
Dissipativity Theory for Singular Systems.
Part I: Continuous-Time Case
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Abstract— In this paper we develop dissipativity results for
continual nonlinear and linear singular systems. To the best
knowledge of author results are nonexistent. We generalize
dissipativity theory to nonlinear continuous singular dynamical
systems. Specifically, the classical concepts of system storage
functions and supply rates are extended to singular dynamical
systems providing a generalized system energy interpreta-
tion in terms of stored energy and dissipated energy over
the continuous-time system dynamics. Furthermore, extended
Kalman-Yakubovich-Popov conditions in terms of the singular
system dynamics characterizing dissipativeness via system stor-
age functions are derived. Finally, the framework is specialized
to passive and nonexpansive singular systems to provide a
generalization of the classical notions of passivity and nonex-
pansivity for nonlinear singular systems.

I. INTRODUCTION

The key foundation in dissipativity theory of dynamical
systems was presented by Willems in his seminal two-
part paper [1], [2]. In particular, Willems [2] introduced
definition of dissipativity for general dynamical systems in
terms of an inequality involving a generalized system power
input, or, supply rate, and a generalized energy function, or,
storage function. Since Lyapunov functions can be viewed as
generalization of energy functions for nonlinear dynamical
systems, the notion of dissipativity, with appropriate storage
functions and supply rates, can be used to construct Lya-
punov functions for nonlinear feedback systems by appropri-
ately combining storage functions for each subsystem. Even
though the original work on dissipative dynamical systems
was formulated in the state space setting describing the
system dynamics in terms of continuous flows on appro-
priate manifolds, an input-output formulation for dissipative
dynamical systems extending the notions of passivity [3],
nonexpansivity [3], and conicity [3], [4] was presented in [5],
[6], [7]. More recently, the notion of dissipativity theory was
generalized in [8] to formalize the concepts of the nonlinear
analog of strict positive realness and strict bounded realness.
In particular, using exponentially weighted supply rates, the
concept of exponential dissipativity was introduced in [8].

Dissipativity theory along with its connections to Lya-
punov stability theory has been extensively developed for dy-
namical systems possessing continuous flows. Since singular
systems [9], [10] more naturally describe the system and they
are present in many applications including circuit systems
theory, boundary problems, chemical and process industry,
biological systems, to name just a few, it is important to
develop dissipativity theory for this class of systems. To the
best knowledge of the author results are nonexistent.

The contents of the paper are as follows. In Section II,
we extend the notion of dissipative dynamical systems to
develop the concept of dissipativity for singular dynamical
systems. In Section III we develop Kalman-Yakubovich-
Popov algebraic conditions in terms of the system dynamics
for characterizing dissipativeness via system storage func-
tions for singular systems. Furthermore, a generalized energy
balance interpretation involving the system’s stored or, accu-
mulated energy and dissipated energy over the continuous-
time dynamics is given. Specialization of these results to
passive and nonexpansive singular systems is also provided.
In Section IV we specialize the results of Section III to linear
singular systems to obtain extended Kalman-Yakubovich-
Popov equations for positive real and bounded real singular
systems. Finally, we draw conclusion in Section V.

II. DISSIPATIVE CONTINUOUS NONLINEAR SINGULAR

SYSTEMS: INPUT-OUTPUT AND STATE PROPERTIES

We consider a continuous time nonlinear singular dynam-
ical system G described by

Ecẋ(t)= fc(x(t)) + Gc(x(t))uc(t), x(0) = x0 (1)

yc(t)= hc(x(t)) + Jc(x(t))uc(t). (2)

where t ≥ 0, x(0) = x0, x(t) ∈ D ⊂ Rn, D is an open set
with 0 ∈ D, uc ∈ Uc ⊂ Rmc , input uc(t), yc(t) ∈ Rlc , fc :
D → Rn is Lipschitz continuous and satisfies fc(0) = 0,
Gc : D → n × mc, hc : D → Rlc and satisfies hc(0) = 0,
Jc : D → Rlc×mc . Matrix Ec is allowed to be a singular
matrix. In case Ec = I , (1)–(2) represent standard continuous
time dynamical systems.

It is well known that Lyapunov functions can be viewed as
generalizations of energy functions for a general nonlinear
system. In this section we extend the notion of dissipative
dynamical systems to develop the concept of dissipativity for
nonlinear continuous singular systems. In particular, using
concepts of nonlinear singular systems storage functions with
appropriate supply rates, storage functions are developed
as Lyapunov functions for nonlinear continuous singular
systems.

The next result gives necessary and sufficient conditions
for dissipativity, exponential disipativity, and losslessness.

Theorem 2.1: G is dissipative with respect to the supply
rate rc if and only if there exists a C0 nonnegative-definite
function Vs : R × Rn → R, such that

Vs(t̂, Ecx(t̂)) − Vs(t, Ecx(t)) ≤
∫ t̂

t

rc(uc(s), yc(s))ds. (3)

Proceedings of the
44th IEEE Conference on Decision and Control, and
the European Control Conference 2005
Seville, Spain, December 12-15, 2005

WeC02.3

0-7803-9568-9/05/$20.00 ©2005 IEEE 5639



Furthermore, G is exponentially dissipative with respect to
the supply rate rc if and only if there exists a C0 nonnegative-
definite function Vs : R × Rn → R, such that

eεt̂Vs(t̂, Ecx(t̂))−eεt̂Vs(t, Ecx(t))≤
∫ t̂

t

eεt̂rc(uc(s), yc(s))ds.

(4)

Finally, G is lossless with respect to the supply rate rc if
and only if there exists a C0 nonnegative-definite function
Vs : R × Rn → R such that (3) is satisfied as equality.

If in Theorem 2.1 Vs(·, x(·)) is C1 a.e. on [t0,∞), then
an equivalent statement for dissipativeness of the nonlinear
continuous singular system G with respect to the supply rate
rc is

V̇s(t, Ecx(t)) ≤ rc(uc(t), yc(t)), (5)

where V̇s(·, ·) denotes the total derivative of Vs(t, Ecx(t))
along the state trajectories x(t) of the nonlinear contin-
uous singular system (1), (2). Furthermore, an equivalent
statement for exponential dissipativeness of the nonlinear
continuous singular system G with respect to the supply rate
rc is given by

V̇s(t, Ecx(t)) + εVs(t, Ecx(t)) ≤ rc(uc(t), yc(t)). (6)

The following theorem provides sufficient conditions for
guaranteeing that all storage functions (resp., exponential
storage functions) of a given dissipative (resp., exponentially
dissipative) nonlinear continuous singular system are positive
definite.

Theorem 2.2: Consider the nonlinear continuous singular
system G given by (1), (2) and assume that G is completely
reachable and zero-state observable. Furthermore, assume
that G is dissipative (resp., exponentially dissipative) with
respect to the supply rate rc and there exists function :
Rlc → Rmc such that rc(κc(yc), yc) < 0, yc �= 0. Then all
the storage functions (resp., exponential storage functions)
Vs(t, x), (t, x) ∈ R × Rn, for G are positive definite, that is
Vs(·, 0) = 0 and Vs > 0, (t, x) ∈ R × Rn, x �= 0.

III. KALMAN-YAKUBOVICH-POPOV CONDITIONS FOR

CONTINUOUS SINGULAR SYSTEMS

Dissipativeness of a continuous singular system can
be characterized in terms of the system functions
fc(·), Gc(·), hc(·), Jc(·). For the results in this section we
consider the special case of dissipative continuous singular
systems with quadratic supply rates and set Uc = Rmc .
Specifically, let Qc ∈ Slc , Sc ∈ Rlc×mc , Rc ∈ Smc be
given and assume rc(uc, yc) = yT

c Qcyc + 2yT
c uc + uT

c Rcuc.
In the reminder of the paper we assume that storage func-
tions do not depend explicitly on time. Furthermore, we
assume that there exist functions κc : Rlc × Rmc such that
rc(κc(yc), yc) < 0, yc �= 0, so that the storage function
Vs(Ecx), x ∈ Rn, is positive definite and we assume that
Vs(Ecx), x ∈ Rn, is continuously differentiable.

Theorem 3.1: Let Qc ∈ Slc , Sc ∈ Rlc×mc , Rc ∈ Smc . If
there exist function Vs : Rn → R, Lc : Rn → Rpc ,Wc :

Rn → Rpc×mc , such that Vs(·) is C1 and positive definite,
Vs(0) = 0, and, for all x ∈ Rn,

0 = V ′
s (Ecx)fc(x) − hT

c (x)Qchc(x) + LT
c (x)Lc(x), (7)

0 =
1
2
V ′

s (Ecx)Gc(x) − hT
c (x)(QcJc(x) + Sc)

+LT
c (x)Wc(x), (8)

0 = Rc + ST
c Jc(x) + JT

c (x)Sc + JT
c (x)QcJc(x)

−WT
c (x)Wc(x), (9)

then the nonlinear continuous singular system G given by
(1), (2) is dissipative with respect to the quadratic supply rate
rc(uc, yc) = yT

c Qcyc + 2yT
c Scuc + uT

c Rcuc. If, in addition,

Nc(x)= Rc + ST
c Jc(x) + JT

c (x)Sc + JT
c (x)QcJc(x) > 0,

x ∈ Rn, (10)

and there exists a C1 function Vs : Rn → R such that Vs(·)
is positive definite, Vs(0) = 0, and for all x ∈ Rn,

0≥V ′
s (Ecx)fc(x) − hT

c (x)Qchc(x)

+[
1
2
V ′

s (Ecx)Gc(x) − hT
c (x)(QcJc(x) + Sc)]N−1

c (x)

·[ 1
2
V ′

s (Ecx)Gc(x) − hT
c (x)(QcJc(x) + Sc)]T (11)

then G is dissipative with respect to the quadratic supply rate
rc(uc, yc) = yT

c Qcyc + 2yT
c Scuc + uT

c Rcuc.
Proof: For any admissible input uc(·), t0, t ∈ R it

follows from (7)–(9) that

Vs(Ecx(t))−Vs(Ecx(t0)) =
∫ t

t0

V̇s(Ecx(s))ds

≤
∫ t

t0

V̇s(Ecx(s)) + [Lc(x(s)) + Wc(x(s))uc(s)]T

·[Lc(x(s)) + Wc(x(s))uc(s)]ds

=
∫ t

t0

V ′
s (Ecx(s))(fc(x(s)) + Gc(x(s))uc(s))

+LT
c (x(s))Lc(x(s)) + 2LT

c (x(s))Wc(x(s))uc(s)
+uT

c (s)WT
c (x(s))Wc(x(s))uc(s)ds

= hT
c (x)Qchc(x) + 2hT

c (x(s))(Sc + QcJc(x(s)))uc(s)
+uT

c (s)(JT
c (x(s))QcJc(x(s)) + ST

c Jc(x(s))
+JT

c (x(s))Sc + Rc)uc(s)ds

=
∫ t

t0

[yT
c (s)Qcyc(s) + 2yT

c (s)Scuc(s) + uT
c (s)Rcuc(s)]ds

=
∫ t

t0

rc(uc(s), yc(s))ds, (12)

where x(t), t ∈ [t0, t], satisfies (1), and V̇s(·) denotes the
total derivative of the storage function along the trajectories
x(t), t ∈ [t0, t] of (1).

Using (12) the result is immediate from Theorem 2.1.
To show (11) imply that G is dissipative with respect to

quadratic supply rate rc, note that (7)–(9) can be equivalently
written as[ Ac(x) Bc(x)

BT
c (x) Cc(x)

]
= −

[
LT

c (x)
WT

c (x)

] [
Lc(x) Wc(x)

]
≤ 0, x ∈ Rn (13)

5640



where Ac(x) = V ′
s (Ecx)fc(x) − hT

c (x)Qc

Remark 3.1: Note that it follows from (6) that if the
conditions in Theorem 3.1 are satisfied with (7) replaced
by

0=V ′
s (Ecx)fc(x)+εVs(Ecx)−hT

c (x)Qchc(x)+LT
c (x)Lc(x),

(14)

where ε > 0, then the nonlinear continuous singular system
G is exponentially dissipative. Similar remarks hold for
Corollaries 3.1 and 3.2.

Using (7)–(9) it follows that, for t̂ ≥ t ≥ 0,∫ t̂

t

rc(uc(s), yc(s))ds = Vs(Ecx(t̂)) − Vs(Ecx(t))

+
∫ t̂

t

[Lc(x(s)) + Wc(x(s))uc(s)]T

·[Lc(x(s)) + Wc(x(s))uc(s)]ds (15)

which can be interpreted as a generalized energy balance
equation where Vs(Ecx(t̂)) − Vs(Ecx(t)) is the stored or
accumulated generalized energy of the nonlinear continuous
singular system, the second path-dependent term on the right
corresponds to the dissipated energy of the nonlinear con-
tinuous singular system over the continuous-time dynamics.
Equivalently, it follows from Theorem 2.2 that (15) can be
rewritten as

V̇s(Ecx(t))= rc(uc(t), yc(t))−[Lc(x(t))+Wc(x(t))uc(t)]T

·[Lc(x(t)) + Wc(x(t))uc(t)] (16)

which yields a set of generalized energy conservation equa-
tions. Specifically, (16) shows that the rate of change in
generalized energy, or generalized power, is equal to the
generalized system power minus the internal generalized
system power dissipated.

Remark 3.2: Note that if G with uc(t) = 0 and a C1 pos-
itive definite, radially unbounded storage function is dissipa-
tive with respect to a quadratic supply rate where Qc ≤ 0, it
follows that V̇s(Ecx(t)) ≤ yT

c (t)Qcyc(t) ≤ 0, t ≥ 0. Hence,
the undisturbed uc(t) = 0 nonlinear continuous singular
system (1), (2) is Lyapunov stable. Alternatively, if G with
uc(t) = 0 and a C1 positive-definite, radially unbounded
storage function is exponentially dissipative and Qc ≤ 0, it
follows that V̇s(Ecx(t)) ≤ −εVs(Ecx(t)) + yT

c (t)Qcyc(t) ≤
−εVs(Ecx(t)), t ≥ 0. Hence, the undisturbed nonlinear
continuous singular system (1), (2) is asymptotically stable.
If, in addition, there exist constants α, β > 0 and p ≥ 1
such that α‖x‖p ≤ Vs(Ecx) ≤ β‖x‖p, x ∈ Rn, then the
undisturbed nonlinear continuous singular system (1), (2) is
exponentially stable.

Next, we provide necessary and sufficient conditions for
the case where G given by (1), (2) is lossless with respect
to a quadratic supply rate rc.

Theorem 3.2: Let Qc ∈ Slc , Sc ∈ Rlc×mc , and Rc ∈
Smc . Then the nonlinear continuous singular system G given
by (1), (2) is lossless with respect to the quadratic supply rate
rc(uc, yc) = yT

c Qcyc + 2yT
c Scuc + uT

c Rcuc if and only if

there exists function Vs(·) : Rn → R such that Vs(·) is C1

and positive definite, Vs(0) = 0, and for all x ∈ Rn,

0= Vs(Ecx)fc(x) − hT
c (x)Qchc(x), (17)

0=
1
2
V ′

s (Ecx)Gc(x) − hT
c (x)(QcJc(x) + Sc), (18)

0= Rc + ST
c Jc(x) + JT

c (x)Sc + JT
c (x)QcJc(x). (19)

Proof: Sufficiency follows as in the proof of Theorem
3.1. To show necessity, suppose that the nonlinear continual
singular system G is lossless with respect to the quadratic
supply rate rc. Then, it follows from Theorem 2.2 that

Vs(Ecx(t̂)) − Vs(Ecx(t)) =
∫ t̂

t

rc(uc(s), yc(s))ds. (20)

Now, dividing (20) by t− t̂ letting t̂ → t, (20) is equivalent
to

V̇s(Ecx(t))= V ′
s (Ecx(t))[fc(x(t)) + Gc(x(t))uc(t)]

= rc(uc(t), yc(t)). (21)

Next, with t = 0, it follows from (21) that

V ′
s (Ecx0)[fc(x0) + Gc(x0)uc(0)] = rc(uc(0), yc(0)),

x0 ∈ Rn, uc(0) ∈ Rmc . (22)

Since x0 is arbitrary, it follows that

V ′
s (Ecx)[fc(x)+Gc(x)uc] = yT

c Qcyc + 2yT
c Scuc + uT

c Rcuc

= hc(x)Qchc(x) + 2hT
c (x)(QcJc(x) + Sc)uc

+uT
c (Rc + ST

c Jc(x) + JT
c (x)Sc + JT

c (x)QcJc(x))uc,

x ∈ Rn, uc ∈ Rmc . (23)

Now, equating coefficients of equal powers yields (17)-(19).
Next, we provide two definitions of nonlinear continuous

singular system which are dissipative (resp., exponentially
dissipative) with respect to the supply rates of a specific form.

Definition 3.1: A system G of the form (1), (2) with mc =
lc is passive (resp., exponentially passive) if G is dissipative
with respect to the supply rate rc(uc, yc) = 2uT

c yc.
Definition 3.2: A system G of the form (1), (2) is nonex-

pansive (resp., exponentially nonexpansive) if G is dissipative
with respect to the supply rate rc(uc, yc) = (γcu

T
c uc−yT

c yc),
where γc > 0 is given.

The following results present the nonlinear versions of
the Kalman-Yakubovich-Popov positive real lemma and the
bounded real lemma for nonlinear continuous singular sys-
tems G of the form (1), (2).

Corollary 3.1: Consider the nonlinear continuous singular
system G given by (1), (2). If there exist function Vs : Rn →
R, Lc : Rn → Rpc ,Wc : Rn → Rpc×mc , such that Vs(·) is
C1 and positive definite, Vs(0) = 0, and, for all x ∈ Rn,

0= V ′
s (Ecx)fc(x) + LT

c (x)Lc(x), (24)

0=
1
2
V ′

s (Ecx)Gc(x) − hT
c (x) + LT

c (x)Wc(x), (25)

0= Jc(x) + JT
c (x) −WT

c (x)Wc(x), (26)

then the nonlinear continuous singular system G given by (1),
(2) is passive. If, in addition, Jc(x) + JT

c (x) > 0, x ∈ Rn,
and there exists a C1 function Vs : Rn → R such that Vs(·)
is positive definite, Vs(0) = 0, and for all x ∈ Rn,
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0≥V ′
s (Ecx)fc(x) + [

1
2
V ′

s (Ecx)Gc(x) − hT
c (x)]

·[Jc(x) + JT
c (x)]−1[

1
2
V ′

s (Ecx)Gc(x) − hT
c (x)], (27)

then G is passive.
Proof: The result is a direct consequence of Theorem

3.1 with lc = mc, Qc = 0, Sc = Imc , Rc = 0. Specifically,
with κc(yc) = −yc it follows that rc(κc, yc) = −2yT

c yc,
yc �= 0, so that all of the assumptions of Theorem 3.1 are
satisfied.

Corollary 3.2: Consider the nonlinear continuous singular
system (1), (2). If there exist function Vs : Rn → R, Lc :
Rn → Rpc ,Wc : Rn → Rpc×mc , such that Vs(·) is C1 and
positive definite, Vs(0) = 0, and, for all x ∈ Rn,

0= V ′
s (Ecx)fc(x) − hT

c (x)hc(x) + LT
c (x)Lc(x), (28)

0=
1
2
V ′

s (Ecx)Gc(x) − hT
c (x)Jc(x) + LT

c (x)Wc(x), (29)

0= γcImc − Jc(x)TJc(x) −WT
c (x)Wc(x), (30)

then the nonlinear continuous singular system G given by (1),
(2) is nonexpansive. If, in addition, γcImc − JT

c (x)Jc(x) >
0, x ∈ Rn, and there exists a C1 function Vs : Rn → R such
that Vs(·) is positive definite, Vs(0) = 0, and for all x ∈ Rn,

0≥V ′
s (Ecx)fc(x) − hT

c (x)hc(x) + [
1
2
V ′

s (Ecx)Gc(x)

−hT
c (x)Jc(x)][γcImc − JT

c (x)Jc(x)]−1

·[ 1
2
V ′

s (Ecx)Gc(x) + hT
c (x)Jc(x)]T (31)

then G is nonexpansive.
Proof: The result is a direct consequence of Theorem

3.1 with Qc = −lc, Sc = 0, Rc = γcImc . Specifically, with
κc(yc) = − 1

2γc
yc it follows that rc(κc, yc) = − 3

4yT
c yc, yc �=

0, so that all of the assumptions of Theorem 3.1 are satisfied.
Next, we provide necessary and sufficient conditions for

dissipativity of a nonlinear continuous singular system G, of
the form (1), (2).

Theorem 3.3: Let Qc ∈ Slc , Sc ∈ Rlc×mc , Rc ∈ Smc .
Then the nonlinear continuous singular system G given
by (1), (2) is dissipative with respect to the supply rate
rc(uc, yc) = yT

c Qcyc + 2yT
c Scuc + uT

c Rcuc if and only if
there exist function Vs : Rn → R, Lc : Rn → Rpc ,Wc :
Rn → Rpc×mc , such that Vs(·) is C1 and positive definite,
Vs(0) = 0, and, for all x ∈ Rn,

0= V ′
s (Ecx)fc(x) − hT

c (x)Qchc(x) + LT
c (x)Lc(x), (32)

0=
1
2
V ′

s (Ecx)Gc(x) − hT
c (x)(QcJc(x) + Sc)

+LT
c (x)Wc(x), (33)

0= Rc + ST
c Jc(x) + JT

c (x)Sc + JT
c (x)QcJc(x)

−WT
c (x)Wc(x). (34)

Proof: Sufficiency follows from Theorem 3.1. Neces-
sity follows from Theorem 2.2 using a similar construction
as in the proof of Theorem 3.2.

Finally, we present two key results on linearization of
nonlinear continuous singular systems. For these results, we
assume there exists function κc : Rlc → Rmc such that

rc(κc, yc) < 0, yc �= 0, and the available storage Va(x),
x ∈ Rn, is a C3 function.

Theorem 3.4: Let Qc ∈ Slc , Sc ∈ Rlc×mc , Rc ∈ Smc ,
and suppose that the nonlinear continuous singular system G
given by (1), (2) is dissipative with respect to the quadratic
supply rate rc(uc, yc) = yT

c Qcyc+2yT
c Scuc+uT

c Rcuc. Then
there exists matrices P ∈ Rn×n, Lc : Rn → Rpc ,Wc :
Rn → Rpc×mc , with P nonnegative definite, such that

0= AT
c PEc + ET

c PAc − CT
c QcCc + LT

c Lc, (35)

0= PBc − CT
c (QcDc + Sc) + LT

c Wc, (36)

0= Rc + ST
c Dc + DT

c Sc + DT
c QcDc(x) − WT

c Wc, (37)

where

Ac =
∂fc

∂x
|x=0, Bc = Gc(0), Cc =

∂hc

∂x
|x=0, Dc = Jc(0).

(38)

If, in addition, (Ac, Cc) is observable, then P > 0.
Proof: First note that since G is dissipative with respect

to the supply rate rc it follows from Theorem 2.2 that there
exists a storage function Vs : Rn → R such that

Vs(Ecx(t̂)) − Vs(Ecx(t))≤
∫ t̂

t

rc(uc(s), yc(s))ds. (39)

Now, dividing (39) by t̂ − t, (39) is equivalent to

V̇s(Ecx(t))= Vs(Ecx(t))[fc(x(t)) + Gc(x(t))uc(t)]
≤ rc(uc(t), yc(t)). (40)

Next, with t = 0, it follows that

V ′
s (Ecx0)[fc(x0) + Gc(x0)uc(0)] ≤ rc(uc(0), yc(0)),

x0 ∈ Rn, uc(0) ∈ Rmc . (41)

Since x0 ∈ Rn is arbitrary, it follows that

V ′
s (Ecx)[fc(x) + Gc(x)uc] ≤ rc(uc, hc(x) + Jc(x)uc),

x ∈ Rn, uc ∈ Rmc . (42)

Next, it follows from (42) that there exists smooth function
dc : Rn × Rmc → R such that dc(x, uc) ≥ 0, dc(0, 0) = 0
and

0 = V ′
s (Ecx)[fc(x) + Gc(x)uc] − rc(uc, hc(x) + Jc(x)uc)
+dc(x, uc), x ∈ Rn, uc ∈ Rmc . (43)

Now, expanding Vs(·), dc(·, ·) via a Taylor series expansion
about x = 0, uc = 0 and using the fact that Vs(·), dc(·, ·) are
nonnegative definite and Vs(0) = 0 , dc(0, 0) = 0, it follows
there exist matrices P ∈ Rn×n, Lc : Rn → Rpc ,Wc : Rn →
Rpc×mc , with P nonnegative definite, such that

Vs(Ecx)= xTET
c PEcx + Vr(Ecx), (44)

dc(x, uc)= (Lcx+Wcuc)T(Lcx+Wcuc)+dcr(x, uc), (45)

where Vr : Rn → R, dcr : Rn × Rmc → R con-
tain the higher-order terms of Vs(·) and dc(·, ·), respec-
tively. Next, let fc(x) = Acx + fcr(x), hc(x) = Ccx +
hcr(x), where fcr(·), hcr(·) contain the nonlinear terms of
fc(x), hc(x), respectively, and let Gc(x) = Bc + Gcr,
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Jc(x) = Dc + Jc, where Gcr, Jcr contain the non-constant
terms of Gc(x), Jc(x), respectively. Using the above expres-
sions, (43) can be written as

0=2xTP (ET
c Acx + Bcuc) − (xTCT

c QcCcx

+2xTCT
c QcDcuc + uT

c DT
c QcDcuc + 2xTCT

c Scuc

+2uT
c DT

c Scuc + uT
c Rcuc) + (Lcx + Wcuc)T

·(Lcx + Wcuc) + (x, uc) (46)

where (x, uc) is such that

lim
‖x‖2+‖uc‖2→0

|(x, uc)|
‖x‖2 + ‖uc‖2

= 0. (47)

Now, viewing (46) as the Taylor series expansion of (43)
about x = 0 and uc = 0 it follows that

0 = xT(AT
c PEc + ET

c PAc − CT
c QcCc + LT

c Lc)x
+2xT(PBc − CT

c Sc − CT
c QcDc + LT

c Wc)uc

+uT
c (WT

c Wc − DT
c QcDc − DT

c Sc − ST
c Dc − Rc)uc,

x ∈ Rn, uc ∈ Rmc . (48)

Next, equating coefficients of equal powers in (48) yields
(35)–(37).

Finally, to show that P > 0 in the case where (Ac, Cc)
is observable, note that it follows from Theorem 3.1 and
(35)–(37) that the linearized system G with storage function
Vs(x) = xTET

c PEcx is dissipative with respect to the
quadratic supply rate rc(uc, yc). Now, the positive definite-
ness of P follows from Theorem 2.2.

IV. SPECIALIZATION TO CONTINUOUS LINEAR

SINGULAR SYSTEMS

In this section we specialize the results of Section III to the
case of linear continuous singular systems. Specifically, set-
ting fc(x) = Acx,Gc(x) = Bc, hc(x) = Ccx, Jc(x) = Dc,
the nonlinear continuous singular system (1), (2) specializes
to

Ecẋ(t) =Acx(t) + Bcuc(t), x(0) = x0, (49)

yc(t) =Ccx(t) + Dcuc(t), (50)

where Ac ∈ Rn×n, Bc ∈ Rn×mc , Cc ∈ Rlc×n.
Theorem 4.1: Let Qc ∈ Slc , Sc ∈ Rlc×mc , Rc ∈ Smc ,

consider the nonlinear continuous singular system G given
by (49), (50), and assume G is minimal. Then the following
statements are equivalent:

i) G is dissipative with respect to the quadratic supply rate
rc(uc, yc) = yT

c Qcyc + 2yT
c Scuc + uT

c Rcuc.
ii) There exist matrices P ∈ Rn×n, Lc ∈ Rpc×n,Wc ∈

Rpc×mc , with P positive definite, such that (35)–(37)
are satisfied.

If, in addition, Rc + ST
c Dc + DT

c Sc + DT
c QcDc > 0, where

P satisfies (35)–(37), then G is dissipative with respect to
the quadratic supply rate rc(uc, yc) = yT

c Qcyc +2yT
c Scuc +

uT
c Rcuc if and only if there exists an n×n positive-definite

matrix P such that

0≥AT
c PEc + ET

c PAc − CT
c QcCc + [PBc − CT

c (QcDc

+Sc)][Rc + ST
c Dc + DT

c Sc + DT
c QcDc]−1

[PBc − CT
c (QcDc + Sc)]T (51)

Proof: The fact that ii) implies i) follows from Theorem
3.1 with fc(x) = Acx, Gc(x) = Bc, hc(x) = Ccx, Jc(x) =
Dc, Vs = xTET

c PEcx, Lc(x) = Lcx, Wc(x) = Wc. To
show that i) implies ii), note that if the linear continuous
singular system given by (49), (50) is dissipative, then it
follows from Theorem 3.4 with fc(x) = Acx, Gc(x) = Bc,
hc(x) = Ccx, Jc(x) = Dc that there exists matrices P ∈
Rn×n, Lc ∈ Rpc×n,Wc ∈ Rpc×mc , with P positive definite,
such that (35)–(37) are satisfied. Finally, (51) follow from
(11) and Theorem 3.4 with the linearization given above.

Remark 4.1: Note that the proof of Theorem 4.1 relies on
Theorem 3.4 which a priori assumes that the storage function
Vs(x), x ∈ Rn is C3. Unlike linear, time-invariant dissipative
dynamical systems with continuous flows [2], there does not
always exists a smooth (i.e. C∞) storage function V (Ecx),
x ∈ Rn, for linear dissipative singular dynamical systems.

Remark 4.2: Note that (35–(37) are equivalent to[
Ac Bc

BT
c Dc

]
=

[
LT

c

WT
c

] [
Lc Wc

] ≥ 0, (52)

where Ac = −AT
c PEc−ET

c PAc+CT
c QcCc, Bc = −PBc+

CT
c (QcDc + Sc), Dc = Rc + ST

c Dc + DT
c Sc + DT

c QcDc.
Hence dissipativity of linear continuous singular system with
respect to quadratic supply rates can be characterized via
Linear Matrix Inequalities (LMI’s) [11]. Similar remarks
hold for the passivity and nonexpansivity results given in
Corollaries 4.1 and 4.2, respectively.

The following results present generalizations of the pos-
itive real lemma and the bounded real lemma for linear
continuous singular systems, respectively.

Corollary 4.1: Consider the linear continuous singular
system G given by (49), (50) with mc = lc and assume
G is minimal. Then the following statements are equivalent:

i) G is passive
ii) There exists matrices P ∈ Rn×n, Lc ∈ Rpc×n,Wc ∈

Rpc×mc , with P positive definite, such that

0 = AT
c PEc + ET

c PAc + LT
c Lc, (53)

0 = PBc − CT
c + LT

c Wc, (54)

0 = Dc + DT
c − WT

c Wc. (55)

If, in addition Dc + DT
c > 0 where P satisfies (53)–(55),

then G is passive if and only if there exists an n×n positive-
definite matrix P such that

0≥AT
c PEc + ET

c PAc + (PBc − CT
c )(Dc + DT

c )−1

·(PBc − CT
c )T. (56)

Proof: The result is a direct consequence of Theorem
4.1 with mc = lc, Qc = 0, Sc = Imc , and Rc = 0.

Remark 4.3: Equations (53)–(55) are generalization of the
equations appearing in the continuous time positive real
lemma [12] used to characterize positive realness for con-
tinuous linear systems in the state space to singular systems.
Similar remark hold for Corollary 4.2.

Corollary 4.2: Consider the linear continuous singular
system G given by (49), (50) and assume G is minimal. Then
the following statements are equivalent:
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i) G is nonexpansive.
ii) There exists matrices P ∈ Rn×n, Lc ∈ Rpc×n, Wc ∈

Rpc×mc , with P positive definite, such that

0 = AT
c PEc + ET

c PAc + CT
c Cc + LT

c Lc, (57)

0 = PBc − CT
c Dc + LT

c Wc, (58)

0 = γcImc − DT
c Dc − WT

c Wc. (59)

If, in addition γ2
c Imc − DT

c Dc > 0 where P satisfies (57)–
(59), then G is nonexpansive if and only if there exists an
n × n positive-definite matrix P such that

0≥AT
c PEc + ET

c PAc + (PBc + CT
c Dc)(γ2

c Imc

+DT
c Dc)−1(PBc − CT

c Dc)T + CT
c Cc. (60)

Proof: The result is direct consequence of Theorem 4.1
with Qc = Ilc , Sc = 0, and Rc = γ2

c Imc .
Remark 4.4: It follows from Remark 4.4 that if (53) and

(57) are replaced, respectively, by

0 = AT
c PEc + ET

c PAc + εP + LT
c Lc, (61)

0 = AT
c PEc + ET

c PAc + CT
c Cc + εP + LT

c Lc, (62)

where ε > 0, then (61), (54), (55) provide necessary and
sufficient conditions for exponential passivity, while (62),
(58), (59) provide necessary and sufficient conditions for
exponential nonexpansivity. These conditions present gen-
eralizations of the strict positive real lemma and the strict
bounded real lemma for linear continuous singular systems,
respectively.

V. CONCLUSION

In this paper we have extended the classical notions of
dissipativity theory to nonlinear singular dynamical systems.
Specifically, the concept of storage functions and supply
rates are extended to singular dynamical systems providing
a generalized system energy interpretation in terms of stored
energy and dissipated energy over the continuous-time dy-
namics. Furthermore, extended Kalman-Yakubovich-Popov
algebraic conditions in terms of the singular system dy-
namics for characterizing dissipativeness via system storage
functions are derived. In the case of quadratic supply rates
involving net system power and input-output energy, these
results provide generalizations of the classical notions of
passivity and nonexpansivity. In addition, for linear singular
systems, the proposed results provide a generalization of the
positive real lemma and the bounded real lemma.
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