Proceedings of the

44th IEEE Conference on Decision and Control, and
the European Control Conference 2005

Seville, Spain, December 12-15, 2005

WeC16.1

Recursive Learning Automata for Control of
Partially Observable Markov Decision Processes

Hyeong Soo Chang*
Department of Computer Science
and Engineering
Sogang University
Seoul, Korea
hschang@sogang.ac.kr

Abstract— This paper presents a sampling algorithm, called
“Recursive Automata Sampling Algorithm (RASA),” for control
of finite horizon information-state Markov decision processes
(MDPs), the equivalent model of partially observable MDPs.
RASA extends in a recursive manner the Pursuit algorithm
designed with learning automata by Rajaraman and Sastry for
solving stochastic optimization problems. Based on the finite-
time analysis of the Pursuit algorithm, we analyze the finite-time
behavior of RASA, providing a bound on the probability that a
given initial state takes the optimal action, and a bound on the
probability that the difference between the optimal value and
the estimate of it exceeds a given error. We also discuss how
to apply RASA in the direct context of POMDPs and how to
incorporate heuristic knowledge into RASA for on-line control.

I. INTRODUCTION

Consider a discrete-time dynamic system with a finite
horizon H < oo:

Ti+1 = f(miyahwi) for i = Oa 1725 aH - 17

where x; is a random variable ranging over an infinite state
set X giving the state at stage 4, a; is the control to be
chosen from a finite action set A at stage i, w; is a random
disturbance uniformly and independently selected from [0,1]
at stage 7, representing the uncertainty in the system, and
f: X xAx|[0,1] — X is a next-state function. The system
model covers the dynamics of partially observable MDPs
(POMDPs) with finite state, action, and observation spaces,
as such a POMDP can be reduced to the equivalent model of
information-state MDP [1], where the state space is the set
of all possible probability distributions over the state space
of the corresponding POMDP (see Section V).

Let II be the set of all possible nonstationary Markovian
policies m = {m;|m; : X — A,i = 0,..., H — 1}. Defining
the optimal reward-to-go value function for state = in stage

1 by
H-1
‘/1*(‘7:) = Sup E, Z R(xt,m(xt),wt) €T, = g;| ,
mell —i

*H. S. Chang is also affiliated with Program of Integrated Biotechnology
at Sogang University. This work was supported by the Ministry of Science
and Technology 21st Century Frontier Program: Intelligent Robot Project
in 2005.

**This work was supported in part by the National Science Foundation
under Grant DMI-0323220, and in part by the Air Force Office Office of
Scientific Research under Grant FA95500410210.

0-7803-9568-9/05/$20.00 ©2005 IEEE

Michael C. Fu**
The Robert H. Smith School of
Business
University of Maryland
College Park, MD, USA

mfu@rhsmith.umd.edu

Steven I. Marcus**
Department of Electrical
and Computer Engineering
University of Maryland
College Park, MD, USA

marcus@eng.umd.edu

where z € X, w = (w;, Wit1,...,wz—1),wj ~ U(0,1),j =
i,....,H — 1, with a bounded nonnegative reward function
R: X xAx|[0,1 - R, Vji(z) =0 for all z € X,
and v; = f(x4—1,m—1(x4—1),ws—1) a random variable
denoting the state at stage ¢ following policy m, we wish to
compute V" (z¢) and obtain an optimal policy 7* € II that
achieves V' (z0), 20 € X. R is bounded such that Ryay :=
SUD,e x,aea,wef0,1] Fo(T, @, w) < oo and for simplicity it is
assumed that every action in A is admissible at every state
and the same random number is associated with the reward
and transition functions.

This paper presents a sampling algorithm, called “Recur-
sive Automata Sampling Algorithm (RASA),” for estimating
Vi (xo) and obtaining an approximately optimal policy.
RASA extends in a recursive manner (for sequential deci-
sions) the Pursuit algorithm by Rajaraman and Sastry [11] in
the context of solving (information-state) MDPs (we will also
discuss applying RASA in the direct context of POMDPs).
The algorithm complexity is independent of the state space
size.

The Pursuit algorithm is based on well-known learning
automata [15] for solving (non-sequential) stochastic opti-
mization problems. A learning automaton is associated with
a finite set of actions (candidate solutions) and updates a
probability distribution over the set by iterative interaction
with an environment and takes (samples) an action according
to the newly updated distribution. The environment provides
a certain reaction (reward) to the action taken by the au-
tomaton, where the reaction is random and the distribution
is unknown to the automaton. The automaton’s aim is to
learn to choose the optimal action that yields the highest
average reward. In the Pursuit algorithm, the automaton
pursues the current best optimal action obtained from the
current estimates of the average rewards of taking each action
(see [11] for a detailed discussion).

As learning automata are well-known adaptive decision
making devices operating in unknown random environments,
RASA’s sampling process of taking an action at the sampled
state is adaptive at each stage. At each sampled state at a
stage, a fixed sampling budget is allocated among feasible
actions and the budget is used with the current probability
estimate for the optimal action.

Based on the finite-time analysis of the Pursuit algorithm,

6091

we analyze the finite-time behavior of RASA, providing a
bound on the probability that the initial state at stage O takes
the optimal action in terms of sampling parameters of RASA
and a bound on the probability that the difference between
the estimate of Vj(zo) and V(o) exceeds a given error.

This paper is organized as follows. In Section II, we
discuss some related works. We present RASA in Section III
and analyze it in Section IV. In Section V, we discuss how
to apply RASA in the context of POMDPs and how to
incorporate heuristic knowledge to RASA for on-line control.
We conclude our paper in Section VI.

II. RELATED WORKS

The book by Poznyak et al. [9] provides a good survey of
works on using learning automata for solving controlled (er-
godic) Markov chains in model-free reinforcement learning
(RL) framework for a loss function defined on the chains.
Each automaton in learning automata is associated with a
state and updates certain functions (including the proba-
bility distribution over the action space) at each iteration
of various learning algorithms. Wheeler and Narendra [16]
consider controlling ergodic Markov chains for the infinite
horizon average reward within the similar RL framework.
For all learning automata approaches so far, to the authors’
best knowledge, the number of the automata grows with
the size of the state space and thus the correspondingly
updating procedure becomes cumbersome except in Wheeler
and Narendra’s algorithm, where only the currently visited
automaton (state) updates relevant functions.

Santharam and Sastry [12] provide an adaptive method of
solving MDPs via a stochastic neural network model in the
RL framework. For each state, there are | A|-units of nodes
associated with the estimates of state transition probabilities.
As in [16], the probability distribution over the action space
at an observed state is updated with an observed payoff. Even
though they provide a probabilistic performance guarantee
for their approach, the network size grows exponentially with
the sizes of the state and action spaces.

Jain and Varaiya [4] provide a uniform bound on the
empirical performance of policies within a simulation model
of (partially observable) MDPs, which would be useful
in many contexts. However, the main interest here is an
algorithm and its sampling complexity for estimating the
optimal value/policy, and not over the entire set of feasible
policies.

It is well-known that the optimal value function in a
POMDP has a piecewise linear and convex structure. Ex-
ploiting the structure, at each iteration of value iteration [13]
the complete information-state simplex is searched for a
minimal set of information-states that generate the necessary
set of hyperplanes, or vectors, over the information-state
space, where the vectors parametrize the next value function.
This search in general requires solving linear programming
problems, making application of value iteration intractable in
many cases. Recent works on approximating value iteration
focus on computing approximate value function only for

a fixed/dynamically growing sampled set of information-
states, termed as points. The crucial issue of these ap-
proaches is how to choose the points for approximation.
The grid-based approaches typically suffer from expensive
interpolation and/or scalability problem [2] [7] [17]. The
works in [5] [8] [14] consider obtaining the points by actual
simulation of POMDPs by sampling random actions and
observations at each time step of value iterations. These
approaches are different from RASA in that firstly, RASA
is not in a form of value iteration (i.e., RASA does not
iteratively generate a new value function over sampled
information-states from a old value function); rather it builds
a sampled tree of information-states and directly estimates
the value of the state at the root of the tree in a bottom-
up fashion; and secondly, RASA incorporates an adaptive
sampling mechanism for selecting which action to sample.
Thirdly, it avoids the issues regarding grid-based value-
function representation.

The properties of constructing a sampled tree in a recursive
manner to estimate the optimal value Vj(z) at an initial
state zp and making the use of an adaptive action sampling
while constructing the tree is similar to the adaptive multi-
stage sampling (AMS) algorithm presented by Chang et
al. [3]. The adaptive sampling in AMS is based on the
exploration-exploitation process of multi-armed bandit from
regret analysis. In contrast, RASA’s sampling is based on the
probability estimate for the optimal action. The analysis of
AMS is given in terms of the expected bias. Here we provide
a probability bound for the performance analysis of RASA.

III. ALGORITHM

It is well-known (see, e.g., [10]) that V;* can be written

recursively as follows: forall z € X and ¢ =0,....H — 1,

Vi(z) = meaj(Qf(a:,a), where
Qi (r,a) = FBEy[R(z,a,w)+ Vi (f(z,a,w))], (1)

where w ~ U(0,1) and V5 (z) =0,z € X.

We provide below a high-level description of the recursive
automata sampling algorithm (RASA) to estimate V' (zo)
for a given initial state xy via the relationship given in
Equation (1). The inputs to RASA are a state x € X,
sampling parameters K; > 0, u; € (0,1), and stage 1,
and the output of RASA is V;*i(z), the estimate of V;*(x)
where V" () = 0 for any Ky and z € X. Whenever we
encounter Vf“ (y) for a state y € X and stage i’ in the
Loop portion of RASA, we need to call RASA recursively
(at Equation (3)). The initial call to RASA is done with ¢ = 0,
the initial state xg, Ko, and po and every sampling is done
independently of the previously done samplings.

Basically, RASA builds a sampled tree of depth H with the
root node being the initial state z at stage 0 and a branching
factor of K; at each level ¢ (level O corresponds to the root).
The root node x corresponds to an automaton and initializes
the probability distribution over the action space P, as the
uniform distribution (refer to Imitialization in RASA). The
xp-automaton then samples actions and random numbers (an

6092

action and a random number together corresponding to an
edge in the tree) K times independently w.r.t. the current
probability distribution Py, (k) and U(0, 1), respectively, at
each iteration k = 0,..., Ko — 1. If action a(k) € A is
sampled, the count variable Ng(k) (x0) is incremented. By
the sampled action a(k) and the random number wy, the
automaton obtains an environment response

R(zo, a(k), wy) + V51 (f (0, a(k), wy)). 2)

Then by averaging the responses obtained for each action
a € A, the xp-automaton computes a sample mean of

Qi(xo,0a),a € A:

Q(IJ(O(xf)va)
1 Ng(zo)
= 0N R) V s Wy H)
i & M) o)
where {w$},j = 1,..,NJ(xo) are the random num-

bers generated when the action a was sampled. Note that
> wea NO(z0) = Ko. The zp-automaton then obtains the
current optimal action that achieves the current best value
MaXge A Q(If" (o, a) (ties are resolved arbitrarily), updates
P,, as in Equation (6) and (7), and estimates the opti-
mal value Vg (zo) by Vi°(z0) = maxeea QF°(x0,a).
The probability distribution P, (k) is updated in the di-
rection of the current estimate of the optimal action a* =
argmax,, . , Q((0, a’) at each iteration k. In other words,
the automaton pursues the “current” best action and hence
the nonrecursive one-stage version of this algorithm is called
the Pursuit algorithm [11].

The overall estimate procedure is replicated recursively
at those sampled states (corresponding to nodes in level 1
of the tree) f(xo,a(k),wy)-automata, where the estimates
returned from those states V' (f(x, a(k), wy.)) compose the
environment responses for the xg-automaton.

Recursive Automata Sampling Algorithm (RASA)
e Imput: state z € X, K; > 0, u; € (0,1), stage i.
Output: V. (z).
o Initialization: Set P,(0)(a) =
O,MiKi(x,a) =0,a€ Aand k =0.
e Loop: (i # H)
— Sample a(k)
— Update Q

M (x,a) — MFi(z,a)
+R(x, a,wp) + Vi (F(z,a,w0)); (3)

1/]Al Ny(z) =

P, (k), wy ~ U(0,1).
“(z,a) only for a = a(k) such that

Ni(z) « Ni(z)+1; “4)
OFi(z,a) — 1‘4;7((2)@ 5)

— For a* = argmax, ¢4 Qi («,a'),
Py(k+1)(a") « (1 — i) Po(k)(@") + 5 (6)

and for all a # a*,

Po(k+1)(a) — (1— pi)Pe(k)(a). (D)

- k— k+1.If k= K, then exit Loop.

o Exit: Return VX (2) = max,ca QX (x,a) if i # H,
and O otherwise.

The running time complexity of the RASA algorithm is
O(K*H) with K = max; K;, independent of the state space
size. (For some performance guarantee, the value K depends
on the size of the action space. See the next section.)

IV. ANALYSIS OF RASA

All of the estimated VEi and Q*-values in the current
section refer to the values at the Exit in RASA. The fol-
lowing lemma provides a probability bound on the estimate
of the @*-value relative to the true @Q*-value when the
estimate of the (Q*-value is obtained under the assumption
that the optimal value for the remaining horizon is known
(so that recursive call is no longer done), which is proven
by Rajaraman and Sastry [11, Lemma 3.2] in their context.

Lemma 1: Consider the nonrecursive algorithm RASA’
obtained by replacing Equation (3) by

MEi(z,a) — MXi(2,a)
—|—R(x7a7wk)—|—V;:1(f(x,a7’w;g))~ (8)

Assume K; > A(e,8) and 0 < p; < p(e,d) where

CleMes, [IMes (2M, 5\ 75
A(6’5)_{1111 ln[mz < 5) H ©)

with M, s = max{6, [% In 31}, 1 = 2[A]/(2|4] — 1),
and pf(e,0) =1-2" 7. Consider a fixed i,z e X, e>0,
and § € (0,1). Then, for all « € A at the Exit step

Pr{|Q%" (z,a) -

We now put an assumption for the purpose of the analysis.
The assumption states that at each stage, the optimal action
is unique at each state. In other words, the given MDP has a
unique optimal nonstationary policy. We will give a remark
on this at the end of this section.

Qi (x,a)] > e} < 0.

Assumption I: For all x € X and 7 = 0,1,....,. H — 1,
0i(z) == Qf (z, a*)—max,£e- QF (z,a) > 0 where V;*(x) =
Q: (.23, CL*). We let inszX,i:O H—-1 01(1‘) =0.

Given 0; € (0,1),i=0,..., H — 1, define

H-1

=(1-d6)]Ja K;

=1
Lemma 2: Assume that Assumption 1 holds. Select K; >

Mzt=,61),i=0,., H—land 0 < p; < pf =1—-2"%
for a given d; € (0, 1). Then under RASA,

. 0
Pr{’VOKO(Z‘Q) —VO*(Z‘Q)’ > 5} <1-46.

6093

Proof: Let X! be the set of sampled states in X by
RASA at stage ¢. Suppose for a moment that for all z €
X1 with some K; 1 and a given &,41 € (0,1),

K1 * 0
pr{ |V @) - Vi)] > g | < ()

Consider for z € X i,

QKi(x,a) = R(z,a,w]) + Vi

1(f (2, a,wf)),

where {wf},j=1,.., N;(x) refers to the sampled random
number sequence for the sample execution of the action a
in RASA. We have that for any sampled x € X at stage i,

Qf (w,a) = Q[(z,0) =
i S (VAT (0, 08) = Vi (0 wf)))
Ni(z) 2uj=1 it1 » O Wy it1 @, W5)))
Then under the supposition (x), for all a € A at any sampled
x € X! at stage i,
g ~ 1 0
Pr{‘QiK”(x,a) —QFi(x a)‘ < W}
> (1= 8ig1)Nal®) > (1 — 841 K1, (10)

This i 1s because if for all of the next states sampled by taking
a, [V (f (@, a,08)) = Vi (f (@, a,w8))] < € for e > 0,
then

1I—ifil+1 Z‘ aaw;'l)) -

‘/:I»l(f(xv a‘7w;’l)) S €,

which further implies

()

z v
and therefore
Pr{|Qf (z,0) - Q" (z,0)| < ¢} 2

I PV (f (@0 w) = Vi (Flaa, wf)] < e,

From Lemma 1, for all @ € A, with K; > /\(W,&) for
0; € (O, 1),

~ K 0 .
Pr{‘QiK”(x,a) —Q;‘(x,a)‘ > W} < d,x e X: (11)
Combining Equation (10) and (11),
A K N 0 0
Pr{’QlK’(m,a) - Qj(z,a)| < 32 + W}
> (1-6)(1 - 5i+1)K1’+1,

(2, a,wf)) = Vi (f (2,0, wf))| < e

and this yields that under the supposition, for any x € X,

Pr{|Q’LI(1 (xva)_Q? (x,a

Define the event

E(K;) = { sup max‘@{(x,a) - Qf(m,a)‘ < g} (12)

j2K; acA

0
)|§W}

> (1-6;) (101)51

If the event F(K;) occurs at the Exit step, then from the def-
inition of 6 and the event E(K;), Q¥ (z,a*) > Q¥ (z,a)
for all a # a* with a* = argmax,c, Qj(x,a) (Refer the
proof of Theorem 3.1 in [11]). Because from the definition of
V@), VI) = maxaea QI (r,0) = QI (za%) and
Vi*(z) = Qi (z,a*), with our choice of K; > \(55=,),

Pr{| Vi (z) - (1=6) (1= 8iq) K0

Vi@ > gy} <1-

if for all z € X!*!, with some K,y and a given §;; €

(0,1),
o

We now apply an inductive argument: because \7 H(x) =
VH() = 0,z € X, with Ky_; >)\(2H+1,5H 1) >
)\(2H75H 1)

{‘VKH 1

It follows that with Kg_o > /\(Q—H, OH—2),

) 0
{‘VKH — Vi _o(z)‘ > 2H—_1}
<1- (1 _5H72)(1 - §H,1)KH*1,9C S X§172

and further follows that with K p_5 > A(gr=r,61—3)

Ku_ 0
{}V 3 VH 3()} > 2H2}
<1-— (1 — 5H—3)(1 — 5H_2)KH_2
X(]. — §H71)KH_2KH_1,{£ € Xéq_g.

i1 * 0
Vit (@) - i+1(x)‘ > W} < i1

0 _
— Vi (z)‘>2—H}<5H_1,meXf L

Continuing this way, we have that

. . 0

Pr{‘VlKl(x) - V(@) > ﬁ}
<1—(1—61)(1 = 62)F2(1 — g3) K25
X oo x (1= pg_q)BeBu g e X1

and for Ko > A\(4, 60)

0
{‘VKO (w0) = Vg (a0)| > 5}
<1—(1-260)(1—d)f
X x (1= 5H_1)K1"'KH—1’
which completes the proof.
|
Theorem 1: Assume that Assumption 1 holds. Given §; €
(0,1),i = O,...,Hl— 1, select K; > /\(2{%,51') and 0 <
i <pi=1-2 % ¢=1,.,H—1. Then under RASA,
for all € € (0,1),
Pr{P,,(Ko)(a*) >1—€} >1-4,

where a* = argmax . 4, Qf(xo,a) and Ko > K, where

6094

with & > A(4,80) and 0 < pip < pify =1 — 2.

Proof: Define the event E'(Ky) = {Py,(Ko)(a*) >
1 — €} where a* = argmax . 4 Qj (%o, a). Then,

Pr{Py, (K§)(a") > 1 — e} = Pr(E'(K5))
> Pr(E'(K3) | E(k)) Pr(E(x)).

where the event E is given in Equation (12) with ¢ = 0.
From the selection of x > A(§,50) with K; >
Mgd=,6:),i = 1,..,H — 1 and p;’s for 6; € (0,1),
Pr(E(k)) > 1 — by Lemma 2. With reasoning similar
to that in the proof of Theorem 3.1 in [11], Pr(E'(l +

W)|E(K)) = 1if L+ 5 > A&, 8o) + [=251 n
17;1,6

In

Based on the proof of Lemma 2, the following result can
be stated.

Theorem 2: Assume that Assumption 1 holds. Given §; €
(0,1, = 0,...H — 1 and ¢ € gO,G], select K; >
Mags2,0:),0 < g < pj =1-2"%,i=0,...H—-1
Then under RASA,

Pr{‘VOKO(xQ) - VO*(xo)‘ > %} <1-0.

As we can see from the statements of Lemma 2, Theo-
rems 1 and 2, the performance of RASA depends on the
value of . If 6;(x) is very small or even 0 (failing to satisfy
Assumption 1) for some z € X, RASA will have a hard time
distinguishing between the optimal action and the second
best action or multiple optimal actions if x is in the sampled
tree of RASA. In general, the larger 6 is, the more effective
RASA will be (the smaller sampling complexity). Therefore,
in the actual implementation of RASA, if multiple actions’
performances are very close after “enough” iterations in
Loop, it would be advisable to keep only one action among
the competitive actions (transferring the probability mass).
The parameter 6 can thus be viewed as a measure of problem
difficulty [11].

Furthermore, to achieve a certain approximation guarantee
at the root level of the sampled tree (i.e., the quality of
Vi (z0)), we need a geomerric increase in the accuracies
of the optimal reward-to-go values for the sampled states at
the lower levels, making it necessary that the total number
of samples at the lower levels increase geometrically (K;
depends on 22/6). This is because the estimate error of
V:*(x;) for some z; € X affects the estimate of the sampled
states in the higher levels in a recursive manner (the error in
a level “adds up recursively”).

However, the probability bounds in Theorem 1 and 2
are obtained with coarse estimation of various parame-
ters/terms. For example, we used the worst case values of
0;(z),z € X,i=0,...,H — 1 and (RyaxH)? for bounding
sup,ex Vi*(z),i = 0,..,H — 1, and used conservative
bounds in Equation (10) and in relating the probability
bounds for the estimates at the two adjacent levels. Con-
sidering this, the performance of RASA should probably be
more effective in practice than the analysis indicates here.

V. DISCUSSION
A. Applying RASA to POMDPs

Consider a POMDP model parameterized as follows. X
is a finite set of states, A is a finite set of actions, O is
a finite set of observations that provide incomplete state
information, and I is the initial information-state, i.e., a
probability distribution over X (Io(z),x € X denotes the
probability of being in state x € X). At stage 4, the system
is in x; (where this state information is unknown to the
controller; the controller estimates x; by I;). The controller
takes an action a;, and the system makes a transition to
Zi+1 by the probability P(x;11|z;,a;) and the controller
obtains the reward of 7(x;, a;, x;11). At stage i+ 1, the con-
troller observes an observation generated with the probability
O(0i41|i+1,a;). The controller updates its information-
state by

Liv1(y) = nO(oi+1ly, as) Z P(ylz,ai)li(z),y € X
reX

where 7 is the normalizing constant. From this information-
state update procedure, we can induce the probability
P(I;+1]1;,a;) and map this into a next state function A :
Xr x A x[0,1] — Xy, where X is the space of all
possible information-states. The reward function R; : X X
A x [0,1] — RT is similarly induced. Once the equivalent
information-state MDP is built up, RASA can be applied to
the information-state MDP.

But we can modify the RASA description in the pseu-
docode and apply the modified RASA to the unreduced
model of the POMDP (Input to RASA is an information-
state « in X). Simply modify Loop as follows (we state
only changes):

o Loop: (i # H)

- Sample a(k) wrt. P.(k) and sample y € X
wrt. I; € X;.

— Sample z € X wrt. P(-y, a(k)).

— Sample o w.r.t. O(-|z, a(k)).

- Obtain the information-state I ,: for y € X,

i1 (K)(y)
= 10(oly,a(k)) Y P(yly’,a(k)Li(y")
y' eX
- Update only Q¥ (z, a) with a = a(k) such that
M (2, a) — M (z,a)
K,
+ ZzeX r(z,a,2)li11(2) + Vz‘+1+1 (If-p-l) (13)
Once armed with an algorithm that estimates the optimal
value/policy for finite horizon problems, we can create a
nonstationary stochastic policy in an on-line manner in the
context of “planning” or receding horizon control [3] [6] for
solving infinite horizon problems.
B. Incorporating heuristic knowledge into RASA

Suppose that we wish to control information-state MDPs
or POMDPs in an on-line manner and have some heuristic

6095

knowledge on the problem solutions. For example, for the
multiclass scheduling problems of stochastically arriving
prioritized tasks with deadlines, “earliest deadline first” and
“static priority” might be good candidate policies. (Here, the
scheduler has no knowledge on the traffic generator’s state,
yielding a POMDP formulation.) In this case, the decision
maker may well wish to incorporate knowledge of those
policies into the on-line control of the scheduling system
in such a way that for some time, a control to be taken
at the current state is generated from the heuristic policies
or knowledge while the system is learning/estimating the
optimal action (termed as “on-policy learning” in artificial
intelligence literature) but in a systematic way.

Let us assume that we use RASA in the context of receding
horizon control. We represent our heuristic knowledge as
a function ¢ : X x A — [0,1] such that for all z € X,
> aca C(x,a) = 1, which estimates the likelihood that at z €
X, a € A is optimal (heuristically estimated). If we know
that for sure at some states applying the earliest deadline
first policy is optimal, then (-function values for these states
can be set to one for the corresponding action from earliest
deadline first policy.

We then modify RASA by replacing the step in Loop
containing Equation (6) and (7) with the following:

— For 6* = argmax,, . 4 QX (z,a’),

Po(k+1)(@") — (1= pi) Po(k) (@) + p (14)
and for all a # a*,
Pu(k+1)(a) — (1 — u)Pe(k)(a). (15)
— Update 7, and normalize P,: for all a € A,
7o(k +1)(a) «— ((z,a)? * Py(k +1)(a) (16)
Pulk +1)(a) — — =+ D(@) (17)

LareaTe(k+1)(a')

We then control the degree of emphasis on the (-value
by the tuning parameter (3, analogous to cooling the tem-
perature in simulated annealing from high to low values,
approaching 0, in Equation (16). We can then extend the
result of Lemma 1 in [11] within this modification under
the assumption that inf,cx qca k ¢(x,a)’ > 0, and cor-
respondingly Lemma 2 in the present paper, providing the
similar finite-time bounds for the modified RASA. Due to
space constraints, we defer this discussion to the full version
of this paper.

VI. CONCLUDING REMARKS

RASA is mainly targetted for on-line control whereas grid-
based value-iteration approaches are for off-line control. An
interesting future research topic would be comparing the two
approaches along with other sampling-based algorithms in
terms of the sampling complexities and the performances.

[1]

[2

—

[3]

[4

=

[5]

[6

=

[7]

[8

[t

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

6096

REFERENCES

A. Arapostathis, V. S. Borkar, E. Fernandez-Gaucherand, M. K. Ghosh,
and S. I. Marcus, “Discrete-time controlled Markov processes with
average cost criterion: a survey,” SIAM J. on Control and Optimization,
vol. 31, no. 2, pp. 282-344, 1993.

B. Bonet, “An e-optimal grid-based algorithm for partially observable
Markov decision processes,” in Proc. of the 19th Int. Conf. on Machine
Learning, 2002, pp. 51-58.

H. S. Chang, M. C. Fu, J. Hu, and S. I. Marcus, “An adaptive sam-
pling algorithm for solving Markov decision processes,” Operations
Research, vol. 53, no. 1, pp. 126-139, 2005.

R. Jain and P. Varaiya, “Simulation-based uniform value function
estimates of discounted and average-reward MDPs,” in Proc. of the
43rd IEEE Conf. on Decision and Control,, 2004, pp. 4405-4410.
M. Hauskrecht, “Value function approximations for partially observ-
able Markov decision processes,” J. of Artificial Intelligence Research,
vol. 13, pp. 33-95, 2000.

O. Herndndez-Lerma and J. B. Lasserre, “Error bounds for rolling
horizon policies in discrete-time Markov control processes,” [EEE
Trans. on Automatic Control, vol. 35, pp. 1118-1124, 1990.

W. S. Lovejoy, “Computationally feasible bounds for partially ob-
served Markov decision processes,” Operations Research, vol. 39, no.
1, pp. 162-175, 1991.

J. Pineau, G. Gordon, and S. Thrun, “Point-based value iteration: an
anytime algorithm for POMDPs,” in Proc. of the Int. Joint Conf. on
Artificial Intelligence, 2003.

A. S. Poznyak, K. Najim, and E. Gomez-Ramirez, Self-Learning
Control of Finite Markov Chains, Marcel Dekker, Inc. New York,
2000.

M. L. Puterman, Markov Decision Processes: Discrete Stochastic
Dynamic Programming. Wiley, New York, 1994.

K. Rajaraman and P. S. Sastry, “Finite time analysis of the pursuit
algorithm for learning automata,” IEEE Trans. on Systems, Man, and
Cybernetics, Part B, vol. 26, no. 4, pp. 590-598, 1996.

G. Santharam and P. S. Sastry, “A reinforcement learning neural
network for adaptive control of Markov chains,” [EEE Trans. on
Systems, Man, and Cybernetics, Part A, vol. 27, no. 5, pp. 588-600,
1997.

R. D. Smallwood and E. J. Sondik, “The optimal control of partially
observable Markov decision processes over a finite horizon,” Opera-
tions Research, vol. 21, pp. 1071-1088, 1973.

M. T. J. Spaan and N. Vlassis, “A point-based POMDP algorithm
for robot planning,” in Proc. of the IEEE Conf. on Robotics and
Automation, 2004, pp. 2399-2404.

M. A. L. Thathachar and P. S. Sastry, “Varieties of learning automata:
an overview,” [EEE Trans. on Systems, Man, and Cybernetics, Part
B, vol. 32, no. 6, pp. 711-722, 2002.

R. M. Wheeler, Jr. and K. S. Narendra, “Decentralized learning in
finite Markov chains,” IEEE Trans. on Automatic Control, vol. AC-
31, no. 6, pp. 519-526, 1986.

R. Zhou and E. A. Hansen, “An improved grid-based approximation
algorithm for POMDPs,” in Proc. of the Int. Joint Conf. on Artificial
Intelligence, 2001.

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

