task function. and the stabilization of the system is often
obtained by imposing the exponential decay of this task
function.

In order to derive a better benefit from advanced control
techniques, a general framework was proposed in [17] to
model image-based control problems with constraints. The
approach was based on the combination of both robust
quadratic methods and saturation nonlinearities representa-
tion via the use of differential inclusion results. The main
drawback of this approach was that the conditions were
given in the form of bilinear matrix inequalities (BMIs). In
[14] a LPV approach was proposed to synthesize a robust
active vision system. A general framework for synthesis and
analysis of multicriteria vision-based servocontrol schemes
was also proposed in [1]. This approach was based on a
rational state-space representation of the system, embedded
in Structured Normed Linear Differential Inclusion. In this
paper we present an example of application of advanced
control techniques to the design of a multicriteria image-
based controller. The problem is stated in the framework of
the task function approach. The proposed controller allows to
stabilize a 3-DOF camera in front of a target, and determine
the associated region of stability in spite of unknown value of
the target points depth, bounds on admissible feature errors
which guarantee visibility, and limits on the camera velocity
and acceleration. We consider a description of the closed-
loop system based on both polytopic and norm-bounded
uncertainties combined with an original sector condition.
Hence, the provided conditions are directly in an LMI form
for given bounds on admissible image feature error. Such
a formulation allows to consider LMI-based optimization
schemes for computing the feedback gain that lead to the
maximization of the size of the region of stability associated
to the closed-loop system.

The problem statement is presented in section II and the
control synthesis is described in section III. Simulations of
the control method are presented in section IV for the case of
a camera mounted on a pan-platform supported by a cart-like
robot.

Notations. For any vector x ∈ �n, x � 0 means that all the
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components of x, denoted x(i), are nonnegative. For two vectors

x, y ∈ �n, the notation x � y means that x(i) − y(i) ≥ 0,

∀i = 1, . . . , n. The elements of a matrix A ∈ �m×n are denoted

by A(i,l), i = 1, . . . , m, l = 1, . . . , n. A(i) denotes the ith row of

matrix A. For two symmetric matrices, A and B, A > B means

that A − B is positive definite. A′ denotes the transpose of A.

D(x) denotes a diagonal matrix obtained from vector x. 1m denotes

the m-order vector 1m = [1 . . . 1]′ ∈ �m. Im denotes the m-

order identity matrix. Co{.} denotes a convex hull. For u ∈ �m,

satu0(u(i)) = sign(u(i)) min(|u(i)|, u0(i)) with u0(i) > 0, i =
1, ..., m.

II. PROBLEM STATEMENT

We consider the problem of positioning a 3-DOF camera
with respect to a visual target. The camera is supposed
to be supported by a robotic system which allows any
horizontal translations and rotations about the vertical axis.
An application to the case of a camera mounted on a pan-
platform supported by a wheeled robot will be considered
in section IV. The objective of the paper is to design a
stabilizing controller and determine the associated region of
stability in spite of the following constraints:

C1: The depth of the target points with respect to the camera
frame, is bounded but unknown.

C2: The visual signal errors, in the image, must remain
bounded during the stabilization process to ensure visi-
bility.

C3: the velocity and the acceleration of the camera must
remain bounded to satisfy the limits on the actuator
dynamics.

In return, we will make the hypothesis that the intrinsic
parameters of the camera are known and consider the metric
pinhole model with focal length f = 1.

Fig. 1. Description of parameters for the vision-based task

Let R be an absolute frame attached to the scene and Rc a
frame attached to the camera, having its origin at the optical
center C and its z-axis directed along the optical axis. Let
T ∈ �3 denote the reduced kinematic screw of the camera
which expresses the translational and rotational velocities of
RC with respect to R, expressed in RC . As the motion is
restricted to the horizontal plane, a linear target of three
equidistant points Ei, i = 1, 2, 3, located at the same height
as C, allows to perform the positioning task. We will denote
by l > 0 the distance between the target points, α the angle
between the target line and the optical axis, and η the angle
between the optical axis and the line (CE2) (see Fig. 1). The
camera is initially located in the left half-plane delimited by

the target line and the distance d = CE2 is bounded as
follows:

d ∈ [dmin, dmax] (1)

Furthermore, to prevent from projection singularities, the
following condition is considered:

α ∈ [−π + αmin,−αmin] (2)

where αmin > 0 is a small angle. For i = 1, 2, 3, let us
denote respectively by Yi and Y ∗

i the ordinates of the current
and desired target points in the image plane. Following the
formalism introduced in [3], [12], a simple choice for the
positioning task function is: e = [ e1 e2 e3 ]′ ∈ �3 with
ei = Yi − Y ∗

i . The desired camera position corresponds
to: Y ∗

2 = 0 and Y ∗
3 = −Y ∗

1 . In addition, to guarantee the
visibility of the target, we impose the following bound on
task function components:

|ei| ≤ β, i = 1, 2, 3 ; with β > 0 (3)

Consequently, the angle η is bounded by:

|η| ≤ ηmax = arctan (β) < π/2 (4)

and therefore, the depth z2 = d cos(η) of the central point
E2 is bounded as follows:

z2 ∈ [dmin cos(ηmax), dmax] (5)

The relation between the time-derivative of the task function
and the kinematic screw is given by the optical flow equa-
tions:

ė = L(z, e)T (6)

where the image Jacobian L(z, e) ∈ �3×3 is defined by:

L(z, e) =

⎡
⎣ −1/z1 (e1 + Y �

1 )/z1 1 + (e1 + Y �
1 )2

−1/z2 (e2 + Y �
2 )/z2 1 + (e2 + Y �

2 )2
−1/z3 (e3 + Y �

3 )/z3 1 + (e3 + Y �
3 )2

⎤
⎦
(7)

In (6) and (7), the constraints on the vector z =
[ z1 z2 z3 ]′ ∈ �3 follow the description given in Fig.1.
From relations (1), (2), (4) and (5), the depth of target points
E1 and E3 can be expressed in terms of the depth z2 of the
central point E2. Hence, it follows

z = [z2 + lcos(α), z2, z2 − lcos(α)]′

As l << z2 the following approximation can be done:

1
z1

� 1
z2

(1 − l cos(α)
z2

) = 1
z2

− l cos(α)
z2
2

= p1 − p2

1
z2

= p1

1
z3

� 1
z2

(1 + l cos(α)
z2

) = 1
z2

+ l cos(α)
z2
2

= p1 + p2

(8)

From the definition of the admissible intervals relative to z2

and α given by (2) and (5), it follows that the scalars p1

and p2 in (8) satisfy pjmin ≤ pj ≤ pjmax, j = 1, 2. Thus,
matrix L(z, e) depends on two uncertain parameters p1 and
p2. In order to take into account the limits on the actuators
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dynamics the following bounds on the kinematics screw and
its time-derivative will be considered:

−u1 � T � u1 (9)

−u0 � Ṫ � u0 (10)

To solve objectives C1, C2, C3 previously defined, the
following extended state vector is defined:

ξ =
[

e
T

]
∈ �6 (11)

with the following matrices

A(z, ξ) =
[

0 L(z, e)
0 0

]
∈ �6×6

B =
[

0
I3

]
∈ �6×3

(12)

Thus, we consider the following system

ξ̇ = A(z, ξ)ξ + BṪ (13)

where the acceleration of the camera Ṫ is the control vector.
Hence, in order to take into account the constraint (10), the
control law under consideration has the following form:

Ṫ = satu0(Kξ) with K = [ K1 K2 ] ∈ �3×6 (14)

Hence, the closed-loop system reads:

ξ̇ = A(z, ξ)ξ + Bsatu0(Kξ) (15)

Relative to (15), one has to take into account the con-
straints (3) and (9), which means that the state ξ must belong
to the following polyhedral set Ω(ξ):

Ω(ξ) = {ξ ∈ �6;−
[

β13

u1

]
� ξ �

[
β13

u1

]
} (16)

The problem we intend to solve throughout the paper with
respect to the closed-loop system (15), subject to constraints
(16), can be summarized as follows.

Problem 1: Determine a gain K and a region of stability,
as large as possible, such that

• the asymptotic stability of the closed-loop system (15)
is guaranteed in spite of uncertainties on the depth of
the target points with respect to the camera frame.

• the boundedness on the visual signal errors and the
velocity are satisfied.

III. CONTROL SYNTHESIS

A. Preliminary Results
The closed-loop system (15) can be also described by:

ξ̇ = (A(z, ξ) + BK)ξ + Bφ(Kξ) (17)

with the decentralized dead-zone nonlinearity φ(Kξ) =
satu0(Kξ) − Kξ, defined by: ∀i = 1, 2, 3,

φ(K(i)ξ) =

⎧⎨
⎩

u0(i) − K(i)ξ if K(i)ξ > u0(i)

0 if |K(i)ξ| ≤ u0(i)

−u0(i) − K(i)ξ if K(i)ξ < −u0(i)

(18)

As in the formalism developed in [4], consider a matrix
G ∈ �3×6 and define the following set:

S(u0) = {ξ ∈ �6;−u0 � (K − G)ξ � u0} (19)

The following lemma can then be stated.
Lemma 2: [4] Consider the nonlinearity φ(Kξ) defined in

(18). If ξ ∈ S(u0) then the relation:

φ(Kξ)′M(φ(Kξ) + Gξ) ≤ 0 (20)

is satisfied for any diagonal positive definite matrix M ∈
�3×3.

B. Main Results
Let us first define the following matrices

R = [ I3 0 ] ; C = [ 0 I3 ] (21)

In order to solve our control design problem, we propose
to pursue the strategy summarized as follows.

Theorem 3: If there exist a positive definite function V (ξ)
(V (ξ) > 0, ∀ξ �= 0), a gain K, a matrix G and a positive
scalar γ satisfying, for any admissible z:

∂V
∂ξ [(A(z, ξ) + BK)ξ + Bφ(Kξ)]
−2φ(Kξ)′M(φ(Kξ) + Gξ) < 0

(22)

γV (ξ)− ξ′(K(i) −G(i))′
1

u2
0(i)

(K(i) −G(i))ξ ≥ 0, i = 1, 2, 3

(23)

γV (ξ) − ξ′R′
(i)

1
β2

R(i)ξ ≥ 0, i = 1, 2, 3 (24)

γV (ξ) − ξ′C′
(i)

1
u2

1(i)

C(i)ξ ≥ 0, i = 1, 2, 3 (25)

then the gain K and the set S(V, γ) = {ξ ∈ �6; V (ξ) ≤ γ−1}
are solutions to Problem 1.
Proof. The satisfaction of relation (23) means that the set
S(V, γ) is included in the set S(u0) defined as in (19). Thus,
one can conclude that for any ξ ∈ S(V, γ) the nonlinearity
φ(Kξ) satisfies the sector condition (20). Moreover, the
satisfaction of relations (24) and (25) means that the set
S(V, γ) is included in the set Ω(ξ) defined by (16). Thus, for
any ξ ∈ S(V, γ), the constraints C2 and C3 are respected.
Consider a positive definite function V (ξ) (V (ξ) > 0,
∀ξ �= 0). We want to prove that the time-derivative of V
is strictly negative along the trajectories of the closed-loop
system (17) for all admissible nonlinearity φ(Kξ) and all
admissible uncertain vector z. Hence, by using Lemma 2,
one gets:

V̇ (ξ) ≤ V̇ (ξ) − 2φ(Kξ)′M(φ(Kξ) + Gξ)

Thus, the satisfaction of relation (22) implies that

V̇ (ξ) − 2φ(Kξ)′M(φ(Kξ) + Gξ) < 0

therefore V̇ (ξ) < 0 along the trajectories of system (17).
Since this reasoning is valid for any ξ �= 0 belonging to
S(V, γ), one can conclude that S(V, γ) is a set of stability
for the saturated closed-loop system. �
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Theorem 3 provides a sufficient condition to solve the
control gain design. However, such a condition is not really
constructive to exhibit a suitable function V (ξ), a gain K and
a scalar γ. The idea then consists in considering a quadratic
function for V (ξ), as V (ξ) = ξ′Pξ, P = P ′ > 0.

Furthermore, we have also to write in a tractable way the
matrix A(z, ξ), and therefore the closed-loop system (17). In
this sense, by defining the following matrices:

B1(z) =

⎡
⎣ −1/z1 Y ∗

1 /z1 1 + (Y ∗
1 )2

−1/z2 Y ∗
2 /z2 1 + (Y ∗

2 )2
−1/z3 Y ∗

3 /z3 1 + (Y ∗
3 )2

⎤
⎦ ;

B2(z) =

[ 1/z1 0 0
0 1/z2 0
0 0 1/z3

]
;

D(e) =

[
e1 0 0
0 e2 0
0 0 e3

]
; B3 =

[ 2Y ∗
1 0 0

0 2Y ∗
2 0

0 0 2Y ∗
3

]

the closed-loop system reads:

ξ̇ = (R′B1(z)C + R
′T(2)B2(z)R

+R
′T(3)(B3 + D(e))R + BK)ξ + Bφ(Kξ) (26)

Thus, from (8), B1(z) and B2(z) depend on two uncertain
parameters p1 and p2. It follows that B1(z) and B2(z) belong
to a polytope with 4 vertices given by the combinations of
value of p1 and p2 in their definition interval:

B1(z) ∈ Co{B1j , j = 1, ..., 4}
B2(z) ∈ Co{B2j , j = 1, ..., 4} (27)

The following proposition derived from Theorem 3 can
then be stated.

Proposition 4: If there exist symmetric positive definite
matrices W ∈ �6×6, R1 ∈ �3×3, a diagonal positive matrix
S ∈ �3×3, two matrices Y ∈ �3×6 and Z ∈ �3×3, two
positive scalars ε and γ satisfying1:

2
666664

WA
′
1j + A1jW + BY + Y ′

B
′

+R
′(R1 + εu2

1(3)(1 + β2)I3)R
� � �

u1(2)B2jRW −R1 � �»
B3

I3

–
RW 0 −εI6 �

SB
′ − Z 0 0 −2S

3
777775 < 0

(28)

[
W 	

Y(i) − Z(i) γu2
0(i)

]
≥ 0, i = 1, 2, 3 (29)

[
W 	

R(i)W γβ2

]
≥ 0, ∀i = 1, 2, 3 (30)

[
W 	

C(i)W γu2
1(i)

]
≥ 0, ∀i = 1, 2, 3 (31)

then the gain matrix K = Y W−1 and the set

E(W,γ) =
{
ξ ∈ �6; ξ′W−1ξ ≤ γ−1

}
(32)

1� stands for symmetric blocks.

solve Problem 1.
Proof. The proof mimics the one of Theorem 3. The satis-
faction of relation (29) means that the set E(W,γ) defined in
(32) is included in the set S(u0) defined in (19). Thus, one
can conclude that for any ξ ∈ E(W,γ) the nonlinearity φ(Kξ)
satisfies the sector condition (20) with G = ZW−1. Further-
more, the satisfaction of relations (30) and (31) implies that
the set E(W,γ) is included in the sets Ω(ξ) defined in (16).
Hence, for any admissible uncertain vector z (see equation
(27)) and any admissible vector belonging to E(W,γ), the
closed-loop system (17) or (26) can be written as:

ξ̇ = (
4∑

j=1

λj(A1j + R
′T(2)B2jR)

+R
′T(3)(B3 + D(e))R + BK)ξ + Bφ(Kξ)

(33)

with

4∑
j=1

λj = 1, λj ≥ 0 , and A1j = R
′B1jC =

[
0 B1j

0 0

]

The time-derivative of V (ξ) = ξ′W−1ξ along the trajec-
tories of system (33) writes:

V̇ (ξ) ≤ 2ξ′W−1(
4∑

j=1

λj(A1j + R
′T(2)B2jR)

+R
′T(3)(B3 + D(e))R + BY W−1)ξ

+2ξ′W−1
Bφ(Kξ)

−2φ(Kξ)′M(φ(Kξ) + ZW−1ξ)

By convexity one can prove that the right term of the above
inequality is negative definite if one verifies:

2ξ′W−1(A1j + R
′T(2)B2jR + R

′(B3 + D(e))R
+BY W−1)ξ + 2ξ′W−1

Bφ(Kξ)
−2φ(Kξ)′M(φ(Kξ) + ZW−1ξ) < 0

Thus, by using (9) one can upper-bound the term containing
T(2) as follows

2ξ′W−1
R

′T(2)B2jRξ ≤ ξ′(W−1
R

′R1RW−1

+u2
1(2)R

′B′
2jR

−1
1 B2jR)ξ

with R1 = R′
1 > 0. By the same way by using both (9) and

(16), one can upper-bound the term containing T(3) and D(e)
as follows

2ξ′W−1
R

′T(3)(B3 + D(e))Rξ ≤ ξ′(εu2
1(3)(1 + β2)R′

R

+ε−1
R

′ [ B′
3 I3 ]

[
B3

I3

]
R)ξ

the satisfaction of relation (28) with M = S−1 and
K = Y W−1, G = ZS−1 allows to verify that V̇ (ξ) < 0
along the trajectories of system (33). Hence, one can
conclude that for any ξ ∈ E(W,γ), ξ �= 0, V̇ (ξ) < 0 along
the trajectories of system (17). Therefore the set E(W,γ) is
a set of asymptotic stability for system (17). �

It is possible to add some conditions about the speed of
convergence of the Lyapunov function: for example, one can
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search for verifying V̇ (ξ)+2λV (ξ) < 0, λ > 0. In this case,
it suffices to add the term 2λW in the matrix block (1,1) in
(28).

C. Optimization Issues
Based on the results of the previous section, we present

some convex optimization problem in order to obtain a state
feedback gain matrix that ensures the local stability of the
closed-loop system (17). It is important to note that relations
(28), (29), (30) and (31) of Proposition 4 are LMIs. Further-
more, we aim to design the state feedback gain in order to
maximize the estimate of the basin of attraction associated
to it (respecting all the constraints on e and T ). In other
words, we want to compute K such that the associated region
of asymptotic stability is as large as possible considering
some size criterion. Thus, the following convex optimization
problem can be considered:

min
W,R1,Y,Z,S,γ,ε

γ + δ + σ

subject to
relations (28), (29), (30), (31),[
σI6 	
Y I3

]
≥ 0,

[
δI6 	
I6 W

]
≥ 0

(34)

The last two constraints are added to guarantee a satisfac-
tory conditioning number for matrices K and W .

D. Possible Extension
The study of system (15) subject to constraints (16) means

that the constraints on the error (C2) and on the velocity
(part 1 of C3) are linearly respected (saturation avoidance
case). On the contrary, saturation of the acceleration (part
2 of C3) is allowed. Nevertheless, if one wants to consider
that saturation on the velocity is also allowed then one can
modify the closed-loop system as follows:

ė = L(z, e)satu1(u)
u̇ = satu0(K1e + K2satu1(u))
T = satu1(u)

(35)

Thus, by considering ξn = [ e′ u′ ]′ ∈ �6 and the same
type of matrices than in (12), the closed-loop system reads:

ξ̇n = (A(z, ξn) + BK)ξn + Bφ0

+(
[

L(z, e)
0

]
+ BK2)φ1

(36)

where φ0 = satu0(K1e + K2satu1(u)) − (K1e +
K2satu1(u)) = satu0(Kξn + K2φ1) − (Kξn + K2φ1) and
φ1 = satu1(u) − u = satu1(Cξn) − Cξn. In this case,
Problem 1 will be studied with respect to system (36) by
using nested deadzone nonlinearities as in [16].

IV. APPLICATION

In this section we present a result of simulation of the
proposed control scheme in the case that the camera is
mounted on a pan-platform supported by a wheeled robot.
As described in Fig. 2, x and y are the coordinates of the
robot reference point M with respect to R(O,X, Y, Z), θ
is the direction of the vehicle with respect to the X-axis,

and θp is the direction of the pan-platform with respect to
the robot’s main direction. A frame RP (P,XP , YP , ZP ) is
attached to the pan-platform whose origin is at the center of
rotation P . The transformation between RP and RC consists
of an horizontal translation of vector [ a b 0 ]′ and a
rotation of angle π

2 about the YP -axis. Dx is the distance
between M and P . The velocities of the robot, which

Fig. 2. Camera fixed on a pan-platform supported by a wheeled robot

constitutes the actual system inputs are described by the
vector q̇ = [ v ω ωp ]′ , where v and ω are the linear and
the angular velocities of the cart with respect to R, while ωp

is the pan-platform angular velocity with respect to RM . We
consider the following kinematic model:2

64
ẋ
ẏ
θ̇
θ̇p

3
75 =

2
64

cos(θ) 0 0
sin(θ) 0 0

0 1 0
0 0 1

3
75

"
v
ω
ωp

#

The kinematic screw T is linked to the velocity vector by
the relation T = J(q)q̇, in which the robot Jacobian is given
by:

J(q)=

" − sin(θp) Dx cos(θp) + a a
cos(θp) Dx sin(θp) − b −b

0 −1 −1

#
(37)

As the proposed method allows to guarantee the stability
of the closed-loop system despite unknown value of the
target point depth, the simulation has been done by taking
the expression of the interaction matrix L(z∗, e) at the final
position. With respect to the absolute frame R, the coordi-
nates of the target points are: E1(10m, 0.5m), E2(10m, 0m)
and E3(10m,−0.5m). The interval of distance between the
robot and camera is d ∈ [2.454m, 8m]. At the expected
position, the visual features are defined by: Y ∗

1 = 0.2,
Y ∗

2 = 0, and Y ∗
3 = −0.2. To guarantee the visibility

we considered β = 0.4. The initial robot’s configuration
is given by: x = 4.85m, y = −1m, θ0 = 0rad and
θp = 0.175rad, and the initial value of the state vector
is: ξ(0) = [−0.0825m; 0.0229m; 0.125m; 0ms−1; 0ms−1;
0rad−1]. The bounds on the camera velocity and acceleration
are u1 = [1 1 0.1]′, and u0 = [1 1 5]′. By applying
the proposed control scheme with the Matlab LMI Control
Toolbox we obtained the following value for the control gain
K:

K =

"−152.8 465.5 −153.8 −7.7 0.4 13.4
−191.2 34.8 161 0 −10 0.4
−1290.8 −1115.5 −1364.4 66.9 −3.7 −350.2

#
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Fig. 3 represents the robot trajectory and the visual features
evolution. Though the camera positioning task is perfectly
performed, the trajectory is less direct than what is usually
obtained by imposing the exponential decay of the task
function. The velocities of the robot and the kinematic
screw of the camera are described in Fig. 4. As shown, the
kinematic screw remains within the prescribed interval. Fig. 5
represents a zoom of the variation of the control components
during the beginning of the task. As can be seen, the second
control component saturate for a while. As the bounds on
the actuators dynamics have been considered in the control
design, the stability of the closed-loop system is ensured
despite of saturations.

Fig. 3. Trajectory of the robot (left) and visual features (right)

Fig. 4. Robot velocities (left), and camera kinematic screw T (right)

Fig. 5. Control evolution (during the beginning of the task)

V. CONCLUDING REMARKS

The works presented in this paper describes an application
of advanced control techniques to the design of a multicriteria
image-based servoing scheme. The proposed approach allows
to consider various kind of constraints at the control synthesis
level. By using a representation of the closed-loop system,
based of a mixed polytopic and norm-bounded representation
of uncertainties with an original sector condition, it was

possible to express the different constraints in an LMI form.
Following the same reasoning it could be possible to consider
bounded uncertainties on the camera intrinsic parameters by
introducing additional matrix inequalities. We are currently
working on the extension of this control design to consider
the case of moving targets.
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