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Abstract— Many problems in control and signal processing
require the tracking of certain eigenvectors of a time-varying
matrix; the eigenvectors associated with the largest eigenvalues
are called the principal eigenvectors and those with the smallest
eigenvalues the minor eigenvectors. This paper presents a novel
algorithm for tracking minor eigenvectors. One interesting
feature, inherited from a recently proposed minor eigenvector
flow upon which part of this work is based, is that the algorithm
can be used also for tracking principal eigenvectors simply by
changing the sign of the matrix whose eigenvectors are being
tracked. The other key feature is that the algorithm has a
guaranteed accuracy. Indeed, the algorithm is based on a flow
which can be interpreted as the combination of a homotopy
method and a Newton method, the purpose of the latter to
compensate for discretisation errors.

I. INTRODUCTION

In statistical analysis, the principal components of a co-

variance matrix C are projections of the data vectors on

the directions of the principal eigenvectors of C. Therefore,

the major task in principal component analysis (PCA) is the

determination of the principal eigenvectors of the covariance

matrix.

In this paper, we consider the more general task of

determining the minor and principal eigenvectors of a matrix,

which are the eigenvectors associated with the smallest and

largest eigenvalues, respectively.

For a fixed matrix, the computation of the principal or

minor eigenvectors is essentially a problem in numerical

linear algebra. For time-varying matrices though, the prob-

lem takes on a new dimension as it becomes challenging

to develop recursive algorithms which are computationally

inexpensive yet are guaranteed to produce results accurate

to within a prescribed tolerance. In fact, even though many

algorithms have been developed, fueled by the large number

of applications in control and signal processing [8], [9],

[12], [13], [14], [15], [16], [17], [19], [21], we believe

the algorithm proposed in this paper is the first to have a

guaranteed accuracy.

Two ingredients are used in the development of the al-

gorithm. The first is a recently proposed flow which con-

verges to the principal or minor eigenvectors of a constant

matrix [8]. Unlike all previously proposed principal or minor
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eigenvector flows, this flow evolves in Euclidean space, does

not require any projection operators, yet remains stable even

if the matrix is indefinite. This means that simply changing

the sign of the matrix causes the same flow to converge to

either the principal or minor eigenvectors.

The second ingredient is a modified homotopy method [2],

[5], [6], the modification being to add a stabilizing term

which makes the method stable even in the presence of

discretisation errors. Indeed, this modification can be thought

of as a Newton flow, always pulling the trajectory back on

course. Although Newton flows have their disadvantages,

such as inherent lack of global convergence and the need to

invert the Hessian, in this particular case, these disadvantages

are mollified. In tracking applications, global convergence is

not important as long as it can be shown that the trajectory

always remains in the domain of attraction. The need to

invert the Hessian is overcome by first showing it suffices

to invert only approximately the Hessian, and then deriving

a suitable approximation which can be computed relatively

cheaply.

The paper is organized as follows. The following section

introduces a modified homotopy method for tracking a zero

of a time varying cost function. Next, a cost function appro-

priate for minor eigenvector analysis is given. Combining

these two ingredients leads to the proposed algorithm for

tracking the minor eigenvectors of a time varying matrix.

To reduce the computational complexity, a certain approx-

imation to the algorithm is introduced. Simulation results

confirm the correct operation of the algorithm.

II. THE NEWTON FLOW AND ITS DISCRETIZATION

In this section we consider the problem of finding a time-

varying root of a smooth map F : R
n × R → R

n, (x, t) �→
F (x, t), i.e. we want to determine a smooth curve t �→ x∗(t),
which satisfies

F (x∗(t), t) = 0

for all t. This problem arises in many important applications,

including e.g. the inverse kinematics problem in robotics or

parametric optimization tasks. A well-known approach for

solving this problem is via homotopy methods, i.e. by solving

an associated differential equation whose solutions track the

roots of F . Specifically, we consider the implicit differential

equation

DF (x, t)ẋ +
∂

∂t
F (x, t) = MF (x, t), (1)

for an arbitrary linear map M, whose eigenvalues all have

negative real part. Here DF denotes the n × n matrix of
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partial derivatives of F with respect to the variable x. Under

suitable invertibility conditions on DF , system (1) can thus

be written in explicit form as

ẋ = DF (x, t)−1

(
MF (x, t) − ∂

∂t
F (x, t)

)
. (2)

We refer to (1) as the (implicit) time-varying Newton Flow.

The reason for this terminology is that in the time-invariant

case and for M = −I , equation (1) becomes equivalent to

the classical Newton flow

ẋ = −DF (x)−1F (x) (3)

for root finding of a nonlinear map F . The main reason for

inserting M into the differential equation is to stabilize the

dynamics around the desired solution x∗(t). Note, that the

use of the implicit Newton flow (1) for time-varying root

finding is closely related to the dynamic inversion technique

introduced by [6].

In order to obtain a reasonable tracking algorithm for the

time-varying roots of F , one needs to discretize the differ-

ential equations. Of course, there are many possible choices.

In [2] a stable discretization of (1) has been proposed using

Euler step discretization. In the sequel, we need a slightly

more refined result than in [2] that we now describe.

Thus we discretize (2) at equidistant times tk := kh, for

k ∈ N0 and a fixed stepsize h > 0. Depending on the stepsize

we choose M := − 1
hI . This choice of M will be crucial for

our subsequent analysis. The single-step Euler discretization

of the time-varying Newton flow is then given as

xk+1 = xk −
DF (xk, tk)−1

(
F (xk, tk) + h

∂F

∂t
(xk, tk)

)
. (4)

In order to implement this algorithm one needs however an

exact formula for the partial derivatives ∂F
∂t (xk, tk). Often

this is a restriction, as the precise values may not be available

or corrupted by noise. Thus one has to replace the partial

derivative by suitable higher order Taylor approximations

H(x, t, h) of ∂F
∂t (x, t). To this end we derive an mth-order

approximation formula for the partial derivative ∂F
∂t (x, t) by

evaluating F at preceding points (x, t), . . . , (xk, t − mh),
m ∈ N.

Hence, we get the following list of mth-order approxima-

tions Hm(x, t) for ∂F
∂t (x, t):

1) H0(x, t) = 0
2) H1(x, t) = 1

h

(
F (x, t) − F (x, t − h)

)
3) H2(x, t) = 1

2h

(
3F (x, t)−4F (x, t−h)+F (x, t−2h)

)
4) H3(x, t) = 1

30h

(
37F (x, t)−45F (x, t−h)+9F (x, t−

2h) − F (x, t − 3h)
)

Using such approximations, equation (4) turns into

xk+1 = xk −
DF (xk, tk)−1

(
F (xk, tk) + hHm(xk, tk)

)
. (5)

This is the main discrete time system that we will explore

subsequently. The next theorem shows the stability of this

update scheme.

Theorem 1: Let F : R
n × R → R

n, (x, t) �→ F (x, t) be

C2 in (x, t) and Hm as above. Let t �→ x∗(t) be a continuous

root of F , i.e. F (x∗(t), t) = 0 for all t. Assume there exist

constants c1, c2, c3, c4, c5, c6, c7, R > 0 such that

(i) ‖DF (x∗(t), t)‖ ≤ c1, ‖ ∂
∂tF (x∗(t), t)‖ ≤ c2,

‖DF (x∗(t), t)−1‖ ≤ c3 for all t > 0,

(ii) ‖D2F (x, t)‖ ≤ c4, ‖ ∂2

∂t2 F (x, t)‖ ≤ c5,

‖ ∂
∂tDF (x, t)‖ ≤ c6 for all t > 0 and x ∈ BR(x∗(t)).

(iii) ‖Hm(x, t) − ∂F
∂t (x, t)‖ ≤ c7h, for all t > 0 and x ∈

BR(x∗(t)).
Then the following statements hold

1) There exist 0 < r < R and c8, c9 > 0 such that for

t ∈ R

‖x − x∗(t)‖ ≤ c8‖F (x, t)‖, (6)

and

‖DF (x, t)−1‖ ≤ c9 (7)

where x ∈ Br(x∗(t)). In particular, the root x∗(t) of

F is isolated, i.e. for any t ∈ R and any x ∈ Br(x∗(t))
holds: F (x, t) = 0 if and only if x = x∗(t).

2) There exists constants c10, c11 > 0 such that the

solution (xk) of (5) satisfies

‖xk+1 − x∗(tk+1)‖ ≤
c10‖xk − x∗(tk)‖2 + c11h

2, (8)

for k ∈ N0 with xk ∈ Br(x∗(tk)).
3) Let c > 0 be a constant and h ≤ c

c2c10+c11
. For any

initial condition x0 with ‖x0 − x∗(0)‖ < ch we have

‖xk − x∗(tk)‖ ≤ ch

for all k ∈ N0. Thus the update scheme (5) is

well defined and produces estimates for x∗(tk), whose

accuracy can be controlled by the step size.

Proof: [Sketch of proof]

1) Due to condition (i) and (ii), there exists a r > 0
such that for any t ∈ R the map x �→ F (x, t) is a local

diffeomorphism on Br(x∗(t)). This shows (6) and (7)

2) Use Taylor’s Theorem to consider

F (xk+1, tk+1) = F (xk, tk) +
∂F

∂t
(xk, tk)h + DF (xk, tk)(xk+1 − xk) + R, (9)

where R satisfies ‖R‖ ≤ c4∆2 + c5h
2 + c6∆h for ∆ :=

‖xk+1 − xk‖
Take the update scheme (5) to replace xk+1 in the above

equation and obtain

F (xk+1, tk+1) = −hH(xk, tk) +
∂F

∂t
(xk, tk)h + R.

Therefore
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‖F (xk+1, tk+1)‖ ≤(
c4 +

c6

2

)
∆2 +

(
c5 +

c6

2
+ c7

)
h2 (10)

Noting (5), it is easily shown that

∆ ≤ c9(‖F (xk, tk)‖ + h(c2 + c7h))/(1 − hc9c6),

provided h < 1
c6c9

. Plugging this result into (10) yields

‖F (xk+1, tk+1)‖ ≤
a‖F (xk, tk)‖2 + bh‖F (xk, tk)‖ + ch2 (11)

for some constants a, b, c > 0. From this estimate (8) easily

follows.

3) Suppose

‖xk − x∗(tk)‖ ≤ ch

holds for some k. By the estimate (8) then

‖xk+1 − x∗(tk+1)‖ ≤
c10‖xk − x∗(tk)‖2 + c11h

2 ≤ c10c
2h2 + c11h

2 ≤ ch, (12)

for h < c
c10c2+c11

.

Standard estimates for the discretization error imply the

above result 3) only for a finite number of iterates xk. The

new interesting feature here is that the error estimate can be

guaranteed to hold for all k ∈ N0. This is due to the fact,

that we have chosen M = − 1
hI . Without that choice we

would not be able to prove a similar estimate.

Remark 1: Assume, one has an approximation G(x, t) for

DF (x, t)−1 such that for some c,R > 0,

‖(I − G(x, t)DF (x, t))(F (x, t) − H(x, t))‖ ≤
c‖F (x, t)‖, (13)

for all t ∈ R and x ∈ BR(x∗(t)).
Then it can be shown that under the conditions of the

previous theorem, the sequence

xk+1 = xk +
hG(xk, tk) (MF (xk, tk) − H(xk, tk)) . (14)

has a similar stability property as the sequence (5). Particu-

larly, for c > 0 holds for all k ∈ N

‖xk − x∗(tk)‖ ≤ ch,

provided ‖x0 −x∗(0)‖ < ch and h > 0 is sufficiently small.

As it will turn out, exploiting this fact leads to algorithms,

which are computationally much cheaper.

III. TIME-VARYING MINOR AND PRINCIPAL COMPONENT

ANALYSIS

In this section, we consider the task of determining for

t ∈ R the minor and principal eigenvectors of a time-varying

symmetric matrix A(t) ∈ R
n×n.

In [8] a method was introduced, which was able to extract

the minor and principal eigenvectors of a constant matrix

A ∈ R
n×n. This was achieved by finding the minimum

or maximum of a suitable cost function. The minimization

of this function leads to a method, which determines the

minor eigenvectors, hence the eigenvectors associated to the

smallest eigenvalues. We follow this approach in order to

derive a minor/principal eigenvector flow for time-varying

matrices A(t).
In principal component analysis for time-varying data one

is concerned with the associated eigenvector estimation task

for a time-varying covariance matrix A(t). There are at least

two interpretations.

1) Let x(τ) ∈ R
n a curve of data points for τ ≥ 0. Then

define for t ≥ 0

A(t) :=
1
t

∫ t

0

x(τ)x(τ)T dτ.

2) Let x1(t), ..., xm(t) ∈ R
n curves of data points for

t ≥ 0. Then

A(t) :=
1
m

m∑
i=1

xi(t)x(t)T .

The subsequent analysis will not depend on any such

statistical interpretation of A(t). Thus, the developed eigen-

vector tracking techniques are also suitable to compute

the time-varying principal components of any covariance

matrix A(t).

Consider the smooth cost function f : R
n×p × R → R

f(X, t) =
1
2
tr (A(t)XNXT ) +

µ

4
‖N − XT X‖, (15)

where N ∈ R
p×p, µ ∈ R. To ensure that the extrema X∗(t)

of f correspond to the minor/principal eigenvectors of A(t),
we make the following assumptions, cf. [8].

A1 The scalar µ is strictly positive

A2 A(t) ∈ R
n×n is symmetric for all t ∈ R

A3 N = diag (n1, ..., np) ∈ R
p×p with n1 > ... > np > 0.

A4 A(t) has distinct eigenvalues for all t ∈ R

A5 µ does not equal any eigenvalue of A(t) for all t ∈ R

Assumption A1 implies that the cost function (15) has

compact sublevel sets and therefore a global minimum X∗(t)
exists for any t ∈ R. Furthermore, for fixed t ∈ R,

assumptions A1-A3 imply that each column of a critical

point X∗ = [x1...xp] of f is either the null-vector or an

eigenvector of A(t) with eigenvalue λi, i = 1, ..., p. The

following lemma holds.

Lemma 1: [8] Assume A1-A5 hold. For t ∈ R, let

λ1(t) < ... < λp(t) < λp+1(t) ≤ · · · ≤ λn(t) be the

eigenvalues of A(t) in ascending order and let v1(t), ..., vn(t)
be the corresponding normalized eigenvectors. Then for any

t ∈ R, X∗(t) = [x1(t) ... xp(t)] is a local minimum of

f(X, t) if and only if

xi(t) = ±γi(t)vi(t) (16)

where

γi(t) =
{ √

Nii(1 − λi(t)/µ) if λi(t) < µ
0 otherwise
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for i = 1, ..., p.

Let M denote an upper bound for λi(t) for all t ∈ R

and i = 1, ..., p. If µ > M , then the previous lemma

shows, that for any t ∈ R, X∗ = [x1...xp] is a minimum

of f(X, t) if and only if its columns are the non-trivial

eigenvectors of A(t), which correspond to the p smallest

eigenvalues. Thus the global minimum fo f gives the minor

eigenvectors of A. In contrast, the maxima of f correspond

to the principal eigenvectors of A, i.e. the minima of the

cost function f− obtained by replacing A by −A. Thus, by

replacing A by −A in the subsequent formulas, all results

about minor eigenvectors are immediately reformulated into

equivalent results about principal eigenvectors. Thus, from

now on, we restrict ourselves to the minor eigenvector case.

This duality between MCA and PCA does not hold for the

previously proposed cost functions for principal eigenvector

analysis and motivates our choice of the specific cost function

(15).

Proposition 1: Let t �→ A(t) be a smooth matrix valued

function satisfying A1-A5. Assume that ‖A(t)‖, ‖Ȧ(t)‖ and

|λi(t)−λj(t)|−1 for i �= j are uniformly bounded on R. Then

there exists a smooth family t �→ X∗(t) ∈ R
n×p, which is a

continuous isolated minimum of f(X, t). Moreover, if µ >
M , then the rows of X∗(t) are the p non-trivial eigenvectors,

associated to the p smallest eigenvalues.

IV. MINOR COMPONENT TRACKING

Let A(t) and f as in the previous section, where X∗(t)
denote the time-varying minimum of f , i.e. f(X∗(t), t) is

the minimum of f for any t. We want to track this minimum

by using the time-varying Newton Flow. Hence, we need to

determine the ”X-gradient” and ”X-Hessian” of f , i.e. we

consider for fixed t the function X �→ f(X, t) and determine

its gradient, which is given as

∇f(X, t) = A(t)XN − µXN + µXXT X. (17)

Moreover, the Hessian (w.r.t. X) acts on arbitrary ξ ∈ R
n×p

in the following manner

Hf (X, t) · ξ =
A(t)ξN − µξN + µ(ξXT X + XξT X + XXT ξ). (18)

In order to use the Newton Flow for the tracking of the

root of the gradient, we have to compute an inverse of the

Hessian operator.

In the special case p = 1, X and ξ are vectors of length

n and (18) can be rewritten as

Hf (X, t) · ξ = A(t)ξ − µξ + µ(XT X + 2XXT )ξ, (19)

where we choose N = 1. Hence, the matrix representation of

the Hessian is just given as A(t)−µIn +µ(XT X +2XXT ).

But if p > 1, one needs more effort to determine the

Hessian operator and we show two different approaches.

A. Vectorizing the matrix differential equation

In this paragraph, we vectorize ξ and ∇f(X, t) by using

the vec operation [7] and computing a matrix representation

for Hf by employing the Kronecker product, denoted by ⊗.

Thus

Hf (X, t) = N ⊗ (A(t) − µIn) +
µ(XT X ⊗ In + (XT ⊗ X)πT + Ip ⊗ XXT ), (20)

where πT is such that vectorized matrices are mapped onto

vectors, which equal the vectorized transposed matrix, i.e.

πT · vec(X) = vec(XT), X ∈ R
n×p.

Therefore, πT is a permutation matrix, which is for p = 1
given as πT = In.

Once having determined the Hessian, we arrive at the

tracking algorithm for vector-valued Xk, k ∈ N.

Algorithm 1: Choose a starting point X0 close to the

exact minimum X∗(0) of f(·, 0), tk := kh. For k ∈ N, the

new point Xk+1, which approximates the minimum of f at

tk+1 is determined by

Xk+1 =
Xk − H−1

f (∇f(Xk, tk) + hHm(Xk, tk)) (21)

Here Hm denotes an mth-order approximation to
∂
∂t∇f(Xk, tk). Some valid choices for this are given in

section II.

The following proposition gives necessary conditions for

the applicability of this algorithm.

Proposition 2: Let f(X, t) as defined in (15) and assume

A1-A5. Let further t �→ A(t) be a smooth function and

let ‖A(t)‖, ‖Ȧ(t)‖, ‖Ä(t)‖, |λi(t) − λj(t)|−1 be uniformly

bounded on R for i �= j and i ≤ p ∨ j ≤ p and let

µ > sup{λi(t)| 1 ≤ i ≤ p, t ∈ R}.

Then there exists a continuous isolated root X∗(t) of

∇f(X, t), whose columns are the eigenvectors of A(t),
associated with the p smallest values of the eigenvalues.

Moreover, for any sufficiently small step-size h and c >
0 with ‖X0 − X∗(0)‖ ≤ ch, the sequence Xk defined by

Algorithm 1 satisfies for all k ∈ N

‖Xk − X∗(tk)‖ ≤ ch. (22)

Remark 2: Note that the matrix representation of

Hf (X, t) is of dimension np × np, which shows, that stan-

dard way to employ the Newton flow by inverting this matrix

might not be practical for large n and p. This motivates to

look for an other way to invert Hf .

B. Approximately solving the implicit differential equation

In order to derive a practical inversion formula for Hf ,we

consider the following equation for ξ

Hf (X, t)ξ :=
A(t)ξN − µξN + µ(ξXT X + XξT X + XXT ξ) = R, (23)
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where R ∈ R
n×p. If X∗(t) denotes a minimum of f , we

determine Q ∈ O(n) such that QD = X∗, where D ∈
R

n×p satisfying Dij = 0 for i �= j. Such matrices Q, D
exist, as the columns of X∗ are pairwise orthogonal. Hence,

Dii = ±‖xi‖, and qi = xi/‖xi‖ where xi, qi denotes the ith
column of X∗, Q, respectively for i = 1, ..., p.

The remaining n − p columns Y of Q have to be chosen

such that Q is an orthogonal matrix, and the columns of Y
span the eigenspace of the n − p principal eigenvectors.

This is a quite restrictive assumption, however, if the n−p
principal eigenvectors are all equal, then Y ∈ R

n×(n−p) can

be any matrix with orthonormal columns such that XT Y =
0. Note further, that in the case of p = n, this assumption is

not a restriction, either.

By defining G := QT ξ, we can rewrite the above equation

as

(A(t) − µIn)QGN + µ(QGDT QT QD +
QDGT QT QD + QDDT QT QG) = R (24)

Multiply both sides with QT . Then

QT (A(t) − µIn)QGN +
µQT (QGDT D + QDGT D + QDDT G) = QT R, (25)

which is equivalent to

QT (A(t) − µIn)QGN +
µ(GDT D + DGT D + DDT G) = QT R (26)

This is a linear equation which we want to solve for G.

As we have assumed that X∗ is a minimum of f(·, t), the

matrix QT (A(t)−µIn)Q = QT A(t)Q−µIn is diagonal with

distinct eigenvalues. Let K ∈ R
n×n denote this diagonal

matrix. Thus, we can solve equation 26 by considering the

entries on position (i, j) and (j, i) for 1 ≤ i, j ≤ p. We have

c1Gij + c2Gji = (QT R)ij

and

c3Gij + c4Gij = (QT R)ji

Here c1 = KiiNjj + µ(D2
jj + D2

ii), c2 = DiiDjj , c3 =
KjjNii + µ(D2

ii + D2
jj), c2 = DjjDii.

If i > p then Di,j = 0 for all j = 1, ..., p. Hence,

(DGT D)ij = 0 and we have only to consider one equation

to determine Gij :

c1Gij = (QT R)ij

Therefore, we get the following formula for G:

Gij =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
(QT R)ij − c2

c3
(QT R)ji

) (
c1 − c2c4

c3

)−1

for 1 ≤ i, j ≤ p

(QT R)ij

c1
, for 1 ≤ j ≤ p, p + 1 ≤ i ≤ n

(27)

Noting that ξ = QG shows that we have now found an

explicit form of (23).

If X is not the exact minimum of f , then QT (A(t) −
µIn)Q is not diagonal and hence, K is only approximation

for that term. However, using this approximation, one obtains

a similar linear equation, whose solutions in G are also given

by (27). Moreover, the approximation leads to results, which

are not far away from the exact solution, as the original

system is well-conditioned and the approximation is of order

c‖X − X∗(t)‖, where X∗(t) denotes the locally unique

minimum of f for t ∈ R. This leads to the following tracking

algorithm. Note that the implementation of this algorithm is

considerably cheaper than the previous one, as there is no

need to compute the exact inverse of the Hessian.

Algorithm 2: 1. Choose a starting point X0 close to the

exact minimum X∗(0) of f(·, 0) and use a sufficiently small

stepsize h and tk := kh.

2. For k ∈ N, suppose that Xk is given. Choose a

matrix Qk ∈ R
n×n, whose first p columns result from

the normalization of the columns of Xk. The rest n − p
normalized columns of Q have to be chosen such that they

are normalized and span the eigenspace of the n−p principal

eigenvectors.

3. The new point Xk+1, which approximates the minimum

of f at tk+1 is defined by

Xk+1 = Xk − QkG, (28)

where G ∈ R
n×p is as defined in (27) for R = ∇f(Xk, tk)+

hHm(Xk, tk). Here Hm denotes the mth-order approxima-

tion to ∂
∂t∇f(Xk, tk).

V. NUMERICAL RESULTS

All simulations were performed in Matlab. We used step

size h = 0.05, n = 10, p = 3 and A(t) = Θ(t)K(t)Θ(t)T ,

where K(t) = diag (a1 sin(t), ..., a10 sin(10t)), Θ(t) =

RT

⎡
⎣ cos(t) sin(t) 0

− sin(t) cos(t) 0
0 0 I8

⎤
⎦ R. Here, R ∈ O(10) is a

fixed random orthogonal matrix and ai := 2.5i for i =
1, ..., 10. We moreover set N = diag (p, ..., 1).

In the first simulation, we check the tracking ability of

algorithm 1 and we used approximations Hm for ∂
∂t∇f of

order 2 (cf. section 2). Figure 1 shows the computed (dashed)

and exact (solid) 3 minor time-varying eigenvalues. As it

can be seen in the corresponding error plot (Fig 2.), where

‖Xk − X∗(tk)‖ is depicted, we did not use perfect initial

conditions but the computed values converged fast towards

the exact solution.

As we have seen in the previous section, it is

of much less effort to compute an approximation

instead of the exact inverse of the Hessian Hf ,

which, however, is not practical in the general case.

Thus, we replaced in the simulation K(t) by K̃(t) =
diag (a1 sin(t), ..., a3 sin(3t), a4 sin(4t)), ..., a4 sin(4t) ∈
R

10×10.

Table I shows the mean error of both algorithms (21) and

(28) for different choices of Hm(x, t). Here the mean error

7262



0 5 10 15 20 25 30 35 40 45 50
2

3

4

5

6

7

8

9

steps

D
(t

k)

Fig. 1. The evolution of the minor eigenvalues. Solid: exact, dotted:
computed values.
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Fig. 2. The error plot, corresponding to Figure 1.

is given by 1
N

∑N
i=1 ‖Xk − X∗(tk)‖, where N denotes the

number of steps.

Hence, using approximations for ∂
∂tF (Xk, tk) of order

m > 1 significantly improves the quality of the results

in both algorithms. Note further, that the accuracy of the

second algorithm is comparable to the accuracy of algorithm

1, although it only uses an approximatively inverted Hessian.

VI. CONCLUSION

This paper proposed a novel algorithm for tracking the

minor eigenvectors of a time-varying symmetric matrix.

Since there is no requirement for the matrix to be positive

definite, the same algorithm can be used for tracking the

principal eigenvectors simply by changing the sign of the

matrix. The other key feature of the algorithm is that it

has a guaranteed accuracy. Since the algorithm requires the

inversion of a particular matrix, a suitable approximation

was introduced to reduce the computational complexity. This

TABLE I

THE MEAN ERROR OF THE TWO ALGORITHMS, COMPUTED FOR

DIFFERENT ORDER APPROXIMATIONS OF
∂
∂t

∇f(Xk, tk)

Order m Mean error algorithm 1 Mean error algorithm 2

0 5.2 · 10−2 5.2 · 10−2

1 7.2 · 10−3 7.0 · 10−3

2 2.9 · 10−3 2.8 · 10−3

3 3.2 · 10−3 2.9 · 10−3

reduced-complexity tracking algorithm also exhibits good

performance.
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