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Abstract— The state agreement problem is studied for non-
linear continuous-time systems. A general interconnection of
nonlinear subsystems is treated, where the vector fields can
switch within a finite family. Associated to each vector field is
a directed graph based in a natural way on the interaction
structure of the subsystems. With the assumption that the
vector fields satisfy a certain sub-tangentiality condition, it is
proved that asymptotic state agreement is achieved if and only
if the dynamic interaction digraph has the property of being
sufficiently connected over time. Applications of the main result
are then made to the synchronization of coupled Kuramoto
oscillators with time-varying interaction and to the analysis of
a biochemical reaction network.

I. INTRODUCTION

This paper studies the state agreement problem for coupled

dynamic systems. State agreement means that the states of

the subsystems are all equal. The problem arises naturally in

biology, physics, engineering, ecology, and social science:

e.g., synchronization [9], [20], consensus seeking [3], [5],

[18], and rendezvous [2], [4], [10], [11]. Recent relevant

work on this problem can be found in [7], [8], [12], [13],

[16], [17].

Inspired by [17], our goal in this paper is to solve

the state agreement problem for nonlinear continuous-time

subsystems with time-varying interaction. Our setup is a

general interconnection of nonlinear subsystems, where the

vector fields can switch within a finite family. We associate

to each vector field a directed graph based in a natural way

on the interaction structure of the subsystems; this is called

an interaction digraph in the present paper. Assuming that

the vector fields satisfy a certain sub-tangentiality condition,

we show that asymptotic state agreement is achieved if and

only if the dynamic interaction digraph has the property of

being sufficiently connected over time, in a certain technical

sense.

As applications, we apply our main result to the synchro-

nization of coupled Kuramoto oscillators with time-varying

interaction and to the analysis of a biochemical reaction

network.

All proofs are omitted due to pagelength requirements,

which are available in [15].

II. PRELIMINARIES

We first assemble some known and some novel concepts

related to tangent cones and directed graphs.
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A. Tangent Cones

The convex hull of a finite set of points x1, . . . , xn ∈ R
m

is a polytope, denoted co{x1, . . . , xn}. Given a convex set

S ⊂ R
m, its relative interior, denoted ri(S), is its interior in

the smallest affine subspace containing S (which might be

of dimension strictly less than m).

Fix any norm ‖·‖ in R
m. For each nonempty set S ⊂ R

m

and each y ∈ R
m, we denote the distance of y from S by

‖y‖S := infz∈S ‖z − y‖.
A nonempty set K ⊂ R

m is called a cone if λy ∈ K when

y ∈ K and λ > 0. Let S ⊂ R
m be a closed convex set and

y ∈ S. The tangent cone (often referred to as contingent
cone) to S at y is the set

T (y,S) =
{

z ∈ R
m : lim inf

λ→0

‖y + λz‖S
λ

= 0
}

.

Note that if y is in the interior of S, then T (y,S) = R
m.

Thus the set T (y,S) is non-trivial only on the boundary

of S. In particular, if S contains only one point, y, then

T (y,S) = {0}. In geometric terms (see Fig. 1), the tangent

x1

x2

“T (x1,S)”

“T (x2,S)”

S

Fig. 1. Tangent cones T (x1,S) and T (x2,S) are obtained by translation
of “T (x1,S)” and “T (x2,S)” to the origin.

cone for y in the boundary of S is a cone having center in

the origin which contains all vectors whose directions point

from y ‘inside’ (or they are ‘tangent to’) the set S.

B. Directed Graphs

For a directed graph (digraph for short) G = (V, E), where

V = {v1, . . . , vn} is the set of nodes and E is the set of arcs,

if there is a path in G from one node vi to another node vj ,

then vj is said to be reachable from vi, written vi → vj .

Note that every node of a digraph is reachable from itself.

A digraph is said to be quasi strongly connected (QSC)

(called arbitrated in [6]) if for every two nodes vi and vj

there is a node v from which vi and vj are reachable.

III. DEFINITIONS AND MAIN RESULTS

To formalize the notion of a switched interconnected

system, suppose that we are given a family of systems
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represented by the equations

ẋ1 = f1
p (x1, . . . , xn)

...

ẋn = fn
p (x1, . . . , xn),

where xi ∈ R
m is the state of subsystem i and where the

index p lives in a finite set P . Notice that the subsystems

share a common state space, R
m.

Introducing the aggregate state x ∈ R
mn, we have the

concise form

ẋ = fp(x), p ∈ P, (1)

where for each p ∈ P , fp : R
mn → R

mn.

We now associate to each vector field fp an interaction

digraph Gp capturing the interaction structure of the n
subsystems (agents).

Definition 1: An interaction digraph Gp consists of

• a finite set V of n nodes, each node i modeling agent i;
• an arc set Ep representing the links between agents. An

arc from node j to node i indicates that agent j is a

neighbor of agent i in the sense that f i
p depends on xj ,

i.e., there exist x1
j , x

2
j ∈ R

m such that

f i
p(x1, . . . , x

1
j , . . . , xn) �= f i

p(x1, . . . , x
2
j , . . . , xn).

The set of neighbors of agent i is denoted Ni(p).
Let Ci

p = co{xi, xj : j ∈ Ni(p)} denote the polytope in

R
m formed by the states of agent i and its neighbors. Also,

it’s convenient to introduce a subset S ⊂ R
m of the common

state space that plays the role of a region of focus. In our

state agreement problem, initial states of the agents will be in

S and agreement will occur in S. Let I0 denote the index set

{1, . . . , n} and assume that, for each i ∈ I0 and each p ∈ P ,

the vector fields f i
p : R

mn → R
m satisfy the following two

assumptions:

A1: f i
p is locally Lipschitz on Sn;

A2: For all x ∈ Sn, f i
p(x) ∈ ri

(
T (xi, Ci

p)
)
.

Assumption A2 is sometimes referred to as a strict sub-
tangentiality condition. Fig. 2 illustrates two example situa-

tions of A2. In the left-hand example, agent 1 has only one

1 1

2

2

3
f1

p
f1

p

C1
p

Fig. 2. Some examples of vector fields f i
p satisfying assumption A2.

neighbor, agent 2; the convex hull C1
p is the line segment

joining x1 and x2; the tangent cone T (x1, C1
p) is the closed

ray {λ(x2−x1) : λ ≥ 0} (in the picture it’s shown translated

to x1); the relative interior ri
(
T (x1, C1

p)
)

is the open ray

{λ(x2 −x1) : λ > 0}; and A2 means that f1
p is nonzero and

points in the direction of x2−x1. In the right-hand example,

agent 1 has two neighbors, agents 2 and 3; the convex hull

C1
p is the triangle with vertices x1, x2, x3; the tangent cone

T (x1, C1
p) is

{λ1(x2 − x1) + λ2(x3 − x1) : λ1, λ2 ≥ 0}
(again, it’s shown translated to x1); the relative interior

ri
(
T (x1, C1

p)
)

is

{λ1(x2 − x1) + λ2(x3 − x1) : λ1, λ2 > 0};
and A2 means that f1

p points into this open cone. In general,

A2 requires that f i
p(x) have the form∑
j∈Ni(p)

αj(x)(xj − xi),

where αj(x) are non-negative scalar functions, and that

f i
p(x), now viewed as a vector applied at the vertex xi, not

be tangent to the relative boundary of the convex set Ci
p.

When the index p in (1) is replaced by a piecewise

constant function σ : [0, ∞) → P , we obtain a switched
interconnected system

ẋ(t) = fσ(t)(x(t)). (2)

The function σ is called a switching signal. The case of

infinitely fast switching (chattering), which would call for a

concept of generalized solution, is not considered here. As

a matter of fact, we shall show in the next section by means

of a counterexample that even piecewise constant switching

signals σ(t) do not have sufficient regularity for asymptotic

agreement of the switched interconnected system (2). Let

Sdwell denote the class of piecewise constant switching sig-

nals such that any consecutive discontinuities are separated

by no less than some fixed positive constant τD, the dwell
time. We make the following assumption:

A3: σ(t) ∈ Sdwell.

Having replaced p by a switching signal σ(t), we similarly

replace the interaction digraph Gp by a dynamic interaction

digraph Gσ(t).

Definition 2: Given a switching signal σ(t), σ : [0,∞) →
P , the dynamic interaction digraph Gσ(t) is the pair(
V, Eσ(t)

)
. Given two real numbers t1 ≤ t2, the union

digraph G ([t1, t2]) is the digraph whose arcs are obtained

from the union of the arcs in Gσ(t) over the time interval

[t1, t2], that is, G ([t1, t2]) =

(
V,

⋃
t∈[t1,t2]

Eσ(t)

)
.

Definition 3: A dynamic interaction digraph Gσ(t) is uni-
formly quasi strongly connected (UQSC) if there exists T >
0 such that for all t ≥ 0, the union digraph G([t, t + T ]) is

QSC.

We show in the following that if, and only if, the dynamic

interaction digraph Gσ(t) is UQSC, then the switched inter-

connected system achieves asymptotic state agreement on S.

Now comes the precise meaning of state agreement.

Definition 4: The switched interconnected system (2) has

the property of

1) state agreement (SA) on S if ∀ζ ∈ S, ∀ε > 0, ∃δ > 0
such that ∀t0 ≥ 0

(∀i) (‖xi(t0) − ζ‖ ≤ δ) ∧ (xi(t0) ∈ S)
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=⇒ (∀t ≥ t0)(∀i) ‖xi(t) − ζ‖ ≤ ε;

2) asymptotic state agreement (ASA) on S if it has the

property of state agreement on S and in addition ∀ε >
0, ∀c > 0, ∃T > 0 such that ∀t0 ≥ 0

(∀i) (‖xi(t0)‖ ≤ c) ∧ (xi(t0) ∈ S)

=⇒ (∃ζ ∈ S)(∀t ≥ t0 + T )(∀i) ‖xi(t) − ζ‖ ≤ ε;

3) global asymptotic state agreement (GASA) if it has the

property of ASA on R
m.

S S

Fig. 3. Asymptotic state agreement on S.

These definitions are illustrated in Fig. 3 and can be

said roughly speaking as follows. State agreement (the left-

hand figure) means, for every point ζ in S, the agents stay

arbitrarily close to ζ if they start sufficiently close to ζ,

uniformly with respect to the starting time. Asymptotic state

agreement (the two figures together) means, in addition, the

agents converge to a common location in S.

These state agreement definitions are related to stability

with respect to a set. Let Ω denote the set of aggregate states

such that the subsystem states are all equal and in S, i.e.,

Ω = {x ∈ R
nm : x1 = · · · = xn ∈ S}.

Then state agreement is equivalent to uniform stability with

respect to Ω.

Finally, a new definition of positive invariance specially

for interconnected systems:

Definition 5: A set A ⊂ R
m is said to be positively

invariant for the switched interconnected system (2) if

(∀t0 ≥ 0)(∀i) xi(t0) ∈ A =⇒ (∀t ≥ t0)(∀i) xi(t) ∈ A.
Our first result establishes the positive invariance property

of any compact convex set in S without needing any property

of the interaction digraph. This result can perhaps be under-

stood intuitively as follows. For m = 2, all agents move in

the plane. Let A be a compact convex set in S and assume

all agents start in A. Let C(t) denote the convex hull of

the agents’ locations at time t. Because A is convex, clearly

C(0) ⊂ A. Now invoke assumption A2. An agent that is

initially in the interior of C(0) can head off in any direction

at t = 0, but an agent that is initially on the boundary of

C(0) is constrained to head into its interior. In this way, C(t)
is non-increasing (if t2 > t1, then C(t2) ⊂ C(t1)), and A is

therefore positively invariant for the switched interconnected

system (2).

Theorem 1: Let A ⊂ S be a compact convex set. Then A
is positively invariant for the switched interconnected system

(2).

The second result establishes state agreement of the sys-

tem, again without needing any property of the interaction

digraph.

Theorem 2: Suppose S is closed and convex. The

switched interconnected system (2) has the property of state

agreement on S.

Now comes our main result.

Theorem 3: Suppose S is closed and convex. The

switched interconnected system (2) has the property of

asymptotic state agreement on S if and only if the dynamic

interaction digraph Gσ(t) is UQSC.

Remark. When S = R
m in assumptions A1 and A2, the

switched interconnected system (2) has the global asymptotic

state agreement property if and only if Gσ(t) is UQSC.

In the special case when σ(t) is a constant signal, that is,

σ(t) ≡ p for some p ∈ P , then the switched interconnected

system becomes time-invariant and Gσ(t) is just a fixed

interaction digraph Gp. In this case, the property of UQSC is

equivalent to QSC. Thus, we arrive at the following special

result.

Corollary 4: Suppose σ(t) = p and S = R
m. Then, the

interconnected system (2) has the globally asymptotic state

agreement property if and only if Gp is QSC.

Remark. For this special case we can actually relax the

assumptions on the vector fields f i
p : R

mn → R
m as follows:

A1′: f i
p is continuous on R

mn;

A2′: For all x ∈ R
mn, f i

p(x) ∈ T
(
xi, Ci

p

)
, but f i

p(x) �= 0 if

Ci
p is not a singleton and xi is its vertex.

The sketch of the proof can be found in [14]. Unlike the

proof of Theorem 3, the proof in [14] relies on LaSalle’s

invariance principle. As shown in the next section by means

of a counterexample, when the interaction digraph is dynamic

assumption A1′ is too weak for sufficiency in Theorem 3 to

hold.

IV. SOME EXAMPLES AND FURTHER REMARKS

In this section we present some examples to better illus-

trate the nature of our assumptions.

A. Concerning Assumption A1

We now present an example showing that Theorem 3 may

fail to hold when the vector fields are just continuous instead

of locally Lipschitz.

Example 4.1. Consider three agents, 1, 2, and 3, with state

space R. There are three possible vector fields:

p = 1 : p = 2 :⎧⎨
⎩

ẋ1 = g(x3 − x1)
ẋ2 = 0
ẋ3 = 0

⎫⎬
⎭ ,

⎧⎨
⎩

ẋ1 = g(x2 − x1)
ẋ2 = 0
ẋ3 = 0

⎫⎬
⎭ ,

p = 3 :

⎧⎨
⎩

ẋ1 = 0
ẋ2 = g(x1 − x2)
ẋ3 = 0

⎫⎬
⎭ ,

where g(y) := sign(y) · |y| 12 , y ∈ R. The function g has the

property that each solution of the differential equation ẏ =
g(y) reaches the origin (asymptotically stable equilibrium)

in finite time.
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For each p ∈ P = {1, 2, 3}, the associated interaction

digraphs are depicted in Fig. 4. Let S = R. Obviously, the

function g(·) is only continuous (not locally Lipschitz on

R), so assumption A1 does not hold, but it can be easily

checked that A2 holds. Let us set a switching signal σ(t) to

111 222

33 3

G1 G2 G3

Fig. 4. The interaction digraphs Gp, p = 1, 2, 3.

be periodic with period of 12 seconds, that is,

σ(t) =

⎧⎨
⎩

1, t ∈ [12k, 12k + 4),
2, t ∈ [12k + 4, 12k + 8),
3, t ∈ [12k + 8, 12k + 12),

k = 0, 1, . . . .

Thus, assumption A3 holds.

For the switched interconnected system corresponding to

the switching signal above, the dynamic interaction digraph

Gσ(t) is UQSC. To see that, simply let T = 12 and notice

that for any t > 0, G([t, t + T ]) = G1 ∪ G2 ∪ G3 is QSC.

However, this switched interconnected system does not have

the property of asymptotic state agreement on S as shown

by a simulation in Fig. 5. Intuitively, for the period of

0 10 20 30 40 50 60 70 80
−1.5

−1

−0.5

0

0.5

1

1.5
x

1
x

2
x

3

Fig. 5. Time evolution of three coordinates not tending to a common value.

σ(t) = 1, agent 1 moves toward agent 3 and the others

remain stationary, whereas for the period of σ(t) = 2, agent

1 moves toward agent 2 and the others remain stationary.

However, agent 1 reaches the location of agent 2 and stays

there during this period. Then, when the system switches to

p = 3, agent 2 starts to move toward agent 1, but since agents

1 and 2 are already collocated, agent 2 keeps stationary.

Hence, only agent 1 moves forward and backward between

the locations of agent 2 and 3 while the others are stationary.

B. Concerning Assumption A2

Our next example is concerned with the necessity of the

strictness in assumption A2. This cannot be relaxed to just

f i
p(x) ∈ T (xi, Ci

p), as shown next.

Example 4.2. Consider two agents, 1 and 2, with state

space R. There is only one vector field:

p = 1 :
{

ẋ1 = f1
1 (x1, x2) = 0

ẋ2 = f2
1 (x1, x2) = g(x1 − x2)

}

where the smooth function g : R → R is given in Fig. 6.

1
−1

y

g(y)

Fig. 6. A smooth function g(y).

The interconnected system above has fixed coupling struc-

ture, that is, σ(t) ≡ 1. So assumption A3 is trivially satisfied.

Let S = R. Assumption A1 holds, but A2 does not hold

since f2
1 (x1, x2) = g(x1 − x2) = 0 /∈ ri

(
T (x2, C2

1)
)

when

x1 = x2 + 1 by noticing that C2
1 = co{x1, x2} is the

line segment joining x1 and x2. However, f1
1 (x1, x2) and

f2
1 (x1, x2) are in T (x1, C1

1) and T (x2, C2
1) respectively for

all (x1, x2) ∈ S × S.

In the associated interaction digraph of the unique vector

field (p = 1), there is an arc from node 1 to 2. So it is

QSC. Recalling that the property of UQSC is equivalent to

QSC for fixed digraph, the dynamic interaction digraph Gσ(t)

is UQSC. But this interconnected system fails to achieve

asymptotic state agreement on S = R when, for example,

initially x1(0) = x2(0) + 1.

However, if we choose S = [a, b], where a, b are real

numbers such that b− a < 1, then assumptions A1, A2, and

A3 hold. Thus, it follows that this interconnected system

achieves asymptotic state agreement on S since the dynamic

interaction digraph Gσ(t) is UQSC as shown before.

C. Concerning Assumption A3

Although the switched interconnected system (2) has the

property of state agreement under piecewise constant switch-

ing signals, additional regularity conditions on the switching

signal σ(·) are needed in order to guarantee asymptotic state

agreement. This is illustrated by the following very simple

linear example.

Example 4.3. Consider just two agents, 1 and 2, with state

space R. There are two possible vector fields:

p = 1 :
{

ẋ1 = x2 − x1

ẋ2 = 0

}
, p = 2 :

{
ẋ1 = 0
ẋ2 = 0

}

Thus agent 2 has no neighbor and never moves. For p = 1
agent 1 moves toward agent 2, whereas for p = 2 agent

1 has no neighbor and therefore doesn’t move. Assumptions

A1 and A2 hold for S = R. Let us define switching times τk

by setting τ0 = 0 and defining the intervals δk = τk+1 − τk

as follows:

k 0 1 2 3 4 5 6 · · ·
δk 1 1 1/2 1 1/22 1 1/23 · · ·
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Then we define σ(t) to be the alternating sequence

1, 2, 1, 2, . . . over the time intervals, respectively,

[τ0, τ1), [τ1, τ2), [τ2, τ3), [τ3, τ4), . . .

This switching signal is piecewise constant and the dynamic

interaction digraph is UQSC. However, if x1(0) �= x2(0),
x1(t) does not converge to x2(t)—asymptotic state agree-

ment does not occur.

The example suggests that in order to obtain asymptotic

state agreement, one needs to impose some restrictions on

the admissible switching signals. One way to address this

problem is to make sure that the switching signal has a dwell

time, that is, there exists τD > 0 such that

(∀k) (τk+1 − τk) ≥ τD.

This is precisely the assumption A3, and is ubiquitous in the

switching control literature.

V. SOME APPLICATIONS

In this section we discuss some applications of our main

results.

A. Synchronization of Coupled Oscillators

The Kuramoto model describes the dynamics of a set of n
phase oscillators θi with natural frequencies ωi. More details

can be found in [9], [20]. The time evolution of the i-th
oscillator is given by

θ̇i = ωi + ki

∑
j∈Ni(t)

sin(θj − θi),

where ki > 0 is the coupling strength and Ni(t) is the set of

neighbors of oscillator i at time t. The interaction structure

can be general so far, that is, Ni(t) can be an arbitrary set

of other nodes and can be dynamic.

The neighbor sets Ni(t) define Gσ(t) and the switched

interconnected system

θ̇ = fσ(t)(θ),

where θ = [θ1 · · · θn]T and σ(t) is a suitable switching

signal. For identical coupled oscillators (i.e., ωi = ω,∀i),
the transformation xi = θi − ωt yields

ẋi = ki

∑
j∈Ni(t)

sin(xj − xi), i = 1, . . . , n. (3)

Let a, b be any real numbers such that 0 ≤ b − a < π,

and define S = [a, b]. It is easily seen that A1 and A2 are

satisfied. Suppose σ(t) here is regular enough satisfying A3.

Then from Theorem 3 it follows that if, and only if, Gσ(t)

is UQSC, the switched interconnected system (3) has the

property of asymptotic state agreement on S. This implies

that there exists x̄ ∈ R such that

θi(t) → x̄ + ωt, θ̇i(t) → ω,

and the oscillators synchronize. This is an extension of

Theorem 1 in [9], which assumes the interaction graph is

undirected and static and the initial state θi(0) ∈
(
−π

2 , π
2

)
for all i.

As an example, three Kuramoto oscillators with dynamic

interaction structure are simulated. The initial conditions are

θ1 = 0, θ2 = 1, θ3 = −1. The natural frequency ωi

equals 1, and the coupling strength ki is set to 1 for all

i. The interaction structure switches among three possible

interaction structures periodically, shown in Fig. 7. It can

111 222

33 3

G1 G2 G3

Fig. 7. Three interaction digraphs Gp, p = 1, 2, 3.

be checked that Gσ(t) is UQSC. So these three oscillators

achieve asymptotical synchronization as we conclude by our

main theorem. Fig. 8 shows the plots of sin(θi), i = 1, 2, 3
and of the switching signal σ(t). Synchronization is evident.
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σ
(t

)
σ
(t
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Fig. 8. Synchronization of three interacting oscillators.

B. Biochemical Reaction Network Analysis

A biochemical reaction network is a finite set of reactions

among a finite set of species. Consider, for example, two

reversible reactions among three compounds C1, C2, and

C3, in which C1 is transformed into C2, C2 is transformed

into C3, and vice versa:

C1

k1�
k2

C2

k3�
k4

C3

The constants k1 > 0, k2 > 0 are the forward and reverse

rate constants of the reaction C1 � C2; similarly for k3 > 0,

k4 > 0. Denote the concentrations of C1, C2, and C3, respec-

tively, by x1, x2, and x3. Only nonnegative concentrations

are physically possible. Such a reaction network gives rise

to a dynamical system, which describes how the state of the

network changes over time.

Suppose the dynamics of both reactions are dictated by

the mass action principle. This leads to the model

ẋ1 = −k1x
α
1 + k2x

α
2 ,

ẋ2 = k1x
α
1 − k2x

α
2 − k3x

α
2 + k4x

α
3 ,

ẋ3 = k3x
α
2 − k4x

α
3 ,

(4)
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where α ≥ 1 is an integer. For more on modeling and

analysis of biochemical reaction networks, we refer to [1],

[21].

The linear transformation

y1 =
(

k1

k2

) 1
α

x1, y2 = x2, y3 =
(

k4

k3

) 1
α

x3,

leads to

ẏ1 = h1(y1, y2)(y2 − y1),
ẏ2 = h2(y1, y2)(y1 − y2) + h3(y2, y3)(y3 − y2),
ẏ3 = h4(y2, y3)(y2 − y3),

(5)

where h1(y1, y2), h2(y1, y2), h3(y2, y3), and h4(y2, y3) are

suitable terms; for example

h1(y1, y2) =
k

1/α
1 k2

k
1/α
2

yα
2 − yα

1

y2 − y1
.

It can be easily verified that h1(y1, y2) ≥ 0 and h1(y1, y2) =
0 if and only if y1 = y2 = 0. The same observations hold

for h2(y1, y2), h3(y2, y3), and h4(y2, y3). It thus follows that

each point in the set Ω = {y : y1 = y2 = y3 ≥ 0} is an

equilibrium. Physically, when y ∈ Ω, the reaction network

is at a chemical equilibrium.

Consider now the interaction digraph associated with (5).

Physically, each node represents a compound and each arc

connecting two nodes represents a reaction between two

compounds. This digraph is QSC (actually, it is strongly

connected). Since there is no switching in the system (i.e.,

σ(t) is constant), assumption A3 is obviously satisfied and

the dynamic interaction digraph is UQSC. In addition, it can

be easily checked that, for S = [0,∞), the vector field in

the above system satisfies assumptions A1 and A2. Hence,

Theorem 3 can be applied to conclude that system (5) has

the property of asymptotic state agreement on S. This result

coincides with the analysis using Theorem 5.2 in [1]. Our

analysis can be extended to more complicated biochemical

reaction networks containing a set of compounds and a set

of reversible reactions. Their asymptotic state agreement

property is captured by the interaction digraph.

VI. CONCLUSIONS

In this paper, we have studied the state agreement problem

for a class of switched interconnected large-scale systems

with a family of admissible vector fields. Necessary and

sufficient conditions, in terms of the interaction graph, are

obtained to assure that the system achieves asymptotic

state agreement. On the other hand, our results can be

understood as connective stability, as in the framework of

[19]. Achieving asymptotic state agreement of a large-scale

interconnected system is robust with respect to either the

coupling structure or parameter values.

The notion of state agreement in this paper is that the

states of the subsystems are all equal and constant. This

notion can potentially be generalized in the following two

directions. First, state agreement could mean equality of all

the trajectories of the subsystems. This would be of interest

in formation control of multi-agent systems. Second, state

agreement could mean equality of all the states after suitable

state transformations. An example is the biochemical reaction

network studied in this paper.
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