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Abstract— We propose to use ISS small-gain theorems to
analyze stability of hybrid systems. We demonstrate that the
small-gain analysis framework is very naturally and generally
applicable in the context of hybrid systems, and thus has
a potential to be useful in many applications. The main
idea is illustrated on specific problems in the context of
control with limited information, where it is shown to provide
novel interpretations, powerful extensions, and a more unified
treatment of several previously available results. The reader
does not need to be familiar with ISS or small-gain theorems
to be able to follow the paper.

I. INTRODUCTION

The small-gain theorem is a classical tool for analyzing

input-output stability of feedback systems; see, e.g., [1].

More recently, small-gain tools have been used extensively

to study feedback interconnections of nonlinear state-space

systems in the presence of disturbances; see, e.g., [2].

Hybrid systems can be naturally viewed as feedback

interconnections of simpler subsystems. For example, every

hybrid system can be regarded as a feedback interconnec-

tion of its continuous and discrete dynamics. This makes

small-gain theorems a very natural tool to use for studying

internal and external stability of hybrid systems. However,

we are not aware of any systematic application of this idea

in the hybrid systems literature.

The purpose of this paper is to bring the small-gain anal-

ysis method to the attention of the hybrid systems commu-

nity. We review, in a leisurely tutorial fashion, the concept of

input-to-state stability (ISS) introduced by Sontag [3] and a

general nonlinear small-gain theorem based on this concept.

We then illustrate the power of this approach by treating

several specific problems from the area of hybrid control

with communication constraints. We demonstrate how the

small-gain analysis provides insightful interpretations of

existing results, immediately leads to generalizations, and

allows a unified treatment of problems that so far have been

studied separately.

The case studies presented below are rooted in the previ-

ous work by the authors [4], [5], [6]. Due to the pervasive

nature of hybrid systems in applications, we expect that the

main idea proposed in this paper will be useful in many

other areas as well.
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A. Hybrid system model

We begin by describing the model of a hybrid system

to which our subsequent results will apply. This model

easily fits into standard modeling frameworks for hybrid

systems (see, e.g., [7], [8]), and the reader can consult these

references for background and further technical details.

We label the hybrid system to be defined below as H. The

state variables of H are divided into continuous variables

x ∈ R
n, discrete variables µ ∈ R

r, and additional variables

τ ∈ R
l. We note that µ takes discrete values, which we

embed in R
r just for simplicity. The variables τ represent

auxiliary states thought of primarily as continuous clocks.

The time is continuous: t ∈ [t0,∞). We also consider

external variables w ∈ R
s, viewed as disturbances.

The state dynamics describing the evolution of these

variables with respect to time are composed of continuous
evolution and discrete events. During continuous evolution

(i.e., while no discrete events occur), µ is held constant, x
satisfies the ordinary differential equation ẋ = f(x, µ,w)
with f : R

n × R
r × R

s → R
n locally Lipschitz, and

τ satisfies τ̇i = 1, i = 1, . . . , l. We now describe the

discrete events. Given an arbitrary time t, we will denote

by x−(t), or simply by x− when the time arguments are

omitted, the quantity x(t−) = lims↗t x(s), and similarly

for the other state variables. Consider a guard map G :
R

n+r+l → R
p (where p is a positive integer) and a reset

map R : R
n+r+l → R

n+r+l. The discrete events are

defined as follows: whenever

G
(
x−, µ−, τ−) ≥ 0 (1)

(component-wise), we let⎛
⎝x

µ
τ

⎞
⎠ = R(x−, µ−, τ−) =

⎛
⎝Rx(x−, µ−, τ−)

Rµ(x−, µ−, τ−)
Rτ (x−, µ−, τ−)

⎞
⎠ .

By construction, all signals are right-continuous.

Some remarks on the above relations are in order. In

many situations, Rx(x, µ, τ) ≡ x, i.e., the continuous state

does not jump at the event times. We want inequality rather

than equality in (1) because for a discrete event to occur, we

might need several conditions which do not become valid

simultaneously (e.g., some relation between x and µ holds

and a clock has reached a certain value). Of course, equality

conditions are easily described by pairs of inequalities.

The continuous time t does not explicitly appear in the

dynamics. If desired, it could be incorporated either in x
(with equation ṫ = 1) or in τ , and in either case it is

not reset at event times. For simplicity, we assume that the

disturbances w affect only the continuous evolution and the

auxiliary variables τ affect only the discrete events, because
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this will be the case in the examples studied below. Discrete

events can in general occur completely asynchronously.

Well-posedness (existence and uniqueness of solutions) of

the hybrid system H is an issue; see, e.g., [7]. At the general

level of the present discussion, we are going to assume

it. For example, we can assume that the use of auxiliary

variables (clocks) in the reset condition (1) ensures that a

bounded number of discrete events occurs in any bounded

time interval. Then, to obtain a solution (in the sense of

Carathéodory), we simply flow the continuous dynamics

until either the end of their domain is reached (finite escape)

or a discrete event occurs; in the latter case, repeat from the

new state, and so on. This construction will apply in all the

examples treated below.

B. Feedback interconnection structure

x

µ

ẋ = f(x, µ, w)

µ = Rµ(x ,−µ ,−τ)

w w1

w2
z2

z1H1

H2

Fig. 1. Hybrid system viewed as feedback interconnection: (a)
simple decomposition, (b) general decomposition

The starting point for our results is the observation

that we can view the hybrid system H as a feedback

interconnection of its continuous and discrete parts, as

shown in Figure 1(a). The auxiliary variables τ are available

to the discrete subsystem (because they are needed to

determine the event times and execute resets) and possibly

also available to the continuous subsystem. We do not

display their dynamics explicitly in the picture because we

will not be concerned about their behavior.

It is clear that the above is just one possible way to split

the hybrid system H into a feedback interconnection of two

subsystems. There may be many other ways to do it. Each

subsystem in the decomposition can be continuous, discrete,

or hybrid, and may be affected by the disturbances. This

more general situation is illustrated in Figure 1(b). Here, the

state variables and the external signals of H are split as x =
(x1, x2), µ = (µ1, µ2), w = (w1, w2), the first subsystem

H1 has states z1 = (x1, µ1) and inputs v1 = (z2, w1),
and the second subsystem H2 has states z2 = (x2, µ2)
and inputs v2 = (z1, w2). As before, we can actually

omit some variables that are not of immediate interest from

the states of the feedback interconnection (these variables

would still be used in establishing the desired properties of

the two components). Generalization to the case of partial

measurements (outputs) is also straightforward.

Coming up with an appropriate decomposition of the

above kind is the first step in the analysis of a given hybrid

system H. As we pointed out, such a decomposition always

exists. It can also happen that the hybrid system model is

given from the beginning as an interconnection of several

hybrid systems. Thus the structure we consider is very

general and not at all restrictive.

C. Stability definitions

A function α : [0,∞) → [0,∞) is said to be of class
K (which we write as α ∈ K) if it is continuous, strictly

increasing, and α(0) = 0. If α is also unbounded, then it is

said to be of class K∞ (α ∈ K∞). A function β : [0,∞)×
[0,∞) → [0,∞) is said to be of class KL (β ∈ KL)

if β(·, t) is of class K for each fixed t ≥ 0 and β(r, t)
decreases to zero as t → ∞ for each fixed r ≥ 0.

We now define the stability notions of interest. Consider

a hybrid system with state z and input v (as a special

case, it can have only continuous dynamics or only discrete

events). Following [3], we say that this system is input-to-
state stable (ISS) with respect to v if there exist functions

β ∈ KL and γ ∈ K∞ such that for every initial state z(t0)
and every input v(·) the corresponding solution satisfies

|z(t)| ≤ β(|z(t0)|, t − t0) + γ(‖v‖[t0,t]) (2)

for all t ≥ t0, where ‖v‖[t0,t] := sup{|v(s)| : s ∈ [t0, t]}
(except possibly on a set of measure 0). We will refer to

γ as an ISS gain function, or just a gain if clear from

the context. For time-invariant systems, we can take the

initial time to be 0 without loss of generality. In the case

of no inputs (v ≡ 0), the above inequality reduces to

|z(t)| ≤ β(|z(t0)|, t) ∀ t ≥ t0 which corresponds to the

standard notion1 of global asymptotic stability (GAS). In the

presence of inputs, ISS captures the property that bounded

inputs and inputs converging to 0 produce states that are also

bounded and converging to 0, respectively. If the inputs are

split as v = (v1, v2), then (2) is equivalent to

|z(t)| ≤ β(|z(t0)|, t − t0) + γ1(‖v1‖[t0,t]) + γ2(‖v2‖[t0,t])

for some functions γ1, γ2 ∈ K∞. In this case, we will call

γ1 the ISS gain from v1 to z, and so on.

We note that asymptotic stability of a linear system

(continuous or sampled-data) can always be characterized

by a class KL function of the form β(r, t) = cre−λt,

c, λ > 0. Moreover, an asymptotically stable linear system

is automatically ISS with respect to external inputs, with a

linear ISS gain function: γ(r) = ar, a > 0.

II. ISS SMALL-GAIN THEOREM

Consider the hybrid system H defined in Section I-A,

and suppose that it has been represented as a feedback

interconnection of two subsystems H1 and H2 in the way

described earlier and shown in Figure 1(b). The small-gain

theorem stated next reduces the problem of verifying ISS

of H to that of verifying ISS of H1 and H2 and checking

a condition that relates their respective ISS gains. The

result we give is a special case of the small-gain theorem

1This can be equivalently restated in the more classical ε–δ style [10].
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from [2]. That paper treats continuous systems, but since the

statement and the proof given there involve only properties

of system signals, the fact that the dynamics are hybrid in

our case does not change the validity of the argument. We

note that the result presented in [2] is much more general in

that it treats partial measurements (input-to-output-stability,

in conjunction with detectability) and deals with practical

stability notions. Many other versions are also possible, e.g.,

we can replace the sup norm used in (2) by an Lp norm [6].

Theorem 1 Suppose that:
1. H1 is ISS with respect to v1 = (z2, w1), with gain γ1

from z2 to z1.
2. H2 is ISS with respect to v2 = (z1, w2), with gain γ2

from z1 to z2.
3. There exists a function ρ ∈ K∞ such that2

(id + ρ) ◦ γ1 ◦ (id + ρ) ◦ γ2(r) ≤ r ∀ r ≥ 0. (3)

Then H is ISS with respect to the input w = (w1, w2).

Three special cases are worth mentioning explicitly, be-

cause they will arise in what follows. First, in the case of

no external signals (w1 = w2 ≡ 0), we conclude that H is

GAS. Second, when the two ISS gain functions are linear:

γi(r) = cir, i = 1, 2, the small-gain condition (3) reduces

to the simple one c1c2 < 1. Third, the theorem covers the

case of a cascade connection, where one of the gains is 0

and hence the small-gain condition (3) automatically holds.

As already mentioned, we will sometimes concentrate

only on some states of the overall system, excluding the

other states from the feedback interconnection. Typically,

these “hidden” states have very simple dynamics and remain

bounded for all time. Theorem 1 is still valid if we let z1 and

z2 include only the states of interest for each subsystem.3

Small-gain theorems have been widely used for analysis

of continuous-time as well as discrete-time systems with

feedback interconnection structure. The discussion of Sec-

tion I-B suggests that it is also very natural to use this

idea to analyze (internal or external) stability of hybrid

systems. Of course, we will need to be able to prove that

the subsystems in a given feedback decomposition satisfy

suitable ISS properties, and calculate the ISS gains in order

to check (3). There exist efficient tools for doing this, and

the purpose of the next section is to discuss examples of

application of these tools to a variety of hybrid systems

arising in the context of control with limited information.

III. EXAMPLES OF APPLICATIONS

A. Quantized feedback

Consider the linear time-invariant system

ẋ = Ax + Bu, x ∈ R
n, u ∈ R

m (4)

2Here id is the identity function and ◦ denotes function composition. If
one replaces β + γ with max{β, γ} in the definition (2) of ISS, then (3)
can be simplified to γ1 ◦ γ2(r) < r for all r > 0.

3This amounts to replacing ISS with an input-to-output stability notion
(cf. [2], [11]) and requiring that the ISS gain from the hidden states in
each subsystem to the states of interest in the other subsystem be 0.

with A not Hurwitz. We assume that it is stabilizable, so

that for some matrices P = P T > 0 and K we have

(A + BK)T P + P (A + BK) ≤ −2I. (5)

We denote by λmin(·) and λmax(·) the smallest and the

largest eigenvalue of a symmetric matrix, respectively. A

quantizer is a piecewise constant function q : R
n → Q,

where Q is a finite subset of R
n, for which there exist

positive numbers M (the range of q, possibly ∞) and ∆
(the quantization error) satisfying

|z| ≤ M ⇒ |q(z) − z| ≤ ∆. (6)

It is well known that quantization errors in general destroy

asymptotic stability, in the sense that the quantized feedback

law u = Kq(x) is no longer stabilizing. To overcome this

problem, we will use quantized measurements of the form

qµ(x) := µq(x/µ), µ > 0. (7)

The quantizer qµ has range Mµ and quantization error ∆µ.

The “zoom” variable µ will be the discrete variable of the

hybrid closed-loop system, initialized at some fixed value.

The idea behind achieving asymptotic stability is to “zoom

in”, i.e., decrease µ to 0 in a suitable discrete fashion, while

applying the feedback law u = Kqµ(x). To simplify the

exposition, we will assume that the condition |x| ≤ Mµ
always holds, i.e., x always remains within the range of qµ.

This is automatically true if M is infinite. For finite M ,

this can be achieved by incorporating an initial “zooming-

out” scheme and subsequently ensuring that the condition

is never violated (see [4] for details).

We view the closed-loop system as the feedback inter-

connection of Figure 1(a), with w ≡ 0 for the time being.

Its continuous dynamics are

ẋ = Ax+BKqµ(x) = (A+BK)x+BKµ
(
q(x/µ)−x/µ

)
.

In view of (6) and the fact that A+BK is Hurwitz, we have

ISS with respect to µ. Let us use the Lyapunov function

V (x) := 1
2xT Px, with P from (5), to compute the ISS

gain. Its derivative along solutions satisfies V̇ ≤ −|x|2 +
|x|‖PBK‖∆µ, where ‖·‖ stands for matrix induced norm.

Simple square completion shows that for each ε > 0,

|x|2 ≥ (1+ε)2‖PBK‖2∆2µ2 ⇒ V̇ ≤ −ε|x|2/(1+ε).

The condition (16) of Lemma 1 from the Appendix holds

with ρx(r) := λmax(P )(1 + ε)2‖PBK‖2∆2r2, and hence

the x-subsystem is ISS with respect to µ, with gain

γx(r) :=
√

λmax(P )(1 + ε)‖PBK‖∆r/
√

λmin(P ). (8)

We now need to describe a scheme for updating µ, which

we refer to as a quantization protocol. The goal is to

guarantee ISS of the µ-subsystem with respect to x, with the

ISS gain γµ such that the small-gain condition of Theorem 1

holds. Pick a number C satisfying

C >
√

λmax(P )‖PBK‖∆/
√

λmin(P ). (9)
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Define the guard map by G(x, µ, τ) := ((C + ∆)µ −
|qµ(x)|, τ − δ)T for some δ > 0, where the auxiliary

clock variable τ is scalar-valued. Define the reset map by

R(x, µ, τ) := (x, Ωiµ, 0)T for some Ωi ∈ (0, 1). In other

words, when |qµ−(x−)| ≤ (C + ∆)µ− and τ− ≥ δ, we set

µ = Ωiµ
− (“zoom in”) and τ = 0 (reset the clock). In view

of (6), it is easy to see that the condition (17) of Lemma 2

from the Appendix is satisfied with W (µ) := µ2 and

ρµ(r) := r2/C2. The other hypotheses of that lemma are

also satisfied by construction. Therefore, the µ-subsystem is

ISS with respect to x, with gain γµ(r) := r/C. We see that

both gain functions are linear gains, and to apply Theorem 1

we need their product to be smaller than 1. Since ε in (8) can

be arbitrarily small, the small-gain condition is exactly (9).

This quantization protocol has a clear geometric interpre-

tation. We zoom in if the quantized measurements show that

|x| ≤ (C +2∆)µ, which is guaranteed to happen whenever

|x| ≤ Cµ. The condition (9) means that for each µ, the

ball of radius Cµ around the origin contains the level set

of V superscribed around the ball of radius ‖PBK‖∆µ,

outside of which V is known to decay (thus ensuring that

the zoom-in will be triggered). Similar ideas were used

in [12], [4], but previous analyses did not employ the small-

gain argument and were arguably less transparent.

We remark that the choice of precise values for C and Ωi

is also dictated by the need to keep x within the range of qµ.

Since these considerations seem to be decoupled from the

small-gain argument, we refer the reader to [4] for details.

Several variations of the above scheme are also possible

(cf. [12], [13]), and can be analyzed similarly. Nonlinear

quantized control systems can be treated along the same

lines, under the assumption of ISS of the continuous closed-

loop dynamics with respect to measurement errors. In

particular, the quantization protocol for nonlinear systems

proposed in [4] lends itself to an analogous small-gain

interpretation, except that the ISS gains are nonlinear and

so the general small-condition (3) must be used.

A very important advantage of the small-gain viewpoint

is that it allows us to establish robustness (in the ISS sense)

with respect to external disturbances. This aspect has not

been addressed in earlier work and seems to be much more

difficult to handle with previously used tools. In the case of

infinite quantizer range M , the small-gain approach makes

the extension immediate. Namely, if we augment the system

with an external disturbance w to have ẋ = Ax + Bu +
Dw, then Theorem 1 yields ISS of the closed-loop system

described above with respect to w. If the quantizer range

M is finite, then the situation is much more complicated

because it is necessary to “zoom out” to keep x within the

range of qµ, and in the presence of the disturbance we will

keep switching between the zooming-in and zooming-out

stages. A solution to this problem is described in [13].

B. Encoded sampled-data feedback

Consider again the stabilizable linear system (4). As

before, we are interested in the problem of designing a

controller that asymptotically stabilizes this system using

limited information about its state x. Here we specify

what we mean by limited information as follows: (i) the

measurements are to be received by the controller at discrete

times δ, 2δ, . . . , where δ > 0 is a fixed sampling period;

and (ii) at each of these sampling times, the measurement

received by the controller must be a number in the set

{0, 1, 2, . . . , N}, where N is a fixed positive integer. For

notational simplicity, we assume that
n
√

N is an integer. It

will be convenient to use the norm ‖x‖∞ := max{|xi| :
1 ≤ i ≤ n} on R

n and the induced matrix norm

‖A‖∞ := max{∑n
j=1 |Aij | : 1 ≤ i ≤ n}. We define

Λ := max0≤t≤τ ‖eAt‖∞ ≥ 1 and assume that

Λ <
n√

N. (10)

To represent the above information constraint, we con-

sider a quantizer q that partitions the cubic box centered at

the origin in R
n with edges 2, i.e., {x ∈ R

n : ‖x‖∞ ≤ 1},

into N equal cubic quantization regions (
n
√

N in each

dimension), and assigns numbers between 1 and N to these

regions in a one-to-one fashion. The “overflow” symbol 0

is assigned to the complement of the overall box. Thus

the quantized measurement q(x) uniquely determines the

quantization region containing x. We will use quantized

measurements of the form qµ(x − x̂), where qµ is defined

by (7), µ will be a discrete “zoom” variable similar to the

one used in Section III-A, and x̂ will be an estimate of

x generated using previously received quantized measure-

ments. The control law will be u = Kx̂, where K is a

stabilizing feedback gain as in Section III-A.

The continuous states of the closed-loop system are x and

x̂. During continuous evolution, x satisfies ẋ = Ax+BKx̂
and x̂ is a solution of a “copy” of the same system: ˙̂x =
Ax̂+BKx̂. Initially, we set x̂(0) := 0. We also use a scalar

auxiliary clock variable τ , initialized at 0 as well.

We now describe a “quantization protocol” that defines

discrete events at which both µ and x̂ (as well as τ ) will be

reset. We simplify matters by assuming that an upper bound

on the size of the initial state is known: ‖x(0)‖∞ ≤ E0

for some E0 > 0. Such a bound may be given to us

in advance or may be obtained on the basis of quantized

measurements by performing an initial “zoom-out”; see [5]

for details. We set µ(0) := ΛE0. The guard map is simply

G(x, x̂, µ, τ) := τ − δ, and the reset map is defined

by R(x, x̂, µ, τ) := (x, R(x, x̂, µ), (Λ/ n
√

N)µ, 0)T , where

R(x, x̂, µ) is the center of the quantization region of qµ(x−
x̂) which, according to the quantized measurement, contains

x. Thus discrete events occur at every sampling time: the

values of µ and x̂ determine the quantizer, the new value

of x̂ is computed based on the quantized measurement, and

a “zoom-in” is executed (by virtue of (10), the value of µ
is decreased at discrete events).

To analyze the resulting hybrid system, let us introduce

the estimation error

e := x − x̂. (11)
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Initially, we have ‖e(0)‖∞ ≤ E0. During continuous

evolution, e satisfies ė = Ae. In view of the definitions of Λ
and µ(0), we see that at the first event time t = δ we have

qµ−(x− − x̂−) �= 0. From the definition of the reset map

for x̂, it then follows that ‖e(δ)‖∞ ≤ ΛE0/
n
√

N . Repeating

the analysis for subsequent event times, we deduce that e
converges (exponentially) to 0. The final step is that in the

(x, e) coordinates we can rewrite the closed-loop system as

ẋ = (A + BK)x − BKe

ė = Ae, t �= kδ, k = 1, 2, . . .
e = Re(x−, e−, µ−), t = kδ, k = 1, 2, . . .

This is a feedback connection of two subsystems: the e-

subsystem, which in view of the above analysis is GAS

(i.e., ISS with respect to x with 0 gain, uniformly over

µ), and the x-subsystem, which is ISS with respect to e
because A+BK is Hurwitz. Therefore, GAS of the overall

hybrid system follows from Theorem 1. The above analysis

is essentially equivalent to the one given in [5], but the

present hybrid model was not used there and the small-gain

interpretation was not explicit.

A nonlinear extension of the control strategy from [5] was

presented in [14]. For a nonlinear system ẋ = f(x, u), we

define the estimator equation ˙̂x = f(x̂, u), which with the

same definition of the estimation error via (11) gives ė =
f(x, u)−f(x̂, u) during continuous evolution. Denoting by

L the Lipschitz constant for the function f on some region

D ⊂ R
n × R

m, we obtain for solutions with (x, u) and

(x̂, u) remaining in D the bound ‖e(t)‖∞ ≤ ξ(t), where ξ
is the solution of the system

ξ̇ = Lξ, t �= kδ, k = 1, 2, . . .

ξ = ξ−/
n√

N, t = kδ, k = 1, 2, . . .

with initial condition ξ(0) = E0. Assume that eLτ < n
√

N.
Then ξ converges to 0, hence so does e. Applying a control

law u = k(x̂), we obtain the x-subsystem ẋ = f(x, k(x̂)) =
f(x, k(x − e)). Assume that the control law k renders this

system ISS with respect to e. Then it is possible to define

the region D in such a way that the above estimates are

valid for all t ≥ 0, and consequently Theorem 1 guarantees

GAS of the overall hybrid system just as before (see [14]).

It is clear that many generalizations are possible within

the small-gain framework. First, the ISS gain from x to

e need not be 0, as long as the small-gain condition is

satisfied. Second, external disturbances entering the contin-

uous dynamics can be naturally incorporated. In this case,

however, quantizer saturation (qµ(x − x̂) = 0) can occur,

and so a more sophisticated quantization protocol involving

“zoom-outs” is required (cf. [13]).

C. Networked control systems

In this section we explain how results from [6] fit into

a similar framework where the small gain theorem is an

instrumental tool in proving the results. We first present a

very simplified version of the problem considered in [6] to

make a relationship with results of previous sections more

apparent. Then, we discuss its various extensions.

Consider again the linear system (4) that satisfies (5).

In the networked control system, control signals and state

measurements need to be transmitted via a serial commu-

nication channel. The channel operates as follows: (i) at

each transmission time δk, k = 1, 2, . . ., where δ > 0, a

part of the control and/or state vector is transmitted; (ii)

if some signal is not transmitted, then its value is kept

constant at the latest value sent via the communication

channel; and (iii) all values of state and control are kept

constant between transmission instants. Let us denote the

most recently transmitted values of the state and control

respectively as x̂ and û. In order to analyze the system, it

is useful to introduce the error e := (x − x̂, u − û)T =
(e1, . . . , e�)T , where 
 is referred to as the number of

“nodes”. We assume for the time being that whenever a

node j gets transmitted at time kδ, the corresponding part

of the error vector is reset to zero, i.e., ej(kδ) = 0.

The closed loop system can be written as

ẋ = Ax + Bû
u = Kx̂
˙̂u = 0
˙̂x = 0

⎫⎪⎪⎬
⎪⎪⎭

t �= kδ (12)

x̂ = x− + hx(k, e−)
û = u− + hu(k, e−)

}
t = kδ (13)

where hx and hu describe the “protocol” which is an

algorithm that determines time scheduling of access to the

network for different nodes. Explicit expressions for hx and

hu are given in [6] for several examples of most commonly

used protocols, such as token ring.

This model is more amenable to analysis if we represent

it in (x, e) coordinates:

ẋ = A11x + A12e
ė = A21x + A22e

}
t �= kδ (14)

e = h(k, e−) t = kδ (15)

where the Aij matrices can easily be computed from

the above equations and h(k, e) := (hx(k, e), hu(k, e)).
Hence, for this system we can define the guard map as

G(k, x, e, τ) := τ − δ and the reset map as R(k, x, e, τ) :=
(k + 1, x, h(k, e), 0)T , where τ satisfies τ̇ = 1 as before.

Here the explicit dependence on the time step k is needed

to cover protocols of round robin type, and usually we can

replace k in the above formulas by k mod 
.

Similarly to Section III-B, we decompose the overall

system into the continuous x-subsystem and the hybrid e-

subsystem, and choose the design parameters so that the

small-gain condition can be used to prove stability of the

overall system. It is easy to show that A11 = A+BK and by

assumption this matrix is Hurwitz. Hence, the x-subsystem

is ISS from e to x with some linear gain γx. Suppose now

that there exist a function W : Z+×R
n → R and constants

L, c, a1, a2 > 0 and λ ∈ [0, 1) with the following properties:
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(i) a1|e| ≤ W (k, e) ≤ a2|e|, W (k + 1, h(k, e)) ≤
λW (k, e) for all k and e;

(ii) 〈∂W
∂e , A21x + A22e〉 ≤ LW + c|x|;

(iii) δ ≤ 1
L ln 1

λ .

Then, the e subsystem is ISS from x to e, with gain γe :=
c(eLδ −1)/(La1(1−λeLδ)). More importantly, the gain γe

can be made arbitrarily small by reducing δ. Hence, under

the above conditions there exists a value δ∗ > 0 such that

for all δ ∈ (0, δ∗) the small gain condition holds: γxγe < 1,

and the networked control system is stable.

Condition (i) is a property of the protocol itself and

protocols with this property were referred to as uniformly
globally exponentially stable (UGES) protocols in [6]. It

was shown there that token ring and the so-called try-

once discard (TOD) protocols are UGES, and appropriate

Lyapunov functions W were constructed for these two

important cases. Moreover, it was shown for linear systems

and for each of these two protocols that (ii) also holds,

hence the networked control system is stable for values of

the transmission interval δ small enough to fulfill (iii).

The results presented in [6] are more general in several

different directions. Nonlinear plants and controllers were

considered in [6] and controllers themselves were allowed to

be dynamical systems. Moreover, systems with exogenous

disturbances were considered and results were proved for

Lp stability. In all of these generalizations, the small-gain

approach was instrumental in proving the results.

The small-gain approach can be used to deal with even

more general problems, where besides time scheduling one

also uses coding schemes for transmitting information via

the communication channel. Components of the error vector

will then no longer be reset to zero, but rather will be

divided by a certain number, much like in Section III-B. The

reasoning sketched above, based on the UGES property of

the protocol and an application of the small-gain theorem,

is readily applicable to such scenarios as well. This clarifies

the very close relationship between the quantization/coding

literature and the work on networked control systems, and

opens the door for a unified treatment of these subjects,

which will be presented in a forthcoming paper.

APPENDIX

Here we give the technical lemmas needed for proving

ISS in Section III-A. All lowercase Greek letters denote

K∞ functions. Consider the hybrid system H defined in

Section I-A and shown in Figure 1(a). We limit ourselves

to the case of no disturbances, and write the continuous

dynamics as ẋ = f(x, u). The two lemmas stated below

provide Lyapunov-based sufficient conditions for ISS of the

continuous and discrete dynamics, respectively. The first

result is well known [3]; the second one is [15, Theorem 4].

Lemma 1 Suppose there exists a C1 function V : R
n → R

satisfying α1,x(|x|) ≤ V (x) ≤ α2,x(|x|) and

V (x) ≥ ρx(|µ|) ⇒ ∇V (x)f(x, µ) ≤ −α3,x(V (x)). (16)

Then the x-subsystem is ISS with respect to µ, with gain
γx := α−1

1,x ◦ ρx.

Lemma 2 Suppose there exists a C1 function W : R
r → R

satisfying α1,µ(|µ|) ≤ W (µ) ≤ α2,µ(|µ|) such that

W (µ) ≥ ρµ(|x|) ⇒ W (Rµ(x, µ, τ)) − W (µ)
≤ −α3,µ(W (µ))

(17)

and W (µ) ≤ ρµ(r), |x| ≤ r ⇒ W (Rµ(x, µ, τ)) ≤ ρµ(r).
Suppose also that there exist positive numbers δa and N0

with the following property: for each T > t0 such that
W (µ(t)) ≥ ρµ(‖x‖[t0,t]) for all t ∈ [t0, T ), the number
N(T, t0) of discrete events in the interval [t0, T ] satisfies

N(T, t0) ≥ −N0 + (T − t0)/δa. (18)

Then the µ-subsystem is ISS with respect to x, with gain
γµ := α−1

1,µ ◦ ρµ.

Remark 1 If the second inequality in (17) holds always,

i.e., the hypotheses are satisfied with ρµ = 0, then the proof

shows that the µ-subsystem is GAS (γµ = 0).

REFERENCES

[1] G. Zames, “On the input-output stability of time-varying nonlinear
feedback systems, part 1: conditions derived using concepts of loop
gain, conicity, and positivity,” IEEE Trans. Automat. Control, vol. 11,
pp. 228–238, 1966.

[2] Z.-P. Jiang, A. R. Teel, and L. Praly, “Small-gain theorem for ISS
systems and applications,” Math. Control Signals Systems, vol. 7, pp.
95–120, 1994.

[3] E. D. Sontag, “Smooth stabilization implies coprime factorization,”
IEEE Trans. Automat. Control, vol. 34, pp. 435–443, 1989.

[4] D. Liberzon, “Hybrid feedback stabilization of systems with quan-
tized signals,” Automatica, vol. 39, pp. 1543–1554, 2003.

[5] ——, “On stabilization of linear systems with limited information,”
IEEE Trans. Automat. Control, vol. 48, pp. 304–307, 2003.
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[13] D. Liberzon and D. Nešić, “Input-to-state stabilization of linear
systems with quantized feedback,” in Proc. 44th IEEE Conf.
on Decision and Control, 2005, submitted. [Online]. Available:
http://decision.csl.uiuc.edu/˜liberzon/publications.html

[14] D. Liberzon and J. P. Hespanha, “Stabilization of nonlinear systems
with limited information feedback,” IEEE Trans. Automat. Control,
vol. 50, pp. 910–915, 2005.

[15] J. P. Hespanha, D. Liberzon, and A. R. Teel, “On input-to-
state stability of impulsive systems,” in Proc. 44th IEEE Conf.
on Decision and Control, 2005, submitted. [Online]. Available:
http://decision.csl.uiuc.edu/˜liberzon/publications.html

[16] Z. P. Jiang and Y. Wang, “Input-to-state stability for discrete-time
nonlinear systems,” Automatica, vol. 37, pp. 857–869, 2001.

5414


	MAIN MENU
	PREVIOUS MENU
	---------------------------------
	Search CD-ROM
	Search Results
	Print


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (None)
  /CalCMYKProfile (None)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveEPSInfo false
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 2.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 2.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <>
    /FRA <>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
    /ITA <>
    /NOR <>
    /SVE <>
    /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice




