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Abstract— Suppose m is a positive integer, and let M :=
{1, . . . , m}. Suppose {Yt} is a stationary stochastic process
assuming values in M. In this paper we study the question:
When does there exist a hidden Markov model (HMM) that
perfectly reproduces the complete statistics of this process?

Though HMM’s are more than forty years old, no complete
solution to this problem is available. It is known that a
necessary condition for the process to have a HMM is that
an associated ‘Hankel’ matrix should have finite rank. It is
also known that the condition is not sufficient in general. In
subsequent work, an algorithm for constructing a HMM for
a finite rank process has been given, assuming at the outset
that the process has a HMM. Hence, to date there are no
conditions, either necessary or sufficient, for a process to have
a HMM that can be stated in terms of the process alone, and
nothing else.

Against this background, in the present paper we show the
following: (i) Suppose a process has finite Hankel rank. Then
there always exists a ‘regular quasi-realization’ of the process.
Moreover, two regular quasi-realizations are related through
a similarity transformation. (ii) If in addition the process is α-
mixing, every regular quasi-realization has additional features.
Specifically, the ‘state transition’ matrix associated with the
quasi-realization satisfies the ‘quasi-strong Perron property’
(its spectral radius is one, the spectral radius is a simple
eigenvalue, and there are no other eigenvalues on the unit
circle). (iii) Suppose a process has finite Hankel rank, is both
α-mixing as well as ‘ultra-mixing’ (a property defined here),
and in addition satisfies a technical condition. Then it has an
irreducible HMM realization (and not just a quasi-realization).
Moreover, the Markov process underlying the HMM is either
aperiodic (and is thus α-mixing), or else satisfies a ‘consistency
condition.’ In the other direction, suppose a HMM satisfies
the consistency condition plus another technical condition.
Then the associated output process has finite Hankel rank,
is α-mixing and is also ultra-mixing. Taken together, these
two results show that, modulo two technical conditions, the
finite Hankel rank condition, α-mixing, and ultra-mixing are
‘almost’ necessary and sufficient for a process to have an
irreducible and aperiodic HMM.

I. INTRODUCTION

A. General Remarks

Hidden Markov models (HMM’s) were originally in-
troduced in the statistics literature as far back as 1957.
Subsequently, they were used with partial success in a
variety of applications in the engineering world, starting in
the late 1970’s. Some of these applications include speech
processing [28], [25] and source coding. In recent years,
HMM’s have also been used in some problems in compu-
tational biology, such identifying the genes of an organism
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from its DNA [22], [29], [12] and classifying proteins into
a small number of families [21]. The bibliographies of [11],
[27] contain many references in this area. In spite of there
being so many applications of hidden Markov models, many
of the underlying statistical questions remain unanswered.
The aim of this paper is to address some of these issues.

The problem under study can be briefly stated as follows.
Suppose m is a positive integer and let M := {1, . . . ,m}.
Suppose {Yt} is a stationary stochastic process assuming
values in M. We are interested in the following kinds of
questions:

1) Suppose the complete statistics of the process {Yt}
are known. Under what conditions is it possible to
construct a hidden Markov model (HMM) for this
process?

2) Suppose it is not possible to construct a HMM for the
process. Is it possible to construct at least a ‘quasi’
HMM for the process? If so, what properties does
such a quasi-realization have?

3) How can one construct a ‘partial realization’ for the
process, that faithfully reproduces the statistics of the
process only up to some finite order?

4) Suppose one has access not to the entire statistics of
the process, but merely several sample paths, each of
finite length. How can one compute approximations to
the true statistics of the process on the basis of these
observations, and what is the confidence one has in
the accuracy of these estimates?

5) Suppose one has constructed a partial realization of
the process on the basis of a finite length sample
path. How are the accuracy and confidence in the
estimates of the statistics translated into accuracy and
confidence estimates on the parameters in the model?

Ideally, we would like to be able to say something about
all of these questions. In a ‘practical’ application, the last
three questions are the ones to which we would most
like to have an answer. However, these are also the most
difficult questions to answer. In this paper, we provide
nearly complete answers to the first two questions. In a
companion paper, we provide nearly complete answers to
the remaining three questions.

The current situation with regard to the existence of a
HMM for a stationary stochastic process can be summarized
as follows: With every process over a finite alphabet we can
associate a ‘Hankel’ matrix, call it H . Then the process has
a HMM only if H has finite rank. However, the converse
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is not true in general. If it is known at the outset that the
process has a HMM, and if some other assumptions hold,
then it is possible to construct another HMM for the process,
(usually with a much larger state space than the original).

Against this background, in the present paper we show
the following:

1) Suppose a process has finite Hankel rank. Then there
always exists a ‘quasi-realization’ of the process. That
is, there exist a row vector, a column vector, and a
set of matrices, together with a formula for computing
the frequencies of arbitrary strings that is similar to
the corresponding formula for HMM’s. Moreover, the
quasi-realization can be chosen to be ‘regular,’ in
the sense that the size of the ‘state space’ in the
quasi-realization can always be chosen to equal the
rank of the Hankel matrix. Further, two different
regular quasi-realizations of the same process are
related through a similarity transformation. Hence,
given a finite Hankel-rank process, it is possible to
determine whether or not it has a regular HMM in
the conventional sense, by testing the feasibility of a
nonlinear programming problem.

2) If in addition the process is α-mixing, every regular
quasi-realization has additional features. Specifically,
a matrix associated with the finitely computable
model (which plays the role of the state transition
matrix in a HMM) satisfies the ‘quasi-strong Perron
property’ (its spectral radius is one, the spectral
radius is also an eigenvalue, and there are no other
eigenvalues on the unit circle). A corollary is that if
a finite Hankel rank α-mixing process has a regular
HMM in the conventional sense, then the associated
Markov chain is irreducible and aperiodic. While this
last result is not surprising, it does not seem to have
been stated explicitly.

3) Suppose a process has finite Hankel rank, is both α-
mixing as well as ‘ultra-mixing’ (a property defined
here), and in addition satisfies a technical condition.
Then it has an irreducible HMM realization (not just
a quasi-realization). Moreover, the Markov process
underlying the HMM is either aperiodic (and is thus
α-mixing), or else satisfies a ‘consistency condition.’
In the other direction, suppose a HMM satisfies the
consistency condition plus another technical condi-
tion. Then the associated output process has finite
Hankel rank, is α-mixing and is also ultra-mixing.
Taken together, these two results show that, mod-
ulo two technical conditions, the finite Hankel rank
condition, α-mixing, and ultra-mixing are ‘almost’
necessary and sufficient for a process to have an
irreducible and aperiodic HMM.

The basic ideas of HMM realization theory are more than
forty years old. A sufficient condition for the existence of a
HMM, involving the existence of a suitable polyhedral cone,
was established by Dharmadhikari [14]. So what is new

forty years later? In [1], Anderson says that “The use of a
cone condition, described by some as providing a solution to
the realization problem, constitutes (in this author’s opinion)
a restatement of the problem than a solution of it. This is
because the cone condition is encapsulated by a set of equa-
tions involving unknowns; there is no standard algorithm for
checking the existence of a solution or allowing construction
of a solution;” He then proceeds to give sufficient conditions
for the existence of a suitable cone, as well as a procedure
for constructing it. However, in order to do this he begins
with the assumption that the process under study has a
HMM; see Assumption 1 on p. 84 of [1]. As a consequence,
some of the proofs in that paper make use of the properties
of the unknown but presumed to exist HMM realization. In
contrast, in the present paper the objective is to state all
conditions only in terms of the process under study, and
nothing else, and deduce the existence of a HMM, rather
than to postulate it, as in [1]. This objective is achieved.
Thus it is believed that the present paper is perhaps the first
one in the forty year-old literature on the subject to state
a set of conditions purely in terms of the process under
study for the existence of a HMM. The fact that the set of
necessary conditions and the set of sufficient conditions are
so close is an added bonus.

II. PRELIMINARIES

Throughout the paper, we use the definition of a HMM
introduced in [1], which may be termed the ‘joint Markov
process’ type of HMM. Suppose {Yt} is a stationary
stochastic process on the finite alphabet M := {1, . . . ,m}.
We say that the process {Yt} has a HMM of the ‘joint
Markov process’ type if there exists another stationary
stochastic process {Xt} over a finite state space N :=
{1, . . . , n} such that the joint process {(Xt,Yt} is Markov,
and in addition,

Pr{(Xt,Yt)|Xt−1,Yt−1} = Pr{(Xt,Yt)|Xt−1}. (1)

This definition ensures that the process {Xt} by itself is a
Markov process.

Given an integer l, the set Ml consists of l-tuples. These
can be arranged either in first-lexical order (flo) or last-
lexical order (llo). First-lexical order refers to indexing the
first element, then the second, and so on, while last-lexical
order refers to indexing the last element, then the next to
last, and so on. For example, suppose m = 2 so that M =
{1, 2}. Then

M3 in llo = {111, 112, 121, 122, 211, 212, 221, 222},
M3 in flo = {111, 211, 121, 221, 112, 212, 122, 222}.
Since the process {Yt} is assumed to be stationary, given

any finite string u ∈ M∗, we can speak of its frequency
fu. Thus, if |u| = l and u = u1 . . . ul, we have

fu := Pr{(Yt+1,Yt+2, . . . ,Yt+l) = (u1, u2, . . . , ul)}.
Since the process is stationary, the above probability is
independent of t.
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Given integers k, l ≥ 1, the matrix Fk,l is defined as

Fk,l = [fuv,u ∈ Mk in flo,v ∈ Ml in llo] ∈ [0, 1]m
k×ml

.

Thus the rows of Fk,l are indexed by an element of Mk in
flo, while the columns are indexed by an element of Ml in
llo. For example, suppose m = 2. Then

F1,2 =
[

f111 f112 f121 f122

f211 f212 f221 f222

]
,

whereas

F2,1 =

⎡
⎢⎢⎣

f111 f112

f211 f212

f121 f122

f221 f222

⎤
⎥⎥⎦ .

Given integers k, l ≥ 1, we define the matrix Hk,l as

Hk,l :=

⎡
⎢⎢⎢⎣

F0,0 F0,1 . . . F0,l

F1,0 F1,1 . . . F1,l

...
...

...
...

Fk,0 Fk,1 . . . Fk,l

⎤
⎥⎥⎥⎦ .

The matrix Hk,l resembles a Hankel matrix in the sense
that the matrix in the (i, j)-th block consists of frequencies
of strings of length i+j. Finally, we define H (without any
subscripts) to be the infinite matrix of the above form, that
is,

H :=

⎡
⎢⎢⎢⎢⎢⎢⎣

F0,0 F0,1 . . . F0,l . . .
F1,0 F1,1 . . . F1,l . . .

...
...

...
...

...
Fk,0 Fk,1 . . . Fk,l . . .

...
...

...
...

...

⎤
⎥⎥⎥⎥⎥⎥⎦

.

Through a mild abuse of language we refer to H as the
Hankel matrix associated with the process {Yt}.

Suppose the process {Yt} has a HMM. Then there is a
very compact formula for computing the frequency of any
string u ∈ M∗. For 1 ≤ i, j ≤ n, u ∈ M, define

m
(u)
ij := Pr{Yt+1 = u&Xt+1 = j|Xt = i}.

Define M (u) to be the n × n matrix whose ij-th entry is
m

(u)
ij . Let A denote the state transition matrix of the Xt

process. Then it is clear that A =
∑

u∈M M (u). Let π
denote the stationary distribution of the Xt process, so that
π = πA. Let en denote the column vector consisting of n
one’s. Then, for every u ∈ M∗, it can be shown that

fu =
n∑

i=1

n∑
j1=1

. . .
n∑

jl=1

πim
(u1)
ij1

· · ·m(ul)
jl−1jl

(2)

= πM (u1) · · ·M (ul)en.

Note that

∑
l∈M

M (l) = A, π

[∑
l∈M

M (l)

]
= π, (3)

[∑
l∈M

M (l)

]
en = en. (4)

The formula (3) leads at once to the following result,
which can be traced back to the earliest literature in the
subject.

Theorem 1: Suppose {Yt} has a HMM with the associ-
ated {Xt} process having n states. Then Rank(H) ≤ n.

Thus Rank(H) being finite is a necessary condition for
the given process to have a HMM. However, the converse
is not true in general, as shown by Fox and Rubins [19]
and Dharmadhikari and Nadkarni [17].

The complete realization problem is essentially one of
‘inverting’ the formula (3). Given fu for every u ∈ M∗,
we need to construct a vector π and matrices M (u), u ∈ M
such that (3) holds. Let us refer to the process {Yt} as
‘having finite Hankel rank’ if Rank(H) < ∞.

We conclude this subsection by recalling a negative result
of Sontag [30], in which he shows that the problem of
deciding whether or not a given ‘Hankel’ matrix has finite
rank is undecidable.

III. EXISTENCE OF REGULAR QUASI-REALIZATIONS

FOR FINITE HANKEL RANK PROCESSES

In this section, we study processes whose Hankel rank
is finite, and show that it is always possible to construct
a ‘regular quasi-realization’ of such a process. The results
of this section are not altogether surprising. Given that the
infinite matrix H has finite rank, it is clear that there must
exist recursive relationships between its various elements.
Earlier work, most notably [13], [10], contains some such
recursive relationships. However, the present formulae are
the cleanest, and also the closest to the conventional for-
mula (3). Moreover, the above formulae are the basis for
the construction of a ‘true’ (as opposed to quasi) HMM
realization in subsequent sections.

Some notation is introduced to facilitate the subsequent
proofs. Suppose k, l are integers, and I ⊆ Mk, J ⊆ Ml;
thus every element of I is a string of length k, while element
of J is a string of length l. Then we define

FI,J :=

⎡
⎢⎢⎢⎣

fi1j1 fi1j2 . . . fi1j|J|
fi2j1 fi2j2 . . . fi2j|J|

...
...

...
...

fi|I|j1 fi|I|j2 . . . fi|I|j|J|

⎤
⎥⎥⎥⎦ . (5)

Thus FI,J is a submatrix of Fk,l and has dimension |I|×|J |.
In the same spirit, if I is a subset of Mk and l is an integer,
we use the ‘mixed’ notation FI,l to denote FI,Ml . Finally,
given any string u ∈ M∗, we define

F
(u)
k,l := [fiuj, i ∈ Mk in flo, j ∈ Ml in llo], (6)

F
(u)
I,J := [fiuj, i ∈ I, j ∈ J ]. (7)

Lemma 1: Suppose H has finite rank. Then there exists
a smallest integer k such that

Rank(Fk,k) = Rank(H).
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Moreover, for this k, we have

Rank(Fk,k) = Rank(Hk+l,k+s), ∀l, s ≥ 0. (8)
Definition 1: Suppose a process {Yt} has finite Hankel

rank r. Suppose n ≥ r, x is a row vector in Rn, y is a
column vector in Rn, and C(u) ∈ Rn×n ∀u ∈ M. Then
we say that {n,x,y, C(u),u ∈ M} is a quasi-realization
of the process if three conditions hold. First,

fu = xC(u1) . . . C(ul)y ∀u ∈ M∗, (9)

where l = |u|. Second,

x

[ ∑
u∈M

C(u)

]
= x.

Third, [ ∑
u∈M

C(u)

]
y = y.

We say that {n,x,y, C(u),u ∈ M} is a regular quasi-
realization of the process if n = r, the rank of the Hankel
matrix.

Note that a regular quasi-realization in some sense com-
pletes the analogy with the formulas (3), (3) and (4).

Now consider the matrix Fk,k, which is chosen so as
to have rank r. Thus there exist sets I, J ⊆ Mk, such that
|I| = |J | = r and FI,J has rank r. For each symbol u ∈ M,
define

D̄(u) := F−1
I,JF

(u)
I,J , D(u) := F

(u)
I,J F−1

I,J .

Theorem 2: Suppose the process {Yt} has finite Hankel
rank, say r. Then the process always has a regular quasi-
realization. In particular, choose the integer k as in Lemma
1, and choose index sets I, J ⊆ Mk such that |I| = |J | =
and FI,J has rank r. Define the matrices U, V,D(u), D̄(u)

as before. The the following two choices are regular quasi-
realizations. First, let

x = θ := F0,JF−1
I,J , y = φ := FI,0, C(u) = D(u) ∀u ∈ M.

(10)
Second, let

x = θ̄ := F0,J , y = φ̄ := F−1
I,JFI,0, C(u) = D̄(u) ∀u ∈ M.

(11)
This result can be compared to [1], Theorem 1, p. 90 and

Theorem 2, p. 92..
Next, it is shown that any two ‘regular’ quasi-realizations

of the process are related through a similarity transforma-
tion.

Theorem 3: Suppose a process {Yt} has finite Han-
kel rank r, and suppose {θ1, φ1, D

(u)
1 , u ∈ M} and

{θ2, φ2, D
(u)
2 , u ∈ M} are two quasi-realizations of this

process. Then there exists a nonsingular matrix T such that

θ2 = θ1T
−1, D

(u)
2 = TD

(u)
1 T−1 ∀u ∈ M, φ2 = Tφ1.

While this theorem is not surprising, it does not seem to
have been explicitly stated in the literature.

IV. SPECTRAL PROPERTIES OF ALPHA-MIXING

PROCESSES

In this section, we add the assumption that the finite
Hankel rank process under study is also α-mixing, and
show that the regular quasi-realizations satisfy the so-called
‘quasi-strong Perron property.’

Theorem 4: Suppose the process {Yt} is α-mixing and
has finite Hankel rank r. Let {r,x,y, C(u), u ∈ M} be any
regular quasi-realization of the process, and define

S :=
∑

u∈M
C(u).

Then Sl → yx as l → ∞, ρ(S) = 1, ρ(S) is a
simple eigenvalue of S, and all other eigenvalues of S have
magnitude strictly less than one.

This theorem can be compared with [1], Theorem 4, p.
94.

Corollary 1: Suppose a stationary process {Yt} is α-
mixing and has a regular realization. Then the underlying
Markov chain is aperiodic and irreducible.

V. ULTRA-MIXING PROCESSES AND THE EXISTENCE OF

HMM’S

In the previous two sections, we studied the existence of
quasi-realizations. In this section, we study the existence
of ‘true’ (as opposed to quasi) realizations. We introduce
a new property known as ‘ultra-mixing’ and show that if a
process has finite Hankel rank, and is both α-mixing as well
as ultra-mixing, then modulo a technical condition it has a
HMM where the underlying Markov chain is itself α-mixing
(and hence aperiodic and irreducible) or else satisfies a
‘consistency condition.’ The converse is also true, modulo
another technical condition.

A. The Consistency Condition

Before presenting the sufficient condition for the exis-
tence of a HMM, we recall a very important result from
[1]. Consider a ‘joint Markov process’ HMM where the
associated matrix A (the transition matrix of the {Xt}
process) is irreducible. In this case, it is well known and
anyway rather easy to show that the state process {Xt} is α-
mixing if and only if the matrix A is aperiodic in addition to
being irreducible. If A is aperiodic (so that the state process
is α-mixing), then the output process {Yt} is also α-mixing.
See for example [31], Theorem 3.12, p. 110. However, the
converse is not always true. It is possible for the output
process to be α-mixing even if the state process is not.
Theorem 5 of [1] gives necessary and sufficient conditions
for this to happen. This condition is referred to here as the
‘consistency condition.’

B. The Ultra-Mixing Property

In earlier sections, we studied the spectrum of various
matrices under the assumption that the process under study
is α-mixing. For present purposes, we introduce a different
kind of mixing property.
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Definition 2: Given the process {Yt}, suppose it has
finite Hankel rank, and let k denote the unique integer
defined in Lemma 1. Then the process {Yt} is said to be
ultra-mixing if there exists a sequence {δl} ↓ 0 such that∣∣∣∣fiu

fu
− fiuv

fuv

∣∣∣∣ ≤ δl, ∀i ∈ Mk,u ∈ Ml,v ∈ M∗. (12)

Note that, the way we have defined it here, the notion of
ultra-mixing is defined only for processes with finite Hankel
rank.

The ultra-mixing property can be interpreted as a kind of
long-term indepedence. It says that the conditional proba-
bility that a string begins with i, given the next l entries,
is just about the same whether we are given just the next l
entries, or the next l entries as well as the still later entries.

In [26], Kalikow defines a notion that he calls a ‘uniform
martingale,’ which is the same as an ultra-mixing stochastic
process. He shows that a stationary stochastic process over
a finite alphabet is a uniform martingale if and only if it is
also a ‘random Markov process.’

C. The Main Result

Recall that a set S ⊆ Rr is said to be a ‘cone’ if
x,y ∈ S ⇒ αx + βy ∈ S ∀α, β ≥ 0. The term
‘convex cone’ is also used to describe such an object. Given
a (possibly infinite) set V ⊆ Rr, the symbol Cone(V)
denotes the smallest cone containing V , or equivalently, the
intersection of all cones containing V . Next, we introduce
two cones that play a special role in the proof. Suppose
as always that the process under study has finite Hankel
rank, and define the integer k as in Lemma 1. Throughout,
we use the quasi-realization {r, θ, φ, D(u)} defined in (10).
Now define

Cc := Cone{D(u)φ : u ∈ M∗},
Co := {y ∈ Rr : θD(v)y ≥ 0, ∀v ∈ M∗}.

Note that from (9) and (10) we have

θD(v)D(u)φ = fuv ≥ 0, ∀u,v ∈ M∗.

Hence D(u)φ ∈ Co ∀u ∈ M∗, and as a result Cc ⊆ Co.
Moreover, both Cc and Co are invariant under D(w) for each
w ∈ M. The key difference between Cc and Co is that the
former cone need not be closed, whereas the latter cone is
always closed (this is easy to show).

As before, let r denote the rank of the Hankel matrix,
and choose subsets I, J ⊆ Mk such that |I| = |J | = r and
FI,J has rank r. For each finite string u ∈ M∗, define the
vectors

pu :=
1
fu

F
(u)
I,0 = [fiu/fu, i ∈ I] ∈ [0, 1]r×1,

qu :=
1
fu

F
(u)
0,J = [fuj fu, j ∈ J ] ∈ [0, 1]1×r.

Thus both pu and qu are probability vectors, in the sense
that their components are all nonnegative and add up to one.
Now let us consider the countable collection of probability

vectors A := {pu : u ∈ M∗}. Since pu equals D(u)φ
within a scale factor, it follows that Cc = Cone(A).
Moreover, since A ⊆ Cc ⊆ Co and Co is a closed set, it
follows that the set of cluster points of A is also a subset
of Co.1

Now we state the main result of this section.
Theorem 5: Suppose the process {Yt} satisfies the fol-

lowing conditions:

1) It has finite Hankel rank.
2) It is ultra-mixing.
3) It is α-mixing.
4) The cluster points of the set A of probability vectors

are finite in number and lie in the interior of the cone
Co.

Under these conditions, the process has an irreducible
‘joint Markov process’ hidden Markov model. Moreover the
HMM satisfies the consistency conditions of [1], Theorem
5.

Remark: Among the hypotheses of Theorem 5, Condi-
tions 1 through 3 are ‘real’ conditions, whereas Condition
4 is a ‘technical’ condition.

The proof of Theorem 5 depends on first establishing
the following lemma, which shows that under the stated
hypotheses there exists a polyhedral cone that satisfies
certain invariance properties. The existence of such an
invariant polyhedral cone was first assumed in [14], and
then used to establish the existence of a HMM. However,
the present paper is the first one to deduce the existence of
such a polyhedral invariant cone in terms of properties that
can be stated in terms of the process under study alone.

Lemma 2: Suppose the process under study is ultra-
mixing, and that the cluster points of the probability vector
set A are finite in number and belong to the interior of
the cone Cc. Choose D to be the minimum norm solution
of the equation Fk+1,k = DFk,k, and partition D in the
usual format. As before, define b := et

mk(I −Π) to be the
projection of et

mk onto the row range of Fk,k. Then there
exists a polyhedral cone P such that

1) P is invariant under each D(u),u ∈ M.
2) Co ⊆ P ⊆ Cc.
3) Fk,0 ∈ P .
4) b ∈ Pp.
5) φ ∈ P .
6) θt ∈ Pp.
Theorem 5 gives sufficient conditions for the existence

of an irreducible HMM that satisfies some consistency
conditions in addition. It is therefore natural to ask how
close these sufficient conditions are to being necessary. The
paper [1] also answers this question.

Theorem 6: Suppose a HMM satisfies the consistency
condition of [1], Theorem 5. Suppose in addition that there

1Recall that a vector y is said to be a ‘cluster point’ of A if there exists a
sequence in A, no entry of which equals y, converging to y. Equivalently,
y is a cluster point if A if every neighbourhood of y contains a point of
A not equal to y.
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exists an index q ≤ s such that the following property holds:
For every string u ∈ Mq and every integer r between 1 and
p, every column of the product M

(u1)
r M

(u2)
r+1 . . .M

(uq)
r+q−1 is

either zero or else is strictly positive. In this computation,
any subscript Mi is replaced by i mod p if i > p. With this
property, the HMM is α-mixing and also ultra-mixing.

For a proof, see [1], Lemma 2.
Thus we see that there is in fact a very small gap

between the sufficiency condition presented in Theorem 5
and the necessary condition discovered earlier in [1]. If the
sufficient conditions of Theorem 5 are satisfied, then there
exists an irreducible HMM that also satisfies the consistency
conditions of [1], Theorem 5. Conversely, if an irreducible
HMM satisfies the consistency conditions, and one other
technical condition, then it satisfies three out of the four
hypotheses of Theorem 5, the only exception being the
technical condition about the cluster points lying in the
interior of the cone Cc.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have advanced the theory of constructing
a stochastic model for a process assuming values in a
finite alphabet. In particular, it has been shown that every
process having the finite Hankel rank property always has
a regular ‘quasi-realization,’ whether or not it has a regular
realization as a HMM. A new notion called “ultra-mixing”
has been introduced. It has been shown that if a finite
Hankel rank process is both α-mixing and ultra-mixing,
and if an additional technical condition is satisfied, then the
process has an irreducible HMM and satisfies a consistency
condition. There is a near converse: If a finite Hankel rank
process has an irreducible HMM and satisfies a consistency
condition, and also satisfies another technical condition,
then the process is both α-mixing as well as ultra-mixing.
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