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Abstract— The fixed-lag smoothing problem with a partial
lag is the problem in which the presence of the smoothing lag
is allowed only in a part of estimation channels. This paper
studies the effect of a partial smoothing lag on the achievable
H

∞ performance in the continuous-time case. In particular,
the limit of the achievable performance is established and the
saturation of the achievable performance for a finite smoothing
lag is analyzed.

I. INTRODUCTION

In many communication systems, even interactive ones, a
small amount of delay or latency between the measurement
and the estimation generation can be tolerated. Some delay is
often permissible in speech coding [2], multi-target tracking
of a maneuvering target [7], etc. Such problems can be
formulated as estimation problems with a constant delay,
called smoothing lag, in the estimated signal generator. This
setting is referred to as fixed-lag smoothing, and is dual to the
preview tracking (the feed forward control problem in which
preview of the reference signal is available). It is clear that
potentially smoothers can achieve a better performance than
the corresponding filters. The questions are how to evaluate
this potential and how to exploit it.

The interest to the fixed-lag smoothing can be traced
back to [14] and in the context of the H2 (Kalman) theory
the problem is currently well understood, see [1] and the
references therein. On the other hand, the H∞ version of
the fixed lag smoothing problem is less studied and until the
recent time only a few results were available in the literature,
all in the discrete time. Recently, the continuous-time H∞

fixed lag smoothing was solved in [10] and [13].
The solutions in [10] and [13] assume that the delay in the

estimated signal is uniform. This might be an unnecessarily
restrictive assumption. Allowing different smoothing lags
for different components (channels) of the estimated signal
may add flexibility to the design. For example, it might be
possible to obtain the required performance by introducing
delay only in a part of the estimated channels. The problem
where different lags in different channels are allowed is
referred to as the multi-channel fixed-lag smoothing.

In terms of the dual preview tracking problem, the multi-
channel case corresponds to the situation where different
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preview lengths are available for different components of the
reference signal. This can occure, for example, in preview-
based control of active suspension [8], if the road distur-
bances are meassured by more than one sensor. Another
possible example is scanning tunneling microscopy [16],
where as a result of a scanning pattern, preview can be
available only in a part of the motion axes.

Note that in the H2 settings the problem may be solved
channel-wise and thus the extension for the multi-channel
case is trivial. This, however, is not true in the H∞ case.
Indeed, the result of solving H∞ problem for every single
channel apart will not be equivalent to the solution of the
entire problem.

The H∞ multi-channel fixed-lag smoothing was recently
solved independently in [4] and [5]. The former reference
adopts the operator-theoretic approach, while the latter—the
J-spectral factorization ideas. Yet in both these references
the effect of smoothing lags on the achievable performance
is not readily seen. It is, for example, unclear whether
(and under what conditions) improvements of the achievable
performance due to the presence of smoothing lags in certain
channels saturates for finite lags as happens in the single lag
case [11]. Another important question left unaddressed in the
available solutions is which estimation channel is most/less
sensitive to the increase of the lag?

In this paper, a first step towards understanding and quan-
tifying the effect of multiple smoothing lag on the achievable
H∞ performance is taken. We consider the problem in which
a part of the estimated signal can be delayed by a single
delay, while the rest of the channels have no delay. This
problem is referred to as a fixed-lag smoothing with a partial
smoothing lag. It may be thought of as the multi-channel
fixed lag smoothing problem with two channels, in one of
which the smoothing lag is zero. The purpose of this note
is to study the effects of this partial lag on the achievable
performance. In particular we address the following issues.

1) The increase of the smoothing lag should improve the
performance. What is a limit of such an improvement?

2) Does an increase of the partial lag always improve
the achievable H∞ performance? Formulating this
differently, does the performance improvement saturate
for some finite value of the lag ?

The analysis in this paper follows the arguments of [10],
where effects of a uniform lag on the achievable performance
were studied.

Notations: Given a matrix M, ‖M‖ denotes its spectral
norm, and M ′ denotes the transpose of M. Given a transfer
matrix G(s), its conjugate is defined as G(s)∼ = G ′(−s)
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Fig. 1. Estimation setup with partial smoothing lag

and, when G(s) is stable, ‖G(s)‖2 and ‖G(s)‖∞ denote
its H2 and H∞ norms, respectively. The acronyms ARE
and DRE stand for the “Algebraic Riccati Equation” and
the “Differential Riccati Equation,” respectively. A 2n× 2n

matrix M is said to be Hamiltonian if Ĵ−1M ′Ĵ = −M and
symplectic if Ĵ−1M ′Ĵ = M−1 (where Ĵ

.
= diag(I, −I)).

A 2n × 2n Hamiltonian matrix H is said to belong to
dom(Ric) if it has no imaginary axis eigenvalues and its
stable (corresponding to the open left half plane eigenvalues)
co-spectral subspace is complementary to ker

[
0 In

]
. In

other words, H ∈ dom(Ric) if there exist an n × n matrix
Y such that

[
I Y

]
H = As

[
I Y

]
for some Hurwitz As. The

matrix Y above is unique and thus the function Y = Ric(H)

is well defined. The definitions above are actually dual to
those used conventionally [15].

II. PROBLEM FORMULATION AND SOLUTION

Consider the block diagram in Fig. 1, where y and z are
a measurement signal and an estimated signal, respectively,
generated by a signal generator G from an exogenous signal
u. The signal generator G is a dynamic system given in terms
of its state space representation

G(s) =

[
Gz(s)

Gy(s)

]
=

⎡
⎣ A B

Cz 0

Cy Dy

⎤
⎦, (1)

where the partitioning corresponds to that of [ z
y ]. The

following assumptions are standard for this setting:

A1: (Cy, A) is detectable;

A2:

[
A − jωI B

Cy Dy

]
has full row rank ∀ω ∈ R;

A3: Dy

[
B′ D ′

y

]
=

[
0 I

]
.

Assumption A3 is made to simplify the exposition. In
principle, it can be relaxed to the assumption DyD ′

y > 0 by
standard coordinate transformations.

The delay operator in the estimation channel is assumed
to have the following form:

Λ(s) =

[
Ip1

0

0 e−shIp2

]
, (2)

which implies that only a part of the signal z is allowed to
be estimated with a delay. For this reason, in the sequel we
refer to this Λ as the partial smoothing lag. The partitioning
in (2) induces the following partitioning of the matrix Cz:

Cz =

[
C1

C2

]
. (3)

The H∞ suboptimal smoothing problem with a partial
fixed lag is then formulated as follows.

PSPh: Given G(s) as in (1) and the partial smoothing lag
Λ(s) as in (2), determine whether there exists a
proper K(s) ∈ H∞, which guarantees

‖Λ Gz − KGy‖∞ < γ

for a given γ > 0.

Note that the goal of this paper is to account for the effects
of h on the achievable performance. For this reason PSPh

is only concerned with the achievable performance and not
with the construction of the estimator K.

Remark 1: The partial delay as in (2) is sometimes called
the adobe delay. Delay transfer matrices of this form play
an important role in the solutions of the H∞ problems, that
involve multi-channel delays (see [9]).

A. Solvability conditions

The PSPh is a special case of the H∞ multi-channel
fixed-lag smoothing problem solved in [5], therefore its
formal solution consists merely of the reformulation of the
corresponding result in that reference. Define Hamiltonian
matrices

Hγ,z1

.
=

[
A −BB′

1
γ2 C′

1C1 − C′
yCy −A ′

]

and

Hγ,z
.
=

[
A −BB′

1
γ2 C′

zCz − C′
yCy −A ′

]
.

It is readily seen that Hγ,z is associated with the H∞

suboptimal filtering of z in the sense that the problem is
solvable iff Hγ,z ∈ dom(Ric) and Yγ,z

.
= Ric(Hγ,z) �

0. Similarly, Hγ,z1
is associated with the H∞ suboptimal

filtering of the first estimated channel z1 and we define
Yγ,z1

.
= Ric(Hγ,z1

) whenever it exists. We also need the
Hamiltonian matrix

Hγ(h)
.
= Σ−1 Hγ,z Σ, (4)

where Σ
.
= e−Hγ,z1

h is symplectic. The following result,
which is a special case of [5, Theorem 1], constitutes a
complete solution of PSPh.

Theorem 1: PSPh is solvable iff Hγ(h) ∈ dom(Ric) and
Yγ(h)

.
= Ric(Hγ(h)) � 0.

Theorem 1 provides solvability conditions for PSPh in
terms of one ARE and turns the Hamiltonian Hγ(h) and
the Riccati solution Yγ(h) into the central objects of the
following study.

III. THE PERFORMANCE LIMIT

Intuitively, the increase of a smoothing lag may lead, in
some cases, to the improvement in the achievable perfor-
mance. The question that we address in this section is “What
is the limit of this improvement ?” More precisely, we are
looking for a performance limit:

γmin
.
= lim

h→∞

γo(h) (5)

where
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γo(h) is the minimal constant such that PSPh is solvable
∀γ > γo(h) for a given h.

The main difficulty in analyzing the solvability conditions
of PSPh and, in particular, for finding γmin is the involved
dependence of Hγ(h) on γ and h. Yet, it turned out that
the structure of Hγ(h) in (4) can be used to overcome this
obstacle.

Roughly speaking, it turned out that for a relevant values
of γ, Yγ(h) and Y−1

γ (h) as functions of h satisfy a specific
DRE and that the analysis can be done using its properties.
This kind of relation between ARE solution and DRE was
used in [10], and the analysis in this section will be done in
a similar fashion but for the case of a partial lag.

The solvability conditions for PSPh in Theorem 1 are
expressed in terms of the Riccati solution Yγ(h). The use of
the latter for further analysis is complicated by the fact that
it is a discontinuous function of h. To resolve this difficulty
we assume that

A4: (A, B) has no stable uncontrollable modes .

If A3 were relaxed, A4 would be formulated in terms of
stable invariant zeros of Gy, which can clearly be canceled
by the estimator. Thus, assumption A4, in fact, rules out the
solution redundancy. It is worth stressing, however, that it
can be omitted as it was done in [10, Section 4].

Technically, the purpose of A4 is to eliminate the singular
part of Yγ(h). This enables us to perform the analysis in
terms of Y−1

γ (h), which turns out to be a continuous function
of both γ and h. To this end define Hamiltonian matrices

H̃γ,z1

.
=

[
0 I
I 0

]
Hγ,z1

[
0 I
I 0

]
=

[
−A ′ 1

γ2 C′
1C1 − C′

yCy

−BB′ A

]
,

H̃γ,z
.
=

[
0 I
I 0

]
Hγ,z

[
0 I
I 0

]
=

[
−A ′ 1

γ2 C′
zCz − C′

yCy

−BB′ A

]
,

and

H̃γ(h)
.
= Σ̃−1H̃γ,zΣ̃,

where Σ̃
.
= e−H̃γ,z1

h is symplectic. It is easy to verify
that the Hamiltonian matrices above define an inverse coun-
terparts for the Riccati equations discussed in the previous
section.

We also define some constants associated with the Hamil-
tonian matrices above:

γ∞ is the maximal γ for which H̃γ,z has eigenvalues
on the jω-axis

γ1 is the infimal γ for which H̃γ,z1
∈ dom(Ric) and

Ỹγ,z1
> 0

It can be shown [10] that γ∞ is the optimal performance of
the H∞ fixed interval smoothing of z and consequently the
performance limit of the H∞ smoothing with a fixed uniform
lag. The other constant, γ1, is related to the H∞ filtering of
a first channel, z1. It is known [12], [3] that the null space
of Yγ,z1

does not depend on γ. It is also readily verifiable
that

Y∞,z1
= Ric

([
A −BB′

−C′
yCy −A ′

])
> 0

Hence, Yγ,z1
� 0 ⇐⇒ Ỹγ,z1

> 0 and, as a result, the H∞

suboptimal filtering of z1 is solvable iff γ > γ1.
Before we start considering H̃γ(h) and Ỹγ(h)

.
=

Ric(H̃γ(h)) (the subjects of our primary interest), some pre-
liminary results regarding the properties of ARE associated
with H̃γ,z1

and H̃γ,z are required. These properties will play
an important role in the sequel.

Lemma 1: H̃γ,z ∈ dom(Ric) and Ỹγ,z
.
= Ric(H̃γ,z) iff

γ > γ∞

Proof: See the proof of Claim 1 in [10].
Lemma 2: If γ > γ∞, then H̃γ,z1

∈ dom(Ric), moreover
Ỹγ,z1

.
= Ric(H̃γ,z1

) � Ỹγ,z.
Proof: γ > γ∞ therefore Ỹγ,z exists and we may define

a Hurwitz matrix Aγ,z = −A − BB′Ỹγ,z and Hamiltonian
matrix

H̃∆ =

[
A ′

γ,z − 1
γ2 C′

2C2

−BB′ −Aγ,z

]

According to [15], H̃∆ ∈ dom(Ric) and Ỹ∆
.
= Ric(H̃∆) � 0.

It can be shown by a direct substitution that (Ỹγ,z + Ỹ∆) is a
stabilizing solution of ARE associated with H̃γ,z1

. Therefore
H̃γ,z1

∈ dom(Ric), and Ỹγ,z1
= Ỹγ,z + Ỹ∆ � Ỹγ,z

At this point we are in the position to analyze the ARE
associated with H̃γ(h). We start with finding the relation
between Ỹγ(h) and the solution of the DRE

− Q̇γ(t) = A ′Qγ(t) + Qγ(t)A − C′
yCy + 1

γ2 C′
1C1

+ Qγ(t)BB′Qγ(t), Qγ(0) = Ỹγ,z, (6)

which is defined for all γ > γ∞.
Lemma 3: Let γ > γ∞. Then the following statements

are equivalent

1) H̃γ(h) ∈ dom(Ric)

2) Qγ(t)|t=h exists.

Moreover, if either of these statements holds, then Ỹγ(h) =

Qγ(h).
Proof: Since γ > γ∞, H̃γ,z ∈ dom (Ric) and there

exists a Hurwitz matrix AL such that[
I Ỹγ,z

]
H̃γ,z = AL

[
I Ỹγ,z

]
⇓[

I Ỹγ,z

]
Σ̃Σ̃−1H̃γ,zΣ̃ = AL

[
I Ỹz

γ

]
Σ̃

⇓[
Σ̃11 + Ỹz

γΣ̃21 Σ̃12 + Ỹz
γΣ̃22

]
H̃γ(h)

= AL

[
Σ̃11 + Ỹz

γΣ̃21 Σ̃12 + Ỹz
γΣ̃22

]
,

where Σ̃ij are the corresponding sub-blocks of Σ̃. Hence,[
Σ11 + Yz

γΣ21 Σ12 + Yz
γΣ22

]
is a basis for the stable in-

variant subspace of H̃γ(h), so that

H̃γ(h) ∈ dom(Ric) ⇐⇒ det(Σ11 + Yz
γΣ21) �= 0

and Yγ(h) = (Σ11 + Yz
γΣ21)−1(Σ12 + Yz

γΣ22) whenever
exists.

On the other hand, it is a known result from the Riccati
theory [6] that Ỹγ(h) as in the last formula satisfies Ỹγ(h) =

Qγ(h) whenever they exist.
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The next step is to establish some properties of the solution
of (6), which are important in the analysis below.

Lemma 4: Qγ(t) is a monotonically non-decreasing func-
tion of t (in the sense that Qγ(t1) � Qγ(t2) whenever
t1 � t2) and limt→∞ Qγ(t) = Ỹγ,z1

.
Proof: See Appendix A.

In particular, the result of Lemma 4 implies that Qγ(t)

does not have finite escape points. Therefore, if γ > γ∞,
then H̃γ(h) ∈ dom(Ric) for all h.

Remark 2: It is worth emphasizing that unlike the uniform
lag case, the DRE in (6) and, consequently, limt→∞ Qγ(t)

depend on γ. This difference plays an important role in the
analysis of both the limiting performance and the saturation
(in the next section).

We are now at the position to state the main result of this
section.

Theorem 2:

1) The performance limit as defined in (5) is γmin =

max(γ∞, γ1).
2) For any γ > γmin, PSPh is solvable iff Qγ(h) > 0,

where Qγ(t) is defined by (6).
Proof: If γ < γ∞, then Hγ,z has jω-axes eigenvalues,

so that Hγ,z /∈ dom(Ric). On the other hand for γ >

γ∞, H̃γ(h) ∈ dom(Ric) and therefore Yγ(h) is invertible
whenever exists. This implies that PSPh is solvable iff
γ > γ∞ and Ỹγ(h) > 0 (equivalently, Qγ(h) > 0).

The proof is now completed now by noticing that for
γ > γ∞ there exists a finite h such that Qγ(h) > 0 iff
limt→∞ Qγ(t) = Ỹγ,z1

> 0, which means γ > γ1.
This result has a partial intuitive interpretation: the

smoothing performance with a finite partial lag can be neither
better than that of the smoothing with an infinite uniform
lag (γ∞), nor than that of the filtering of the zero-lag
channel (γ1). A more intriguing fact, however, is that the
performance limit is not greater or equal, but indeed equal
to the maximum of γ∞ and γ1.

IV. PERFORMANCE SATURATION FOR A FINITE LAG

The remarkable feature of H∞ smoothing is that the
achievable performance may saturate as a function of the
smoothing lag. In other words, the performance limit may
be achieved with a finite h and any further increase of the
lag will not improve the performance.

Theorem (2) shows that γmin depends both on γ1 and γ∞.
It turns out that existence of the saturation depends on which
of the mentioned factors is dominating and actually defines
the performance limit.

First consider the case in which the limiting performance
is defined by γ∞.

Lemma 5: If γmin = γ∞ > γ1, than there exists a finite
h∞ such that γo(h∞) = γmin.

Proof: See Appendix B.
Roughly speaking, if γ∞ > γ1 the following inequality

holds

limγ→γmin Ỹγ,z1
= Ỹγ∞,z1

> 0.

0 3.5
−0.14

0.04

0

t

Q
γ

γ = 1.1γmin

γ = 1.02γmin

hc(1.1γmin) hc(1.02γmin)

Ỹ1.1γmin,z1

Ỹ1.02γmin,z1

Fig. 2. Qγ(t) for Example 1

This situation is similar to that in the uniform lag case [11],
and thus the saturation phenomenon exists.

The situation, however, is different when γ1 � γ∞, as in
this case one or more eigenvalues of Ỹγmin,z1

can be zeros.
This can be illustrated by the following academic example.

Example 1: Let

Gz =

[
1

s−1
0

1
s−1

0

]
and Gy =

[
0.5
s−1

1
]
,

for which γmin = γ1 = 2 and det(Ỹγmin,z1
) = 0.

Fig. 2 presents the graphs of Qγ(t) for γ = 1.1γmin and
γ = 1.02γmin. The dashed lines correspond to the values
of Ỹγ,z1

. We denote a value of t, for which Qγ(t) crosses
the zero by hc(γ), so that the performance γ is achievable
only if the smoothing lag is greater than hc(γ). Intuitively,
by choosing the value of γ close enough to γmin, the value
of Ỹγ,z1

may be placed arbitrary close to zero, which will
make hc(γ) arbitrary large. Therefore there is no saturation
in this example. (see Fig. 3) �

The saturation, however, may exist in some cases even

0 3.5
1.9

2

3

h

γ
o

Fig. 3. γo(h) for Example 1
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0 3.5
−0.6

1.2

0

t
hc(γmin)

σ1(Ỹγ,z1
)

σ2(Ỹγ,z1
)

σ1(Qγ(t))

σ2(Qγ(t))

Fig. 4. Eigenvalues of Qγ(t) for Example 2

when the performance limit is defined by γ1. To see this
consider the following example.

Example 2: Let now

Gz =

[
1

s−1
0 0 0

0 1
s−1

0 0

]
and Gy =

[
s−5

(s−1)2 0 1 0

0 s−3
(s−1)2 0 1

]

for which γmin = γ1 = 0.42.
Two relevant eigenvalues of Qγ(t) are presented as func-

tions of t in Fig. 4 for some γ > γmin. It can be seen that one
of these eigenvalues coincides with the minimal eigenvalue
of Ỹγ,z1

for all t > 0 (this is actually true for all γ > γmin).
Therefore the approach of zero by the minimal eigenvalue
of Ỹγ,z1

does not yield unbounded growth of hc(γ) and the
saturation exists, seen Fig. 5. �

Summarizing the discussion above, the achievable perfor-
mance generically saturates if γ∞ > γ1, while if γ∞ � γ1

it might either saturate or not. The quantification of this case
is the subject of the current research.

0 1

0.52

 g

h

γ
o

h∞

Fig. 5. γo(h) for Example 2

V. CONCLUDING REMARKS

In this paper the achievable H∞ performance in the
continuous-time fixed-lag smoothing with a partial fixed lag
has been studied. In particular, the limit of the performance
that can be achieved with a partial lag has been established.
It turns out to be equal to the maximum of the achievable
performances of the following two estimation problems:

• the H∞ filtering of the zero-lag estimation channel;
• the H∞ fixed interval smoothing of both channels (of

the entire z signal).

The saturation of the achievable performance as a function
of the smoothing lag has been studied as well. It has been
shown, that the saturation exists if the dominating constrain,
i.e., the one which determines the performance limit, is the
performance of the H∞ fixed interval smoothing.

The necessary and sufficient conditions for the existence
of the saturation, as well as the extension of the approach
adopted in this paper to more general multi-channel prob-
lems, are the subject of the current research.

APPENDIX

A. Proof of Lemma 4

Differentiating (6) by t we get:

Q̈γ = −(A + BB′Qγ)′Q̇γ − Q̇γ(A + BB′Qγ).

Denoting by ΦQ(t, 0) the state transition matrix associated
with −(A + BB′Qγ) and noting that Q̇γ(0) = 1

γ2 C′
2C2 we

obtain:

Q̇γ(t) = 1
γ2 Φ ′

Q(t, 0)C′
2C2ΦQ(t, 0) � 0,

which proves the monotonicity statement of the claim.
Now, define the monotonically non-increasing function

Q∆(t)
.
= Ỹγ,z1

− Qγ(t). It is readily verified that Q∆(t)

satisfies

Q̇∆ = A ′
γ,z1

Q∆ + Q∆Aγ,z1
+ Q∆BB′Q∆,

Q∆(0) = Ỹγ,z1
− Ỹγ,z � 0, (7)

where Aγ,z1

.
= −(A + BB′Ỹγ,z1

) is Hurwitz.
Assume that there exists a tf > 0 such that Q∆(tf) � 0.

Then there must exist a vector η such that η ′Q∆(tf)η < 0.
Consider the following scalar analytic function:

f(t)
.
= η ′Q∆(t)η.

It is readily seen that f(0) � 0 and f(tf) < 0. Therefore
there should exist tc ∈ [0, tf) such that f(tc) = 0. By
the inspection of (7) it can be shown that in this case all
derivatives of f(t) at t = tc vanish as well. This, together
with the analyticity of f(t), implies that f(t) ≡ 0, which is
a contradiction. Therefore, Q∆(t) � 0 for all t > 0.

So far we proved that Q∆ is monotonically non-increasing
and bounded. Hence, its limit as t → ∞ exists. Finally, since
Aγ,z1

is Hurwitz, the only equilibrium of Q∆ in the positive
semi-definite region is Q∆ = 0.
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B. Proof of Lemma 5

It is known [12] that as γ∞ > 0, the following limit exists
and we may define

Ỹm
.
= limγ↘γ∞

Ỹγ,z.

To rule out the trivial situation when any performance level
γ > γ∞ is achievable with h = 0, we assume that at least
one eigenvalue of Ỹm is negative, i.e., that smoothing over-
performs filtering.

Let Qm(t) be a solution of DRE

− Q̇m(t) = A ′Qm(t) + Qm(t)A + γ−2
∞

C′
1C1

− C′
yCy + Qm(t)BB′Qm(t), Qm(0) = Ỹm. (8)

This, in a sense, is the extension of the definition of Qγ(t)

for γ = γ∞ and Qm(t) = limγ↘γ∞
Qγ(t) for any t >

0. The following technical result shows that Qm(t) has
properties similar to those of Qγ(t).

Claim 1: Qm(t) is monotonically non-decreasing func-
tion of t and limt→∞ Qm(t) = Ỹγ∞,z1

.
Proof: This result is similar to Lemma 4, and can be

proved using the same arguments.
Note that γ∞ > γ1, so that Ỹγ∞,z1

exists and is positive
definite. As a result we may define hm as a maximal value
of t, for which Qm(t) has a zero eigenvalue. It is readily
seen that for any t > hm, Qm(t) > 0. The following result
plays an important role in the sequel.

Claim 2: For any γ > γ∞ and for any t > 0 the following
inequality holds

Qγ(t)
.
= Qγ(t) − Qm(t) � 0

Proof: Subtracting (8) from (6) and performing some
algebraic manipulations yield that Qγ(t) satisfies the follow-
ing time varying DRE

Q̇γ(t) = −A ′(t)Qγ(t) − Qγ(t)A(t) + (γ−2
∞

− γ−2)C′
1C1

− Qγ(t)BB′Qγ(t), Qγ(0) = Ỹγ,z − Ỹm � 0 (9)

where
A(t)

.
= A + BB′Qm(t).

Assume that there exists a tf > 0 such that Qγ(tf) � 0.
Then there must exist a vector η such that η ′Qγ(tf)η < 0.
Consider the scalar analytic function

f(t)
.
= η ′Qγ(t)η

It is readily seen that f(0) � 0 and f(tf) < 0. Therefore
there should exist tc ∈ [0, tf) such that f(tc) = 0. On the
other hand, it follows from (9) that if η ′Qγ(tc)η = 0, then

ḟ(tc) = (γ−2
∞

− γ−2)‖C1η‖2 � 0.

There are two different situations:

1) If η ∈ ker C1, then ḟ(tc) = 0 and it can also be shown
that all other derivatives of f are zero as well. Then
the proof follows that in Appendix A.

2) If η �∈ ker C1, then ḟ(tc) > 0 and we have that
whenever f(t) = 0, its derivative is positive. It is then
clear that f(t) can never become negative.

Thus, in both cases we have a contradiction and therefore
Qγ(t) � 0 for all t > 0.

The proof is then completed now by noticing that for any
h∞ > hm the following statement holds

Qγ(h∞) � Qm(h∞) > 0, ∀γ > γ∞.

Therefore any performance level greater then γmin = γ∞ is
achievable with a smoothing lag h∞, and hence γo(h∞) =

γmin.
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