
LMI formulations for designing controllers according to time response
and stability margin constraints

Mohamed Abbas-Turki, Gilles Duc and Benoı̂t Clement

Abstract— Designing a controller with respect to time and
frequency-domain objectives remains a difficult problem, al-
though both kinds are generally present in the manufacturer
specifications. In general, the temporal objectives are replaced
by frequency dependent ones, which in major cases do not
fit the actual expectations. In this paper, convex mathematical
translations of both kinds of objectives are proposed using
Linear Matrix Inequalities (LMI). The application of Youla
parameterization allows to restore the linearity in the compen-
sator parameters, but a huge state space representation of the
system is induced. Thus the Cutting Plane Algorithm (CPA)
is efficiently used to overcome the problem of having a huge
number of added variables, which often occurs in Semi-Definite
Programming (SDP) particulary when used in conjunction with
the Youla parameterization.

I. INTRODUCTION

The commun way to solve a multiobjective control prob-

lem is to reformulate the design specifications into more con-

venient forms such as H∞ or H2 constraints. Unfortunately

most of the manufacturer specifications cannot be exactly

translated into such formulations, so that this approach

leads either to more restrictive constraints or to approximate

results. For instance in [1], a LMI specification is proposed

to translate a template on a time response, which derives

a hard constraint. The time domain specifications can be

indirectly handled by H2 constraints or frequency shaping,

but the overshoot and the settling time remain difficult to be

adjusted.

The purpose of this work is to design a controller ac-

cording to time-domain specifications together with gain and

phase margins requirements. The case of H∞ and H2 norms

constraints has been presented in [2], [3]. By using the Youla

parameterization, which defines a convex set describing all

stabilizing controllers [4], all these specifications are ex-

pressed as matrix inequalities which are linear in the decision

variables (LMI), provided a particular base is chosen for the

Youla parameter. The obtained problem is therefore convex,

so that it can be solved using convex optimization techniques.

Furthermore, it allows to conclude on the feasibility or non-

feasibility of the control problem, provided the basis chosen

for the Youla parameter allows to cover appropriately the set

of stable transfer functions.
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As a disadvantage, using the Youla parameterization in-

duces a huge state-space representation. The most commonly

used technique for solving LMI problems is the semi-definite

programming (SDP): however the frequency-dependent con-

traints generally require introducing a symmetric matrix of

the same order as the state-space matrix. Thus this technique

should be avoided when the Youla parameterization is used.

In order to avoid the additional variables, Kao [5] presents

an alternative based on the eigenvalues of some Hamiltonian

matrix, and the application of a Cutting Plane Algorithm

(CPA) instead of SDP. Although this method is more sensi-

tive to numerical conditioning, it is less affected by the order

of the plant.

In this paper, the efficiency of using CPA in this context

will be shown: the time-domain specifications will be directly

expressed as LMI constraints, without any restriction nor

approximation. The stability margins requirements will be

considered as real uncertainties. Contrary to the approach

proposed in [6], no decomposition of the Youla parameter is

needed and no additional variable has to be introduced. On

the other hand, the proposed condition is only sufficient but

it has been verified that it is not too conservative in most

practical cases.

The paper is organized as follows: section 2 contains

a brief presentation of the Youla parameterization; section

3 introduces the CPA. The main contributions appear in

sections 4 and 5, where a time-domain template and stability

margins constraints are respectively formulated on a suitable

form to be used by the CPA. An illustrative example is finally

presented in section 5.

II. YOULA PARAMETERIZATION

A. Parameterization of the set of stabilizing controllers

The Youla parameterization allows describing all stabiliz-

ing controllers by only one stable transfer Q, called the Youla

parameter [4]. Consider a continuous or discrete-time plant

G, with z the output to be controlled despite disturbance

w, using control input u and measurement y. A state space

realization of G can be written as:

G =
(

G11 G12

G21 G22

)
:

w u

z
y

⎛
⎝ A B1 B2

C1 D11 D12

C2 D21 D22

⎞
⎠ (1)

All stabilizing controllers are described by the Redheffer

product K = J ∗ Q (see the interconnection structure of

figure 1), where the Youla parameter Q is any stable transfer

function. System J depends both on coprime factorizations
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of G22 (the transfer between u and y) and an initial com-

pensator K0:

J =
(

K0 Ṽ −1
0

V −1
0 −V −1

0 N

)

with G22 = NM−1 = M̃−1Ñ , K0 = U0V
−1
0 = Ṽ −1

0 Ũ0.

G

Q

J

w z

K

u y

yq uq

Fig. 1. Closed-loop structure using Youla parameterization

The main result of such an approach is that the Redheffer

product G ∗ J (figure 1) exhibits a transfer identically equal

to 0 between uq and yq. Hence the closed-loop transfer Gzw

depends linearly on Q:

Gzw =
(
G11 + G12U0M̃G21

)
+ (G12M)Q

(
M̃G21

)
= H11 + H12QH21

(2)

From state space realizations of H11, H12, H21 and Q, a

non minimal realization of Gzw is therefore as follows:

Gzw =
(

Azw Bzw

Czw Dzw

)
=⎛

⎜⎜⎝
A11 0 0 0 B11

0 A21 0 0 B21

0 BQC21 AQ 0 BQD21

0 B12DQC21 B12CQ A12 B12DQD21

C11 D12DQC21 D12CQ C12 D11 + D12DQD21

⎞
⎟⎟⎠

(3)

Unfortunately, the state-space matrices of the Youla pa-

rameter enter in matrices Azw and Bzw: expressing most

constraints (using e.g. H∞ and H2 norms,...) will generally

provide matrix inequalities which are bilinear in the decision

variables. However the projection of the Youla parameter on

a chosen basis allows restoring the linearity: this will be

shown in the second part of this section.

B. Finite dimensional approximation of the Youla parameter

In all the literature concerning the Youla parameterization

and convex optimization problems, it is a usual way to

approximate the Youla parameter by a truncated projection.

Such an approximation can be written:

Q(υ) =
m×p∑
j=1

nq∑
k=0

qk,jQk,j(υ) (4)

where m and p are the numbers of columns of B2 and

the number of lines of C2 respectively, υ is either the

discrete-time or the Laplace operator, {Qk,j} is the chosen

basis of stable transfers and qk,j are the design parameters.

Using (4), matrices AQ and BQ are fixed, so that all the

design parameters enter in CQ and DQ only.

As it can be noticed, the order of the Youla parameter rises

significantly for systems with large numbers of inputs and

outputs. Furthermore the representation (3) of the closed-

loop plant is a non minimal one. For these reasons, one has

to search for a synthesis method which is the less sensitive

to the state-space order.

It remains now to put the design variables only in Czw

and Dzw, which is not the case in (3), for guaranteing in

most cases the linearity of the matrix inequalities constraints

with respect to the design parameters. A suitable technique

has been proposed by [7], which consists in increasing the

representation of Gzw using the Kronecker product. This

representation leads to the state space representation of Gzw

having a high order (that is n + 2 n m p + 2 m p nQ mi,

where n, nQ and mi are respectively the dimensions of

matrices A, AQ and the number of lines of C1). This

means one’s again that for avoiding numerical infeasibility,

all methods based on introducing a matrix having the same

order as Azw should be avoided.

III. THE CUTTING PLANE ALGORITHM

This section presents a variant of the Cutting Plane Algo-

rithm (CPA) presented in [5]. Only the case of a feasibility

problem is presented.

The presentation of the method is divided into two parts:

the first one gives the general principle of the algorithm. The

second one brings some details on the operations happening

at each step.

A. Algorithm

Consider the following feasibility problem:

Find x subj to Sx > 0 (5)

where x is the vector of decision variables, and Sx is a real

symmetric matrix expressing a set of constraints on matrix

form. The problem (5) can be reformulated into an equivalent

eigenvalue maximization problem:

sup
x,y

y subj to

{ Sx − yI > 0
y < 1 (6)

The problem (6) is feasible if y > 0. From (6) a concave

function is defined:

q(x) := sup {y : Sx − yI > 0, y < 1} (7)

Using q(x), problem (7) can be replaced by the equivalent

optimization problem:

yopt = sup
x

q(x) (8)

For solving problem (8), the method of Kelly [8] is

commonly used. This method needs to compute the values

of q(x) and its sub-gradient. In [5], a technique has been

presented by Kao, which avoids such a harsh calculation, by

solving a Linear Programming Problem (LPP). The function
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q(x) is bounded iteratively by a set of hyperplanes, leading

to a piecewise linear function pk(x):

q(x) ≤ pk(x) := min
1≤i≤k

{aix − bi} (9)

In the following, it is assumed that there exists a mech-

anism which checks the constraints and generates the hy-

perplanes (such a mechanism will be introduced in the next

subsection). The algorithm begins with an initial value yl

belonging to the feasible set. At iteration k the following

LPP is solved:

max
xmin≤x≤xmax

pk(x) (10)

with xmin and xmax defining some numerical limits of

the components of vector x. Let y(k) be the solution of this

problem. A linear interpolation involving a parameter α ∈
[0, 1] derives a new value of y:

ŷ(k) = αy(k) + (1 − α)yl (11)

If the set of constraints Sx − ŷ(k)I > 0 is verified

(figure 2(a)), the value of yl is replaced by ŷ(k) else, new

hyperplanes are added (figure 2(b)), so that a new LPP can

be solved at iteration k+1. The principle of the CPA is very

simple, but the main task is to verify the constraints and to

generate the hyperplanes.

(a) (b)

Fig. 2. The CPA in the scalar case

B. Mechanism for verifying the constraints and generating
the hyperplanes

The verification of the constraints and the generation of

the hyperplanes are linked, so that there are considered in

the same mechanism. Some general ideas are given here:

the application to different constraints will be detailed in the

next section.

Two types of constraints have to be considered: in the

first case, the constraint is an explicit translation of the

specification onto some matrix inequality, so that the ver-

ification is done by directly computing the eigenvalues of

the corresponding symmetric matrix. A second case arises

when for instance frequency dependent constraints are trans-

lated using some equivalent proposition as provided by the

Kalman-Yakubovich-Popov (KYP) lemma [9]: such a lemma

allows to replace an infinite number of frequency dependent

constraints by a unique one, by introducing a Hamiltonian

matrix H which is required to have no eigenvalue on the

imaginary axis; if it has one, its value can be reported in the

constraint as a frequency where it is not satisfied.

The generation of the hyperplanes is done using the

eigenvectors associated to the negative eigenvalues of the

matrix Sx − ŷ(k)I . For each negative eigenvalue λi, an

hyperplane is generated from the associated eigenvector vi,

which verifies:

vT
i (Sx − ŷ(k)I)vi < 0 (12)

Since Sx is affine in x, the quadratic product vT
i (Sx)vi

has the form:

vT
i (Sx)vi = aT

i x + bi (13)

and an hyperplane corresponding to the new added con-

straint is described by:

aT
i x + bi −

(
vT

i vi

)
y > 0 (14)

The next sections shows how different contraints can be

translated into a suitable form for applying the CPA.

IV. TIME RESPONSE TEMPLATE

To impose a particular template to a time response, most

of the works resort to non convex optimization methods or

try to translate the time domain constraints to the frequency

domain. The first approach induces a huge calculation time,

whereas in the second one, informations are lost and the

constraint becomes harsh in most cases. In this section a time

domain constraint is considered using a LMI formulation.

Although this formulation is appropriate to discrete-time

problems, it can also be extended to continuous-time ones,

as will be explained all along this section.

Given a test input sequence, the aim of time response

shaping of discrete time systems can be formulated as

follows:

(zi(nT ) − δ(0))2 < τ(0), n = 0, ..., n0

(zi(nT ) − δ(1))2 < τ(1), n = n0 + 1, ..., n1

...
...

(zi(nT ) − δ(r))2 < τ(r), n = nr−1 + 1, ..., nr

(15)

where zi is the ith output; δ(j), j = 0, ...r is the centre

of the allowable interval;
√

τ(j) is the maximal tolerated

deviation; T is the sample time; r is the number of con-

straints domains ; nr is the maximal value of time for which

constraints are considered. Figure 3 shows an example of

time response shaping for a unit step response, with r = 3.

For continuous-time systems yi is simply obtained by

defining a particular sample-time T according to the Shannon

condition and computing the corresponding values of the

time response.

Each set of contraints in (15) can be treated separately,

so only one set is considered in the following. Consider the

closed-loop discrete-time system Gzw defined in section II.

If input w is given1, the value of the output z at each instant

1If w represents an unknown disturbance, a worst case signal should be
considered.
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Fig. 3. Example of time response constraints

n can be found using the algebraic formulation:

z(nT ) = Czw

(
n∑

k=1

Ak−1
zw Bzwwn−k

)
+ Dzwwn (16)

where Azw, Bzw, Czw and Dzw are the state-space

matrices of Gzw and wn−k is the value of the input at time

n− k; z(nT ) is affine on Czw and Dzw (which contain the

matrices CQ, DQ of the Youla parameter we are looked for).

Each constraint of (15) can be written:

(∗)

(
Czw

(
n∑

k=1

A
k−1
zw Bzwwn−k

)
+ Dzwwn − δ(j)

)
< τ(j) (17)

(where (*) stands for the symmetric term). Inequality (17)

is not affine in Czw and Dzw, but an equivalent LMI

formulation is obtained by applying the Schur lemma:⎛
⎝ 1 ∗(

Czw

(
n∑

k=1

A
k−1
zw Bzwŵn−k

)
+ Dzwŵn − δ̂(j)

)
1

⎞
⎠ > 0

(18)

with ŵn−k =
wn−k√

τ(j)
, ŵn =

wn√
τ(j)

and δ̂(j) =
δ(j)√
τ(j)

.

For continuous systems the term

n∑
k=1

Ak−1
zw Bzwŵn−k is

simply replaced by

∫ nT

0

eAzw(nT−t)Bzwŵ(t)dt.

Constraint (18) is duplicated as much as necessary. As

an example, for a step input, only constraints corresponding

to the transient response and a small part of the permanent

response have to be introduced, because the closed-loop plant

is guaranteed to be stable.

The verification of the constraint is done directly by

computing the eigenvalues of the matrix in (18). Note that

since the constraint to be checked in the CPA is actually

Sx − ŷ(k)I > 0, the first element in matrix (18) has to be

replaced by 1 − ŷ(k).

The new hyperplanes are generated by considering the

eigenvectors associated to the negative eigenvalues of (18)

(with again the first element in the matrix replaced by

1 − ŷ(k)). Only the worst overshoot for each value of j is

considered in order to reduce the number of new hyperplanes.

V. STABILITY MARGINS

In this section both gain and phase margins constraints for

MISO or SIMO plants will be considered as LMI problems.

Continuous-time plants will be considered, but the case of

discrete-time ones can be equivalently handled by applying

Tustin transforms.

A suitable LFT form (which will be defined below for

each margin) enables to consider the margin as a scalar

uncertainty δ ∈ [0, 1], whereas the nominal closed-loop plant

Gzw is looped by −δ (fig. 4): Gzw being stable, the stability

is guaranteed for all δ ∈ [0, 1] if and only if the Nyquist

diagram of Gzw does not cut the half line (−∞,−1] of the

real axis.

G
zw

��

Fig. 4. The stability margin formulated as an uncertainty

To derive a convex formulation, the preceding constraint

is substituted by a harsher one, where the Nyquist diagram

of Gzw must not go into the half-plane to the left from −1.

This later constraint directly becomes a passivity condition

by replacing Gzw by Gzw + 1:

(Gzw(jω) + 1) + (G∗
zw(jω) + 1) > 0 ∀ω ∈ [0,∞)

(19)

According to the KYP lemma [9], two equivalent con-

straints are:

H(ω) =
(

G(jω)∗ I
)(

0 ∗
Czw R

)(
G(jω)

I

)
> 0

(20)

H =

(
Azw − BzwR−1CT

zw BzwR−1BT
zw

−CT
zwR−1Czw −AT + CT

zwR−1BT
zw

)
> 0

(21)
with G(jω) = (jω−Azw)−1Bzw and R = Dzw+DT

zw+2.

The frequency-dependent constraint (20) is affine in Czw and

Dzw, and thus in the matrices CQ and DQ we are looked for.

The constraint being checked by computing the eigenvalues

of the associated Hamiltonian matrix H, if some of them

belongs to the imaginary axis, they are reported in H(ω)
which in that case is scalar. The corresponding hyperplane

is therefore directly deduced (since in the scalar case no

eigenvector has to be computed).

The rest of the section will formulate the gain and phase

margins on the form given in figure 4.

A. Gain margin

In order to put the gain margin constraint as shown in

figure 4, one can consider either the Reduction Gain Margin

(RGM), which guarantees the stability for gains less then

one, or the Increasing Gain Margin (IMG), which concerns

gains higher than one. In both cases, the closed-loop plant

of figure 4 can be represented as on figure 5, with g = 1 −
10

GM
20 , where GM equals either the RGM or IGM with dB
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unit. The corresponding state-space representation of Gzw

can be easily deduced [10].

Fig. 5. Closed-loop structure for gain margin analysis

B. Phase margin

The phase margin is considered by introducing ejθ in the

feedback loop and replacing this perturbation by a rational

function also describing the unit circle:

ejθ =
1 + jθ̂

1 − jθ̂
(22)

Note that for θ ∈ [0, θe], θ̂ is real and belongs to[
0, ejθe−1

j(ejθe+1)

]
. The open-loop plant of figure 4 can be

represented as on figure 6) [10], with N =
(

1 1
2 1

)
.

Elementary manipulations give again the state-space repre-

sentation of Gzw [10].

Fig. 6. Open-loop structure for phase margin analysis

VI. ILLUSTRATIVE EXAMPLE

Let consider an overhead travelling crane system (fig-

ure 7). The plant is modelled by a SIMO system where

the input is the tension e driving the DC motor and the

outputs are the position x of the crane and the deviation from

the vertical line φ of the pendulum. The order of the state

space representation is 5 including three rigid modes and

one resonance mode. The time-constant of the DC motor is

neglected in the synthesis model, which contains only two

rigid modes. The data are given in Table I.

The challenge is to move the crane from 0 to 0.4 m in

only 1.2 s with no overshoot, the position remaining above

98% of this value after this time. The control value must not

overtake ±10 V, and the oscillation of the pendulum must

not exceed ±0.25 rad. The gain and phase margins of the

system should be respectively more than 10 dB and 35◦.

The initial compensator is taken as a stabilizing static one:

Kinit = (−1 1) (23)

Fig. 7. Overhead travelling crane system

TABLE I

NUMERICAL VALUES

Parameters Values

Amplifier gain 1

Rotor inductance 0.2 mH

Total resistance 2.74 ohm

Torque constant 16.2 mNm/A

Total inertia on the motor axis 3.06 10−6 kgm2

Coefficient of friction 3.2 10−5 Nms

Reduction ratio 17

Pulley radius 22 mm

Bar length 269 mm

Viscous damping coefficient 0.26 m/s

To describe the Youla parameter, the following orthogonal

basis [11] is chosen:

Qi(s) =

√
2Re(ai)
s + ai

i−1∏
k=1

s − āk

s + ak
(24)

The poles of the Youla parameter are therefore −ai. They

have to be chosen according to the dynamics imposed to

the response, and to make sure that the Shannon condition

is verified when choosing the sample-time T of the time

response. To this end, we choose the ai as random numbers

distributed between 0 and 30, whereas T = 0.005 s.

With these dynamics, a 10-th order of the Youla parameter

is sufficient to bring the output x into the template (figure 8)

while satisfying the control and oscillation limitations (fig-

ure 9 and 10). The gain and the phase margins are equal to

10.4 dB and 40.5◦ as shown in figure 11.

Fig. 8. Output x response

The resulting controller has 14 state variables. Although

it is not the objective of this work, it can be mentioned that

reducing the order of the controller using the Hankel singular
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Fig. 9. Input e response

Fig. 10. Output φ response

Fig. 11. Open-loop Black diagram

values truncation leads to a controller with 6 state variables,

which has an acceptable time response for x (figure 12),

while φ and e also remain in the template. The gain and

phase margins are now equal to 11 dB and 58.1◦.

VII. CONCLUSION

Designing a controller according to time-domain specifica-

tions and stability margins requirements can be done using

the Youla parameterization: the particular LMI reformula-

tions of the constraints brought in this paper allow to preserve

the convexity of the problem.

The application of the CPA leads to prevent the introduc-

tion of additional decision variables, which implies that a

high order of the Youla parameter can be considered without

numerical difficulties. So the feasibility of the problem can be

Fig. 12. Output x response for reduced order controller

easily checked by increasing gradually the order of the Youla

parameter to be determined. The simplicity of using the CPA

makes it attractive, although some numerical improvements

can be a subject of forthcoming works.

The numerical efficiency of the proposed developments

has been shown by considering an example where a template

on a time response has been satisfied, while guaranteeing

required stability margins.

The stability margins constraints have been considered for

MISO or SIMO plants, the extension to the MIMO case

being under investigation. Note also that H∞ and H2 norms

constraints can be added to the specifications: the convenient

LMI reformulations to be used are given in [2], [3].

Finally, developing a suitable reduction method to approx-

imate the Youla parameter by a rational transfer function

while still satisfying the constraints will be the subject of

forthcoming studies.
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