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Abstract— In this paper we design a control strategy for
platoons of identical vehicles. It is assumed that each vehicle
measures the distance with its immediate forward neighbor.
The lead vehicle in the platoon only receives information on
the position of the last vehicle in the platoon. We prove that
the resulting behavior of the system is a platoon of vehicles
moving at a constant velocity with constant distance between
each pair of consecutive vehicles and that for a class of identical
controllers this solution is asymptotically stable for sufficiently
small coupling strength. An upper limit of this coupling strength
is calculated, below which the solution is asymptotically stable,
independent of the number of vehicles in the platoon. Moreover,
simulations indicate that the platoon is string stable. To improve
the behavior, integral action is added between the first and last
vehicle of the platoon. The resulting behavior is determined
and its stability properties are discussed.

I. INTRODUCTION

In this paper the systems under study are vehicular pla-
toons. Such systems have gained importance over the years,
mainly because they might offer a solution to the congestion
of highways in urban areas, by increasing their capacity. The
goal of these intelligent vehicle/highway systems (IHVS) is
to form strings of vehicles (so-called platoons) moving at a
desired speed with desired distances between the vehicles.
Several algorithms controlling a string of vehicles have been
proposed in the literature.

Ref. [1], [2] and [3] were among the first to investigate
this problem and used an LQR approach controlling an
infinite string of vehicles. Recently, this approach has been
reformulated in [4], where it was shown that the problem
formulation of [1], [2] was ill-posed since stabilizability and
detectability decrease as a function of platoon size.

Contrary to [1] and [2], most control strategies use tuning
of parameters in order to optimize some proposed controller.
In most cases the control is of leader-follower type: the
leading vehicle of the platoon drives at a desired speed; the
other vehicles receive information from the leading vehicle
(position, velocity, acceleration) either directly or indirectly
through other vehicles in the platoon. Flow of information
is usually directed from the head of the platoon towards its
tail [5], [6]. For instance in [7] a control strategy, based on
the double-graph model, is developed where each vehicle
adjusts its behavior according to the leading vehicle and its
neighbors.

In reference [8] one considers a platoon where each
vehicle only measures the distance between itself and its

immediate forward neighbor and tries to obtain and maintain
a desired value for this distance. The leader vehicle drives
at a desired speed. It is proved in [8] that the system cannot
be string stable when identical controllers are applied. A
platoon is called string stable if the transient error in the
separation distance between vehicles does not grow as one
proceeds down the line of vehicles. In [9] it is proved that for
sufficiently weak interactions an ensemble of interconnected
exponentially stable systems is string stable.

The present paper presents a novel interconnection topol-
ogy using identical controllers. As in [8], only separation
distances are measured. The resulting behavior and its stabil-
ity properties are investigated. Stability regions in parameter
space are obtained. Simulations suggest that the system is
string stable.

II. PRELIMINARY: BLOCK CIRCULANT MATRICES

In this section some notation and preliminary results on
block circulant matrices [10] are introduced which will be
used in the description of the dynamics of the platoon and
its stability analysis.

Consider the matrix C ∈ R
Nm×Nm:

C =

⎡
⎢⎢⎢⎣

C1 C2 · · · CN

CN C1 · · · CN−1

...
...

...
...

C2 C3 · · · C1

⎤
⎥⎥⎥⎦ � circ(C1, C2, . . . , CN ),

where Ci ∈ R
m×m, ∀i ∈ N � {1, . . . , N}.

Define the matrix F ∈ C
N×N :

F � 1√
N

⎡
⎢⎢⎢⎣

1 1 · · · 1
1 ω · · · ωN−1

...
...

...
...

1 ωN−1 · · · ω(N−1)(N−1)

⎤
⎥⎥⎥⎦ ,

with ω � exp(2πj/N), where ‘j’ represents the imaginary
unit. Using F , the matrix C can be block diagonalized into
a matrix Λ:

Λ = diag(Λ1, . . . ,ΛN ) = (F ⊗ Im)∗C(F ⊗ Im), (1)

where ‘⊗’ is the Kronecker product, ‘∗’ represents complex
conjugate, and Im is the m × m identity matrix.
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The blocks Λi ∈ C
m×m on the diagonal of Λ are given

by

Λi = C1+ωi−1C2+ω2(i−1)C3+. . .+ω(N−1)(i−1)CN , (2)

for all i ∈ N . The set of eigenvalues of C is equal to the
set of eigenvalues of the matrices Λi,∀i ∈ N .

III. SYSTEM DYNAMICS

A. Ring topology

The idea of coupling agents into a ring has been exploited
before by [11], [12], [13] and [14]. In [11] each agent i
is represented by a point zi in the complex plane and the
dynamics under investigation are

żi = (zi+1 + ci) − zi, i ∈ N , (3)

where ci ∈ C, ∀i ∈ N . Here, as in the remainder of the
paper, the indices are evaluated modulo N . In the case of
(3) this means that zN+1 ≡ z1. If ci = 0, ∀i ∈ N , then
the agents will converge to one point in the complex plane.
Choosing values ci appropriately leads to desired formations
of the group of agents. If the centroid of the points c1, . . . , cN

is not at the origin, then the centroid of the agents moves
off to infinity. This situation is not desirable in the setting of
[11] and is thus avoided.

In [12] the topology of the interconnection networks is
also a unidirectional ring, as in [11] and the present paper,
but the dynamics of an individual agent is different. Each
agent is represented as a kinematic unicycle with nonlinear
dynamics. The control strategy is such that agent i tries to
reduce the distance between agent i + 1 and itself to zero.
This is done by a proportional feedback of the difference in
heading or orientation of both vehicles:⎡

⎣ẋi

ẏi

θ̇i

⎤
⎦ =

⎡
⎣cos θi 0

sin θi 0
0 1

⎤
⎦[

s
k(θi+1 − θi)

]
,

where s and k are positive real constants. The resulting
equilibrium motion is all agents moving along a circle in one
direction. The motion in the physical plane clearly reflects
the interconnection structure.

In the present paper the vehicles are coupled in a unidi-
rectional ring on the level of communication, similar to [11]
and [12]. Contrary to [12], the ring topology is not expressed
on the level of the formation: the equilibrium solution is a
string of vehicles. The interconnection in the present paper
resembles that of [11] where values for constants ci have
to be chosen. In [11] this choice of ci determines the shape
of the resulting formation, while in the present paper the
shape of the formation will always be a string of vehicles.
The choice of the parameters corresponding to the ci in
[11], determines the separation distances inside the string. In
[11] it is assumed that the centroid of the points c1, . . . , cN

is at the origin, since otherwise the formation moves off
to infinity. In the present paper we deliberately choose the
centroid to be different from zero, forcing the string of
vehicles to move at a certain constant velocity.

B. System equations and equilibrium solution

Each vehicle is represented as a moving mass with second
order dynamics:

ẍi + pẋi = ui, i ∈ N , (4)

where xi represents the position of the i-th vehicle, ui is the
input to the i-th vehicle and p ≥ 0 is a parameter representing
the friction/drag coefficient per unit mass. The mass of each
vehicle is taken equal to one. We propose the following
control:

ui = K(xi−1 − xi − Li), i ∈ N , (5)

with K > 0 the coupling strength, and L1 ≤ 0, Li ≥ 0, i =
2, . . . , N real constants. Each vehicle attempts to keep the
distance between itself and its immediate forward vehicle as
close as possible to the set point Li. The lead vehicle tries
to obtain a desired distance |L1| between itself and the last
vehicle of the platoon. This leads to the dynamical system⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ = Ax + Kb,

x =
[
x1 ẋ1 x2 ẋ2 · · · xN ẋN

]T
,

A = circ

⎛
⎝[

0 1
−K −p

]
, O2, . . . , O2︸ ︷︷ ︸

N−2 times

,

[
0 0
K 0

]⎞
⎠ ,

b =
[
0 L1 0 L2 · · · 0 LN

]T
,

(6)

with O2 the 2 × 2 null matrix.
Theorem 1: Each function ϕ : R → R

N ; t 
→ ϕ(t) defined
by

ϕi(t) = αt + βi, ∀i ∈ N , (7)

with

α =
−K

Np

N∑
j=1

Lj ,

βi − βi−1 =

⎛
⎝ 1

N

N∑
j=1

Lj

⎞
⎠ − Li, i ∈ N ,

(8)

is a solution of system (4)-(5).
Proof: Substitution of (7) into the system equations (6)

yields

−Kβi − αp + Kβi−1 − KLi = 0, ∀i ∈ N . (9)

Equation (7) represents a solution of (4)-(5) or, equivalently,
(6), if and only if α, βi satisfy (9).

Adding all N equations (9) leads to a value for α:

α =
−K

Np

N∑
j=1

Lj . (10)

Each equation of (9) can be written as

βi − βi−1 = −Li − αp

K
, i ∈ N .

With the aid of (10) this changes into

βi − βi−1 =

⎛
⎝ 1

N

N∑
j=1

Lj

⎞
⎠ − Li, i ∈ N . (11)
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C. Remarks

1) The function t 
→ ϕi(t) represents the evolution of the
position of the i-th vehicle. Each solution ϕ represents
a string of vehicles moving at a constant velocity given
by (10) with distances between consecutive vehicles
defined by (11). It is the initial position of the platoon
that distinguishes the solutions ϕ from each other.
Another way of looking at this set of solutions is by
noticing that the system equations are invariant under
the change of coordinates

x → x + γ
[
1 0 1 0 · · · 1 0

]T
, ∀γ ∈ R.

(12)
Translating the origin in the physical space does not
alter the dynamics. This invariance is reflected in the
spectrum of the system matrix A in (6). The matrix A
possesses at least one zero-eigenvalue, independent of
the parameter values.

2) Remark that if and only if the mean value of the set
points Li is zero, the velocity of the platoon is zero,
according to (10). This result was to be expected from
inspection of system (3) as described in [11]. This
property of the system can be exploited to control the
platoon: by deliberately choosing the set points Li such
that their mean value is different from zero, the string
of vehicles starts to move at a constant velocity which
is proportional to this mean value.

3) The solutions of (6) have two undesirable properties.
At first, the separation distances between consecutive
cars do not converge to the set points Li. However,
by (11) it is possible to compute the distances which
the platoon converges to. Vice versa, if desired values
δi � βi−1 − βi for the separation distances are given,
equation (11) allows us to calculate the necessary set
points Li.

4) A second undesirable property is the following. It is not
possible to obtain a platoon driving at a certain velocity
with arbitrarily small separation distances. Equations
(8) can be combined into

δi =
pα

K
+ Li. (13)

If the velocity α is kept constant the size of the
separation distances can be reduced by increasing the
coupling strength. However, as is proven in the next
section, if K increases too much, the solution becomes
unstable. Equation (13) seems to suggest that the size
of δi can also be reduced by decreasing the values of
the set points Li, while keeping the velocity constant.
However, decreasing Li leads to a decreased velocity
by (10).

IV. STABILITY ANALYSIS

In this section the stability of the equilibrium solution as a
function of the coupling strength is investigated. In order to
establish the stability properties of (7), the following change
of coordinates is performed:

xi = αt + βi + zi,

where α and βi are defined by (8). This results in the system
equations

ż = Az, (14)

with the system matrix A identical to the system matrix of
the original system (4)-(5) or (6). Notice that the system (14)
possesses the same translation invariance (12) as the original
system.

Theorem 2: If and only if

K < p2

(
1 − cos(2π/N)

sin2(2π/N)

)
,

the solution (7)-(8) of system (6) is asymptotically stable.
Proof: System (14) has a line of equilibrium points.

This can be concluded from the aforementioned translation
invariance (12). Each equilibrium point corresponds to one
of the solutions ϕ. The system matrix A has a structural
zero-eigenvalue which can be discarded from the stability
analysis. If and only if the remaining 2N − 1 eigenvalues
of A are located in the open left half plane, each initial
condition converges to the line of equilibrium points and the
solution (7)-(8) is called asymptotically stable.

Since the matrix A is circulant it can be block diagonalized
according to (1) and (2). The matrices appearing on the
diagonal are

Ai =
[

0 1
K(ω(N−1)(i−1) − 1) −p

]
, ∀i ∈ N , (15)

with ω = exp(2πj/N). Since exp(jφ) = exp(jφ +
j2πm), ∀φ ∈ R, ∀m ∈ Z, it holds that ω(N−1)(i−1) = ω1−i.
The eigenvalues of Ai are the roots of the characteristic
polynomial

λ2 + pλ − K(ω(1−i) − 1),

which are

λi(1,2) = −p

2
± 1

2

(
p2 + 4K(ω(1−i) − 1)

) 1
2

.

Now, the values of K for which the eigenvalues lie in the
open left half plane are determined. One immediately notices
that A1 yields the structural zero-eigenvalue and a strictly
negative eigenvalue −p. Denote the eigenvalues of Ai as

λi(1,2) = −p

2
± 1

2
(a + jb)

1
2 ,

with
a = p2 + 4K cos(2π(1 − i)/N) − 4K,

b = 4K sin(2π(1 − i)/N).

Now set
−p

2
± 1

2
�e(a + jb)

1
2 < 0. (16)

With

(a + jb)
1
2 =

√
|a + jb| + a

2
+ jsgn(b)

√
|a + jb| − a

2
,

(16) can be written as

−p ±
√

|a + jb| + a

2
< 0.
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A simple calculation shows that this is equivalent to

K < KC,i � p2

(
1 − cos(2π(1 − i)/N)

sin2(2π(1 − i)/N)

)
. (17)

If and only if K < mini∈N\{1}{KC,i}, the system is
asymptotically stable.

The function

f : R → R;x 
→ p2

(
1 − cos x

sin2 x

)
,

is even, convex and has a minimum at the origin. Hence

min
i∈N\{1}

{KC,i} = p2

(
1 − cos(2π/N)

sin2(2π/N)

)
, (18)

concluding the proof.
If the number of vehicles tends to infinity, the upper bound on
K for stability determined by (18) decreases and converges
to the value p2/2. This yields a sufficient condition for
asymptotic stability.

Theorem 3: If 0 < K < p2/2, system (6) is asymptot-
ically stable, irrespective of the number of vehicles in the
system.
The theorems shows that if no friction is present in the
system (i.e. p=0) the proposed control is not stable. A
possible way to overcome this problem is by having the
control induce friction in each vehicle.

Example:

Consider system (6) with 3 vehicles and drag coefficient
p = 2. The eigenvalues of the corresponding system matrix
A are plotted in Figure 1 as a function of K. When the
vehicles are uncoupled, three eigenvalues are situated in −p;
the remaining three eigenvalues are located at the origin.
When K increases two of the latter eigenvalues move into
the open left half plane while two of the eigenvalues located
in −p start to move towards the imaginary axis. The sum
of all eigenvalues is −3p, irrespective of the value K. As
stated before, for all values K > 0 there is one eigenvalue
at the origin and one in −p, corresponding to the matrix
A1 of (15). When the coupling strength exceeds the value
p2/4 the two rightmost eigenvalues different from zero start
to move towards the imaginary axis until at K = 2p2

they cross the imaginary axis simultaneously, rendering the
system unstable.

V. SIMULATION RESULTS

A. String stability

In [8] a leader-follower control is applied with identical
vehicles and identical controllers. It was shown that the
platoon loses it string stability when the number of vehicles
supersedes 20.

The simulations in the present paper lead to conclude
that the equilibrium solutions of (6) are string stable. The
simulations are performed for a platoon of 39 vehicles. In
Figure 2, system (6) is simulated with L1 = −50, Li =
1, i = 2, . . . , N , p = 10, K = 10. The figure presents the
evolution of the distance errors ξi(t) � xi(t)−xi−1(t)−Li

–4

–2

2

4

–2 –1.5 –1 –0.5

Fig. 1. The spectrum of the system consisting of three vehicles

over time. For reasons of clarity, half of the distance errors,
namely those with even index, are omitted from the picture.
The figure shows that the maximum distance error between
pairs of consecutive vehicles does not grow when proceeding
towards the tail of the platoon, indicating string stability of
the platoon. Figure 2 clearly shows a typical feature of the
interconnection topology: each distance error rises quickly
to its maximum value and then decreases to a value close
to zero, but, contrary to leader follower control, after some
time each distance error starts to rise again. It decreases
again to some value near zero. This rising and decreasing is
repeated periodically over time. As time evolves, the time it
takes for an error to rise and fall down again increases, while
the peak value decreases. One could interpret this as if there
was a Mexican wave in the error value moving around in
the platoon: when the wave reaches the tail of the platoon, it
reappears at the leader vehicle. Notice that the Mexican wave
continually decreases in amplitude while moving around in
the platoon. As was to be expected from the analysis, each
distance error converges to a constant different from zero.

0 10 20 30 40 50 60 70 80 90 100
−2

0

2

4

6

8

10

12

ξi(t)

t

Fig. 2. Evolution of the separation distance errors for a platoon of 39
vehicles.

B. Robustness

Assume that one of the vehicles starts to malfunction and
cannot reach the velocity required by the platoon at that
moment. In the case of leader-follower control this causes the
leading group of vehicles to abandon the second group with
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the malfunctioning vehicle as leading vehicle and therefore
a breaking of the platoon. The distance between both groups
increases without bound.

With the interconnection topology of the present paper all
vehicles adapt to the “weakest link” and the platoon starts to
drive at the maximum velocity feasible by the malfunctioning
vehicle. This is illustrated on the right handside plot of
Figure 3: at t = 80 s the speed of one of the vehicles becomes
bounded by 0.3 m/s. The distance between the first and the
second group remains bounded. There is a breaking of the
platoon but no abandoning. The left handside plot shows the
evolution of the platoon without malfunctions. For reasons of
clarity, only the positions of the vehicles with an odd index
are plotted.

0 50 100 150
−40

−20

0

20

40

60

80

100

0 50 100 150
−40

−20

0

20

40

60

80

100

xi(t)

t

xi(t)

t

Fig. 3. Evolution of the position for a platoon of 39 vehicles. Left handside
figure: no malfunctions. Right handside figure: at t = 80 s, the 12th vehicle
starts malfunctioning and cannot drive faster than 0.3 m/s

VI. ADDING INTEGRAL CONTROL

As stated in the third remark of Section III-C the sep-
aration distances do not converge to the set points Li.
Although the relation between the separation distances δi

of the equilibrium solution and the set points is known, we
would like that δi = Li, or at least that the relation between
them is as simple as possible. Since one of the key properties
of the control is that the mean value of the set points is
different from zero, it is impossible that δi = Li, ∀i ∈ N :
assume that δi = Li, ∀i ∈ N . The resulting length of
the platoon is then given by −L1 on the one hand and by∑N

j=2 Lj on the other hand. Since 1
N

∑N
j=1 Lj �= 0 these

two values are not equal, contradicting the assumption.

In this section, however, system (6) is modified by adding
integral action between the leading vehicle and the last
vehicle of the platoon, which drives the length of the platoon
to the set point value |L1|, as shown in the following analysis.
Furthermore it is possible to obtain a simple relation between
δi and the set points Li.

A. Systems dynamics and equilibrium solution

Again each vehicle is modeled by (4). The control is given
by

u1(t) = K(xN (t) − x1(t) − L1)+

q

∫ t

0

(xN (τ) − x1(τ) − L1) dτ, ∀t ∈ R
+,

ui = K(xi−1 − xi − Li), i = 2, . . . , N,

(19)

The system equations can be written as⎧⎪⎨
⎪⎩

ẋ0 = xN − x1 − L1,

ẍ1 = −pẋ1 + K(xN − x1 − L1) + qx0,

ẍi = −pẋi + K(xi−1 − xi − Li), i = 2, . . . , N.

(20)

Theorem 4: Each function ϕ : R → R
N+1; t 
→ ϕ(t)

defined by
ϕ0(t) = γ,

ϕi(t) = αt + βi, ∀i ∈ N ,
(21)

with⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α =
−K

(N − 1)p

N∑
j=1

Lj ,

βN − β1 = L1,

βi − βi−1 =

⎛
⎝ 1

N − 1

N∑
j=1

Lj

⎞
⎠ − Li, i = 2, . . . , N,

γ = −αp

q
,

(22)
is an equilibrium solution of system (20).
The proof is similar to the proof of Theorem 1.

Consider the following choice of set points:

L2 = L3 = . . . = LN = µ,

L1 < −(N − 1)µ,
(23)

with µ ∈ R+. The equilibrium solutions then represent a
platoon of vehicles with length L1 and separation distances
given by

δi =

⎛
⎝ 1

N − 1

N∑
j=1

Lj

⎞
⎠ − Li

=
L1 + (N − 1)µ

N − 1
− µ =

L1

N − 1
. (24)

Notice that the distances δi do not depend on µ, but only
on the set point L1! This is a significant improvement with
respect to the behavior of system (6) as far as simplicity of
control is concerned. However, the value of µ influences the
velocity of the platoon:

α =
K|L1|

(N − 1)p
− Kµ

p
.

For a platoon with fixed length |L1|, the velocity can be
increased by decreasing µ. However the velocity cannot
increase indefinitely, since µ ≥ 0:

αmax =
K|L1|

(N − 1)p
.
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The velocity can also be increased by increasing K. Similar
to the system of Section III, if K gets too large, stability is
lost. This is shown in the next section.

B. Stability properties

The stability of (20) can be determined by investigating
the eigenvalues of the system matrix. By augmenting the
state space with the variable x0 the system matrix loses its
circulant structure. Furthermore, a parameter q was added to
the set of parameters. This makes it harder to establish the
stability properties via mathematical analysis.

In order to obtain some qualitative results, the eigenvalues
are computed by means of numerical software for some
representative cases.

In Figure 4 the stability regions are presented for a 3-
vehicle platoon for three different values of the drag coef-
ficient p. Each time the stable region is located under the
curve. When K or q becomes too large stability is lost.
Figure 5 shows the stability region for a 7-vehicle platoon
with drag coefficient p = 2.

0 1 2 3 4 5 6 7 8
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

p = 2

p = 1.5

p = 1

q

K

Fig. 4. Stability regions for a 3-vehicle platoon at different values of the
drag coefficient.

0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

3

3.5

4q

K

Fig. 5. Stability region for a 7-vehicle platoon with drag coefficient p = 2.

VII. CONCLUSIONS

In this paper a novel control strategy for strings of vehicles
is proposed. This strategy has a self-organizing property;
there is no leader/master vehicle present. The coupling struc-
ture is unidirectional ring coupling. Each vehicle measures

the distance with its immediate forward neighbor and the lead
vehicle in the platoon receives information on the position of
the last vehicle in the platoon. We proved that the resulting
behavior of the system is a platoon of vehicles moving
at a constant velocity with a constant distance separating
consecutive vehicles. Furthermore it is proven that for a class
of identical controllers the system is asymptotically stable for
sufficiently small coupling strength. An upper bound of this
coupling strength is calculated, below which the system is
asymptotically stable, independent of the number of vehicles
in the platoon. The concept of string stability of a platoon
is discussed and applied to the proposed interconnection.
We present some simulations supporting the claim that the
system is well-behaved with respect to string stability.

To improve the behavior, adding integral action between
the first and last vehicle of the platoon has been considered.
The resulting behavior was determined and its stability
properties were computed and discussed.
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