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Abstract— Suppose {Xi} is an alpha-mixing stochastic
process assuming values in a set X , and that f : X →
R is bounded and measurable. It is shown in this note
that the sequence of empirical means (1/m)

∑m
i=1 f(Xi)

converges in probability to the true expected value of the
function f(·). Moreover, explicit estimates are constructed
of the rate at which the empirical mean converges to the
true expected value. These estimates generalize classical
inequalities of Hoeffding, Bennett and Bernstein to the case
of alpha-mixing inputs. In earlier work, similar results have
been established when the alpha-mixing coefficient of the
stochastic process converges to zero at a geometric rate.
No such assumption is made in the present note. This
result is then applied to the problem of PAC (probably
approximately correct) learning under a fixed distribution.

I. INTRODUCTION

Suppose (X,S) is a measurable space, and let
{Xi}∞i=−∞ be a stationary two-sided stochastic process
assuming values in X , with the canonical representation.
Let P̃0 denote the one-dimensional marginal probability
of P̃ . Suppose f : X → [−F, F ] is measurable and has
zero mean with respect to the measure P̃0.1 Let {xi}
be a realization of the stochastic process {Xi}, and let
x denote (xi, i = −∞, . . . ,∞) ∈ X∞. Let us examine
the sequence of “empirical” means

Êm(f ;x) :=
1
m

m∑
i=1

f(xi).

One of the classical questions in the theory of empirical
processes is: When does the sequence of empirical
means converge to the true mean value of zero, and if
so, at what rate?

This question arises in a couple of contexts. First,
many problems in PAC (probably approximately correct)
learning theory can also be viewed as questions on the
convergence of empirical means to their true values,
the so-called ”law of large numbers” question. See [14]
for a discussion. Second, under certain circumstances,
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1If f does not have zero mean, we can replace f by f −E(f) and
apply the various results in the note.

the problems of system identification and stochastic
adaptive control can be closely linked to problems in
PAC learning theory. See [15] for a discussion.

More specifically, suppose we define the quantities

qu(m, ε; P̃ ) := P̃{x ∈ X∞ : Êm(f ;x) > ε}.
ql(m, ε; P̃ ) := P̃{x ∈ X∞ : Êm(f ;x) < −ε}.
q(m, ε; P̃ ) := P̃{x ∈ X∞ : |Êm(f ;x)| > ε}.

When is it the case that q(m, ε) → 0 as m → ∞? If
q(m, ε; P̃ ) → 0 as m → ∞, then it can be said that the
empirical means of f converge in probability to the true
mean.

There is a vast literature on the convergence of
empirical means the stochastic process consists of i.i.d.
random variables, that is, when P̃ = (P̃0)∞. See [10]
for proofs of these results. Hoeffding’s inequality states
that, for all m, ε, we have

ql(m, ε; (P̃0)∞), qu(m, ε; (P̃0)∞) ≤ exp(−2mε2),

q(m, ε; (P̃0)∞) ≤ 2 exp(−2mε2).

Let σ2 denote the variance of the function f . Then
Bennett’s inequality states that

qu(m, ε; (P̃0)∞) ≤ exp
[
−mε2

2σ2
B(εF/σ2)

]
,

where the function B(·) is defined by

B(λ) := 2
(1 + λ) ln(1 + λ) − λ

λ2
. (1)

In particular, if we observe that B(λ) ≥ (1 + λ/3)−1

whenever λ < 1, we get the Bernstein inequality, which
states that

qu(m, ε; (P̃0)∞) ≤ exp
[ −mε2

2(σ2 + εF/3)

]
.

Each of these inequalities holds when f is replaced by
−f . Thus the estimate for the quantity q(m, ε; (P̃0)∞)
is just twice the right side of each of these estimates.

Over the years several papers have addressed the
extension of the above (and other related) inequalities
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to the case where the stochastic process {Xi} is not
necessarily i.i.d. In the present paper, it is shown that the
empirical means converge to zero when the stochastic
process {Xi} is α-mixing. Moreover, each of the pre-
vious inequalities (Hoeffding, Bennett and Bernstein) is
extended to the case of α-mixing input sequences. It is
not assumed that the α-mixing coefficient converges to
zero at a geometric rate, as in earlier papers, notably [6],
[7]. The estimates presented here improve upon those
in [14], Section 3.4.2. Once these estimates are derived,
they are applied to the problem of PAC (probably ap-
proximately correct) learning under a fixed distribution.

II. ALPHA-MIXING STOCHASTIC PROCESSES

In this section, a definition is given of the notion of α-
mixing, and a fundamental inequality due to Ibragimov
is stated without proof.

Given the stochastic process {Xi}, let Σ0
−∞ denote

the σ-algebra generated by the random variables Xi, i ≤
0; similarly let Σ∞

k denote the σ-algebra generated by
the random variables Xi, i ≥ k. Then the alpha-mixing
coefficient α(k) of the stochastic process is defined by

α(k) := sup
A∈Σ0

−∞,B∈Σ∞
k

|P̃ (A ∩ B) − P̃ (A)P̃ (B)|.

Clearly α(k) ∈ [0, 1] for all k. Moreover, since Σ∞
k+1 ⊆

Σ∞
k , it is obvious that α(k) ≥ α(k + 1). Thus {α(k)}

is nonincreasing and bounded below. The stochastic
process is said to be α-mixing if α(k) → 0 as k → ∞.

One of the most useful inequalities for α-mixing
processes is the following, due to Ibragimov [5].

Theorem 1: Suppose {Xi} is an α-mixing process
on a probability space (X∞,S∞, P̃ ). Suppose f, g :
X∞ → R are essentially bounded, that f is measurable
with respect to Σ0

−∞, and that g is measurable with
respect to Σ∞

0 . Then

|E(fg, P̃ )−E(f, P̃ ) E(g, P̃ )| ≤ 4α(k) ‖ f ‖∞ · ‖ g ‖∞ .
(2)

For a proof, see [5] or [3], Theorem A.5. The proof
is also reproduced in [14], Theorem 2.2.

Since in this note we shall be taking expectations
and measures of the same function or set with respect
to different probability measures, we use the notation
E(f, P̃ ) to denote the expectation of f with respect to
the measure P̃ .

Upon applying an inductive argument to the above
inequality, the following result follows readily.

Corollary 1: Suppose {Xi} is an α-mixing stochas-
tic process. Suppose f0, . . . , fl are essentially bounded
functions, where fi depends only on Xik. Then∣∣∣∣∣E

[
l∏

i=0

fi, P̃

]
−

l∏
i=0

E(fi, P̃ )

∣∣∣∣∣ ≤ 4lα(k)
l∏

i=0

‖ fi ‖∞ .

(3)

III. MAIN RESULTS

In this section we state and prove the main results.
In particular, it is shown that empirical means converge
to the true mean value of zero, and explicit quantitative
estimates are given for the rate of convergence. These
estimates generalize the classical inequalities of Ho-
effding, Bennett and Bernstein to the case of α-mixing
inputs.

Theorem 2: Suppose f : X → [−F, F ] has zero
mean and variance no larger than σ2. Suppose {Xt}
is a stationary stochastic process with the law P̃ , and
define q(m, ε; P̃ ) as before. Given an integer m, choose
k ≤ m, and define l := 	m/k
. Define

BHoeffding := exp[−ε2l/2F 2] + 4α(k)l exp[εl/F ],

BBennett := exp
[
− lε2

2σ2
B(εF/σ2)

]
+4α(k)l

(
1 + εF

σ2

)l

,

where the function B(·) is defined in (1).

BBernstein := exp
[ −lε2

2(σ2 + εF/3)

]
+4α(k)l

(
1 + εF

σ2

)l

.

Then we have the following inequalities: Hoeffding-
type:

ql(m, ε; P̃ ), qu(m, ε; P̃ ) ≤ BHoeffding, (4)

q(m, ε; P̃ ) ≤ 2BHoeffding. (5)

Bennett-type:

ql(m, ε; P̃ ), qu(m, ε; P̃ ) ≤ BBennett, (6)

q(m, ε; P̃ ) ≤ 2BBennett. (7)

Bernstein-type:

ql(m, ε; P̃ ), qu(m, ε; P̃ ) ≤ BBernstein, (8)

q(m, ε; P̃ ) ≤ 2BBernstein. (9)

Finally, suppose α(k) → 0 as k → ∞. Then
q(m, ε; P̃ ) → 0 as m → ∞.

The proof of the theorem makes use of the following
technical lemma.

Lemma 1: Suppose β(k) ↓ 0 as k → ∞, and h :
Z+ → R is strictly increasing. Then it is possible to
choose a sequence {km} such that km ≤ m, and with
lm = 	m/km
 we have

lm → ∞, β(km)h(lm) → 0 as m → ∞.
Proof: Though the function β is defined only for

integer-valued arguments, it is convenient to replace it by
another function defined for all real-valued arguments.
Moreover, it can be assumed that β(·) is continuous and
monotonically decreasing, so that β−1 is well-defined,
by replacing the given function by a larger function if
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necessary. With this convention, choose any sequence
{ai} such that ai ↓ 0 as i → ∞. Define

mi := i�β−1(ai/h(i)).
Clearly ai/h(i) ↓ 0, so β−1(ai/h(i)) ↑ ∞. Therefore
iβ−1(ai/h(i)) ↑ ∞. Thus {mi} is a monotonically in-
creasing sequence. Given an integer m, choose a unique
integer i = i(m) such that mi ≤ m < mi+1. Define
lm = i(m), and choose km as the largest integer such
that lm = 	m/km
. Note that i(m) → ∞ as m → ∞, so
that lm → ∞. Next, since i�β−1(ai/h(i)) = mi ≤ m,
it follows that

km ≥ �β−1(ai/h(i)).
So

β(km) ≤ β(�β−1(ai/h(i)))
≤ β[β−1(ai/h(i))] = ai/h(i).

Since lm = i, we have h(lm) = h(i). Finally

β(km)h(lm) ≤ ai.

Since ai → 0 as i → ∞, the result follows.
Proof of the theorem: Given integers m, k, l, let r :=

m − kl, and define the sets of integers

Ii := {i, i + k, . . . , i + lk}, 1 ≤ i ≤ r,

Ii := {i, i + k, . . . , i + (l − 1)k}, r + 1 ≤ i ≤ k.

Define pi := |Ii|/m, and note that

|Ii| = l + 1 for 1 ≤ i ≤ r, |Ii| = l for r + 1 ≤ i ≤ k,

k∑
i=1

pi = 1.

Next, define the random variables

am(x) :=
1
m

m∑
i=1

f(xi),

bi(x) :=
1
|Ii|

∑
j∈Ii

f(xj), i = 1, . . . , k.

Then

am(x) =
n∑

k=1

pibi(x).

Step 1: Suppose γ > is arbitrary. It is claimed that

E[exp(γam), P̃ ] ≤
k∑

i=1

piE[exp(γbi), P̃ ]. (10)

Note that exp(γ·) is a convex function. Therefore, for
each x, we have

exp(γam(x)) ≤
k∑

i=1

pi exp(γbi(x)).

Taking expectations of both sides with respect to P̃
establishes the claim.

Step 2: It is claimed that

E[exp(γbi), P̃ ] ≤ {E[exp(γf/|Ii|), P̃0]}|Ii|

+ 4α(k)(|Ii| − 1)eγF . (11)

Note that bi(x) depends only on xi+jk for j ranging
from 0 through |I1| − 1. Thus the indices of the various
x’s are separated by k. Now apply Theorem 1.2 This
shows that

E[exp(γbi), P̃ ] ≤ E[exp(γbi), (P̃0)∞]+4α(k)(|Ii|−1)eγF .

Next, we have

exp(γbi) =
∏
j∈Ii

exp[γf(xj)/|Ii|],

and under the probability measure (P̃0)∞ the random
variables f(xj) are independent. Therefore

E[exp(γbi), (P̃0)∞] =
∏
j∈Ii

E[exp(γf/|Ii|), P̃0]

= {E[exp(γf/|Ii|), P̃0]}|Ii|.

Combining these inequalities establishes the claim.
Step 3: In this step, the quantity E[exp(γam), P̃ ]

is estimated in three different ways, which lead re-
spectively to the Hoeffding-type, Bennett-type and
Bernstein-type inequalities. As these estimates are used
in the proofs of the “classical” versions of these inequal-
ities (i.e., in the case of i.i.d. stochastic processes), only
very sketchy proofs are given.

Hoeffding-type: Note that f has zero mean and
assumes values over an interval of width 2F . Therefore
(see for example [2], p. 122)

E[exp(γf/|Ii|), P̃0] ≤ exp(γ2F 2/2|Ii|2).
Substituting this bound into (11) leads to

E[exp(γbi), P̃ ] ≤ exp(γ2F 2/2|Ii|) + 4α(k)(|Ii| − 1)eγF

≤ exp(γ2F 2/2l) + 4α(k)leγF ,

since l ≤ |Ii| ≤ l + 1. Substituting this bound into (11)
shows that

E[exp(γam), P̃ ] ≤ exp(γ2F 2/2l) + 4α(k)leγF , (12)

since
∑

pi = 1.
Next, by Markov’s inequality, for any ε > 0 we have

P̃{am > ε} = P̃{exp(γam) > eγε}
≤ E[exp(γam), P̃ ]e−γε

≤ exp(−γε + γ2F 2/2l) + 4α(k)leγF−γε

≤ exp(−γε + γ2F 2/2l) + 4α(k)leγF

2Since the stochastic process is stationary, the fact that the indices
do not begin with zero is of no consequence.
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since exp(−γε) ≤ 1.
The above inequality is valid for every choice of γ >

0. Now let us choose γ so as to minimize the exponent
of the first term. This choice of γ is

γ =
lε

F 2
, −γε + γ2F 2/2l = − lε2

2F 2
.

This finally leads to the desired inequality

P̃{am > ε} ≤ exp(−lε2/2F 2) + 4α(k)lelε/F .

Note that the right side is BHoeffding as defined earlier.
This establishes the Hoeffding type inequalities.

Bennett-type: If Y is a zero-mean random variable
bounded above by M and with variance σ2, then (see
e.g., [10])

E[etY , P̃0] ≤ exp[σ2g(t, M)],

where

g(t, M) :=
∞∑

j=2

tj

j!
M j−2 =

etM − 1 − tM

M2
.

Now apply this inequality with Y = f , M = F and
t = γ/|Ii|. This shows that

E[exp(γf/|Ii|), P̃0] ≤ exp[σ2g(γ/|Ii|, F )],

E[exp(γbi), P̃ ] ≤ exp[|Ii|σ2g(γ/|Ii|, F )]
+ 4α(k)(|Ii| − 1)eγF .

Now let us examine the exponent in the first term. Since
l ≤ |Ii| ≤ l + 1, we have that

|Ii|σ2g(γ/|Ii|, F ) = σ2
∞∑

j=2

γj

j!|Ii|j−1
F j−2

≤ σ2
∞∑

j=2

γj

j!lj−1
F j−2

= lσ2g(γ/l, F ).

Therefore

E[exp(γbi), P̃ ] ≤ exp[lσ2g(γ/l, F )].

So

P̃{am > ε} ≤ exp
[
lσ2g

(γ

l
, F

)
− γε

]
+4α(k)leγF−γε.

(13)
The above inequality is valid for every value of γ. Now
let us choose γ so as to minimize the first exponent. Let

c(γ) := lσ2g
(γ

l
, F

)
− γε.

Then a routine calculation shows that c(·) is minimized
when

exp[γF/l] − 1 = εF/σ2, or γ =
l

F
ln

(
1 +

εF

σ2

)
.

With this choice of γ, we have

c(γ) = − lε2

2σ2
· ε2F 2

σ4
B(εF/σ2),

where B(·) is defined in (1).
Next, to estimate P̃{am > ε}, it is permissible to

replace γF − γε by the larger number γF in (13). This
finally leads to the upper bound

P̃{am > ε} ≤ exp
[
− lε2

2σ2
· ε2F 2

σ4
B(εF/σ2)

]

+ 4α(k)l exp
[
l ln

(
1 +

εF

σ2

)]
.

Note that the right side is BBennett defined earlier. This
establishes the Bennett type inequalities.

Bernstein-Type: As in the classical proof we have
that

B(λ) ≥ (1 + λ/3)−1 ∀λ.

Substituting this bound in the Bennett estimates leads to
the Bernstein type estimates.

The above bounds hold for any stochastic process
generating the samples. To show that q(m, ε; P̃ ) → 0 as
m → ∞ whenever the stochastic process is α-mixing,
apply Lemma 1 with

β(k) := α(k), h(l) := 4l exp[4ε/lF ].

Then it is always possible to choose a sequence {km}
such that, with lm := 	m/km
, we have

lm → ∞, 4α(km)lm exp[4ε/lmF ] → 0 as m → ∞.

Applying this fact to any of the proven bounds leads to
the desired conclusion that q(m, ε) → 0 as m → ∞. .

Remarks: In the case where the stochastic process is
i.i.d., it is clear that α(k) = 0 for all k ≥ 1. Hence,
given m, we can choose km = 1 and lm = m. With this
choice, each of the inequalities in the theorem reduces
to its well-known counterpart for i.i.d. processes.

IV. AN APPLICATION TO PAC LEARNING

In this section, the estimate derived in the preceding
section is applied to a problem in fixed-distribution PAC
(probably approximately correct) learning. In particular,
it is shown that if a concept class is learnable with i.i.d.
inputs, it remains learnable with α-mixing inputs.

The reader is referred to Chapter 3 of [13], [14] for
detailed definitions and discussions of PAC learning;
only very brief descriptions are given here.
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A. The PAC Learning Problem Formulation

Suppose as before that (X,S) is a measurable space,
and let F ⊆ [0, 1]X consist of functions that are
measurable with respect to S. Such a family F is said
to be a function family. In case F consists solely of
binary-valued functions, i.e., in case F ⊆ {0, 1}X , then
F is said to be a concept class.

In the so-called ‘fixed distribution’ PAC learning
problem, there is a fixed (and known) stationary prob-
ability measure P̃ on (X∞,S∞), and a fixed but un-
known function f ∈ F , called the ‘target’ function.
Let P̃0 denote the one-dimensional marginal probability
corresponding to P̃ . Suppose {xi}∞i=−∞ is a sample path
of a stationary stochastic process {Xi}∞i=−∞ with the
law P̃ . For each sample xi ∈ X , an ‘oracle’ returns the
value f(xi) of the unknown function f at the sample
xi. Based on these ‘labelled samples,’ an algorithm
returns the ‘hypothesis hm(f ;x). The goodness of the
hypothesis is measured by the so-called ‘generalization
error,’ defined as

dP̃0
(f, hm) :=

∫
X

|f(x) − hm(x)| P̃0(dx).

Given an ‘accuracy’ ε > 0, the quantity

r(m, ε; P̃ ) := sup
f∈F

P̃{x ∈ X∞ : dP̃0
[f, hm(f ;x)] > ε}

is called the ‘learning rate’ function. The algorithm is
said to be PAC (probably approximately correct) to
accuracy ε if r(m, ε; P̃ ) → 0 as m → ∞, for a fixed
ε > 0. The algorithm is said to be PAC if it is PAC for
every fixed ε > 0, i.e., if r(m, ε; P̃ ) → 0 as m → ∞ for
all ε > 0. The pair (F , P̃ ) is said to be PAC learnable
if there exists a PAC algorithm.

B. Known Results for the Case of I.I.D. Samples

Next we introduce the notion of covering numbers
and the finite metric entropy condition. Given a number
ε > 0, the ε-covering number of F with respect to
the pseudometric dP̃0

is defined as the smallest number
of balls of radius ε with centers in F that cover F ,
where the radius is measured with respect to dP̃0

. The
ε-covering number is denoted by N(ε,F , dP̃0

). In case
the set F cannot be covered by a finite number of balls
of radius ε, the covering number is taken as infinity. The
set F is said to satisfy the finite metric entropy condition
with respect to dP if

N(ε,F , dP̃0
) < ∞ ∀ε > 0.

For the fixed distribution learning problem with i.i.d.
inputs, the following results are known.

Theorem 3: Suppose the stochastic process {Xi} is
i.i.d., i.e., that P̃ = (P̃0)∞. Suppose the function
family F satisfies the finite metric entropy condition

with respect to dP̃0
. Then the pair (F , (P̃0)∞) is PAC

learnable. In case F is a concept class, the finite metric
entropy condition is also necessary for PAC learnability.

The proof of the theorem can be found in [1], or [14],
Theorem 6.7, p. 238.

In case the function family F has finite metric en-
tropy, the following ‘minimal empirical risk’ (MER) al-
gorithm can be shown to be PAC. Again, the details can
be found in the above two references. Given F and an
accuracy ε > 0, find a minimal ε/2-cover {g1, . . . , gN )
for F . Given the sample sequence x1, . . . , xm, define
the empirical error

Ĵi :=
1
m

m∑
j=1

|f(xj) − gi(xj)|.

Note that the above quantity is computable since the
values f(xj) are available from the oracle. Also, Ĵi

is just the empirical estimate for the generalization
error dP̃0

(f, gi) based on the sample x. Choose as the
hypothesis hm one of the gi such that Ĵi is as small as
possible. This algorithm is called the ‘minimal empirical
risk’ algorithm because it generates a hypothesis hm that
matches the data as closely as possible on the samples
x1, . . . , xm. The learning rate for the minimal empirical
risk algorithm is given by (see [1] for the case of concept
classes or [14], Theorems 6.2 and 6.3 for the general
case)

r(m, ε; (P̃0)∞) ≤ N exp(−mε2/8)

if F is a function class, or

r(m, ε; (P̃0)∞) ≤ N exp(−mε/32)

if F is a concept class .

C. Fixed Distribution Learning with Alpha-Mixing Input
Sequences

With this brief introduction, we are in a position
to study the same problem when the learning sample
sequence {xi} is not i.i.d., but is α-mixing.

Theorem 4: Suppose the stochastic process {Xi} is
α-mixing with the law P̃ , and that the function family
F satisfies the finite metric entropy condition with
respect to P̃0. Then the pair (F , P̃ ) is PAC learnable.
Specifically, suppose ε > 0 is a given accuracy, and
let N equal the ε/2-covering number of F with respect
to dP̃0

. Let {g1, . . . , gN} be a minimal ε/2-cover, and
apply the minimal empirical risk algorithm. For any
integer m, let k ≤ m and let l := 	m/k
. Then

r(m, ε; P̃ ) ≤ N [exp(−2lε2) + 4α(k) exp(2εl)].
Proof: The proof closely follows that in the case of

i.i.d. inputs. Let all symbols be as above, and suppose
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f ∈ F be the unknown target function. Renumber the
ε/2-cover in such a way that

dP̃0
(f, g1) ≤ ε/2, dP̃0

(f, gi) ≤ ε, i = 2, . . . , k,

dP̃0
(f, gi) > ε, i = k + 1, . . . , N.

It is clear that k ≥ 2.
Recall that Ĵi is just an empirical estimate of the

distance dP̃0
(f, gi) based on the sample x. Hence

dP̃0
(f, hm) > ε only if

Ĵ1 − dP̃0
(f, g1) > ε/4, and

∃i ∈ {k + 1, . . . , N} s.t. dP̃0
(f, gi) − Ĵi > ε/4.

If the conditions in the above equation fail to hold, then
on the MER algorithm g1 outperforms all the functions
gk+1, . . . , gN . Hence the hypothesis hm will equal one
of g1, . . . , gk and as a result dP̃0

(f, hm) ≤ ε. Now the
probability of each of the events above is bounded, from
(4) and (5), by e−2lε2 + 4α(k)e2εl.3 Therefore

r(m, ε; P̃ ) ≤ N(−k + 1)e−2lε2 + 4α(k)e−2lε

≤ N [exp(−2lε2) + 4α(k) exp(2εl)].

This proves the estimate. Moreover, by Lemma 1, it is
always possible to choose a sequence {km} such that
rα(m, ε) → 0 as m → ∞.

It is clear that, if all functions in F have a known
bounded variance, then one can also derive bounds of
the Bennett or Bernstein-type, instead of the Hoeffding-
type bounds as above.

Observe that if F is a concept class, then the finite
metric entropy condition is also necessary for PAC
learnability with i.i.d. inputs. This leads to the following
observation.

Corollary 2: Suppose F is a concept class, and P̃
a stationary probability measure. If the pair (F , P̃ )
is PAC learnable with i.i.d. inputs with the law P̃0,
then it remains PAC learnable with an α-mixing input
sequence.

V. DISCUSSION AND CONCLUSIONS

In this paper, we have shown that empirical means of a
function converge in probability to the true mean, when
the underlying sample process is α-mixing. Compared
with the earlier results of [6], [7], the main improvement
in the present case is that the law of large numbers is
established without assuming that the α-mixing coeffi-
cient decays to zero at a geometric rate. We have also
applied this result to show that if a concept class is PAC

3Note that, since all the functions in F assume values in the interval
[0, 1] which has width one, we should put F = 0.5 in each of the
above equations.

learnable with i.i.d. inputs, then it remains PAC learnable
with α-mixing samples.

Note that the present results (as well as earlier results)
apply only to a single function. By contrast, if the sample
process is β-mixing, uniform laws of large numbers
can be proven even for infinitely many functions. See
[9] for the result and [4] for estimates of the rate
of convergence. In [16], the author states that in her
opinion, the corresponding statement is not true for α-
mixing processes. However, this question is still open as
of now.
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